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Abstract We find necessary conditions for a digraph H to admit a homomorphism
from every oriented planar graph of girth at least n, and use these to prove the existence
of a planar graph of girth 6 and oriented chromatic number at least 7. We identify a←→
K4 -free digraph of order 7 which admits a homomorphism from every oriented planar
graph (here

←→
Kn means a digraph with n vertices and arcs in both directions between

every distinct pair), and a
←→
K3 -free digraph of order 4 which admits a homomorphism

from every oriented planar graph of girth at least 5.
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1 Introduction

This paper is concerned with homomorphisms of digraphs. Unless stated otherwise,
all digraphs will be finite, and have no loops or multiple arcs in the same direction
between the same pair of vertices. In other words digraphs are irreflexive relations on
their vertex sets. If G is a digraph, then we write G = (V, A), where V = V (G) and
A = A(G) are respectively the vertex set and arc set of G. An oriented graph is a
digraph without opposite arcs.

If G is an unoriented graph, then an orientation of G is an oriented graph obtained
by replacing each edge {u, v} by one of the arcs (u, v) or (v, u). If C is a class of
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unoriented graphs, then
−→C will denote the class of orientations of graphs in C. We

also define, for each unoriented graph G, its biorientation
←→
G , the digraph obtained

from G by replacing each edge by a pair of opposite arcs.
A homomorphism (resp. anti-homomorphism) from a digraph G1 = (V1, A1) to a

digraph G2 = (V2, A2) is a function φ : V1 → V2 such that, if (u, v) ∈ A1, then
(φ(u), φ(v)) ∈ A2 (resp. (φ(v), φ(u)) ∈ A2). A digraph H is a homomorphism bound
for a class C of digraphs—in short a C-bound—if every digraph in C admits a homo-
morphism to H . Homomorphisms between unoriented graphs are defined similarly,
as vertex mappings which respect edges.

An unoriented graph is n-colourable if and only if it admits a homomorphism to
Kn , the complete graph on n vertices; for this reason, we refer to any homomorphism
G → H as an H -colouring, and the vertices of H as colours. We can express many
well known theorems in terms of homomorphism bounds. For example the 4CT says
that K4 bounds the class of unoriented planar graphs (and so

←→
K4 bounds the class

of planar digraphs). This motivates the following questions for any given class C of
digraphs: does there exist a C-bound, and if so, what properties must such a bound
have?

Homomorphism bounds have been also been intensively studied in the case where
C is a class of oriented graphs, and the homomorphism bound is also required to be
oriented. Particular attention has focused on the problem of how small such bounds
can be made. By analogy with the unoriented case, we define the oriented chromatic
number χo(G) of an oriented graph G, to be the smallest order of an oriented graph
admitting a homomorphism from G (that is of an oriented homomorphism bound for
{G}). If G is an unoriented graph, then we define χo(G) to be the maximum value
of χo(

−→
G ) taken over all orientations

−→
G of G. For a class C of unoriented graphs we

define χo(C) = supG∈C χo(G). Clearly χo(C) is bounded above by the order of the

smallest
−→C -bound (if such a bound exists). We have equality when C is complete, that

is when the disjoint union of two graphs in C is a subgraph of a graph in C (an easy
exercise: see [1] for more details).

In this paper we are mainly concerned with homomorphism bounds for
−→Pn , where

Pn is the class of planar graphs of girth at least n (recall that the girth of a graph
is the length of its shortest cycle). Since Pn is clearly complete, the smallest order

of an oriented
−→Pn-bound is the same as χo(Pn). The problem of determining χo(P),

where P is the class of all planar graphs, is analogous to the four colour problem.

The smallest known
−→P -bound has 80 vertices. That is χo(P) ≤ 80 [2]. In the other

direction it is known that χo(P) ≥ 18 [3]. This leaves a very wide gap, which seems
difficult to narrow in either direction. Better bounds are known for χo(Pn), with the
exact values being known for n ≥ 12. The best bounds known are listed in the fol-
lowing [the reference for the lower bound is given first in each case; for n = 9, 10 the
upper bound is due to the author (unpublished)].

Theorem 1 [2–11]

1. 18 ≤ χo(P) ≤ 80 [3,2]
2. 11 ≤ χo(P4) ≤ 40 [8,10]
3. 6 ≤ χo(P5) ≤ 16 [7,11]
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4. 6 ≤ χo(P6) ≤ 11 [7,6]
5. 6 ≤ χo(P7) ≤ 7 [7,4]
6. 5 ≤ χo(P8) ≤ 7 [7,4]
7. 5 ≤ χo(Pn) ≤ 6 for 9 ≤ n ≤ 11 [7,9]
8. χo(Pn) = 5 for n ≥ 12 [7,5].

In Sect. 3 we find some necessary conditions for a digraph to be a Pn-bound. We
apply these conditions to show that few (if any) oriented graphs of order ≤ 6 can

bound
−→P8, at most one can bound

−→P7, and none at all bounds
−→P6. In particular, we

reprove χo(P7) ≥ 6, and obtain the new lower bound

Theorem 2 χo(P6) ≥ 7.

The proof of this result leads naturally to questions about
−→Pn-bounds which are not

necessarily oriented graphs. Clearly a digraph H will bound
−→P if it contains

←→
K4 , and−→P4 if it contains

←→
K3 , by the four colour theorem and Grötzsch’s theorem respectively.

An interesting (and still open) problem is how small can we make bounds which do

not contain these graphs. We exhibit a
←→
K4 -free

−→P -bound of order 7, and a
←→
K3 -free−→P5-bound of order 4. The latter is the smallest possible, but it is possible that there

may be a
←→
K4 -free

−→P -bound with as few as 5 vertices. If so we have yet another
generalization of the 5-colour theorem.

We prove these results in Sect. 4 by adapting Thomassen’s celebrated proof of the
5-choosability of planar graphs [12], and his similar proof of 3-choosability of graphs
in P5 [13]. The changes are simple, and the original arguments apply mutatis mutandis,
so we omit details of the proofs.

Finally we remark that all our definitions make sense even if digraphs are permitted
to have loops. We exclude these just for convenience: if H has a loop at v then every
digraph admits a homomorphism to H (namely the constant map v), so disallowing
loops excludes only trivial results.

2 Preliminaries

We introduce some more definitions and notations. A set with k elements is called
a k-set. If X is a set of vertices of a digraph G, then G[X ] denotes the subgraph of
G induced by X . The complement of a digraph G, written G, is the digraph with the
same vertex set as G, with (u, v) ∈ G if and only if (u, v) /∈ G (u �= v). An (anti-)
isomorphism of a digraph G is a bijective (anti-)homomorphism from G to itself. The
following observation is useful.

Lemma 3 If C is a class of unoriented graphs, H is a
−→C -bound and H ′ is anti-iso-

morphic to H, then H ′ is also a
−→C -bound.

Proof Let G ∈ −→C , then the oriented graph G ′ obtained by reversing the arcs of G is

also in
−→C , and so admits a homomorphism to H . The same map (of vertices) is an

anti-homomorphism G → H which, composed with the anti-isomorphism H → H ′,
gives a homomorphism G → H ′. 	
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Let ε = (ε1, ε2, . . . εk) ∈ {−1, 1}k . We set |ε| = k. We define an ε-path (trail) from
v to w to be a path (trail) v = v0, v1, . . . , vk = w such that for every i, 1 ≤ i ≤ k,
there is an arc from vi−1 to vi if εi = 1, and from vi to vi−1 if εi = −1.

Definition Given a digraph G, v ∈ V (G) and ε ∈ {−1, 1}k

N ε(v) = {w ∈ V (G) | there is an ε-trail from v to w}

For S ⊆ V (G) we define N ε(S) = {N ε(v) | v ∈ S}. We also write out (v) =
N (1)(v), in(v) = N (−1)(v), d+(v) = |out (v)| and d−(v) = |in(v)|. We refer to
d+(v) and d−(v) respectively as the outdegree and indegree of v.

Definition If � is a digraph, the nth power of �,�n has the same vertex set as �, with
an arc from v to w in �n if there is a (1, 1, 1, . . . 1)-trail of length n from v to w in �.
Note that, if � is an oriented graph, then �k will in general have opposite edges and
loops, but that �2 has no loops.

Definition A class C of oriented graphs is k-complete if the graph obtained by pasting
together two graphs in C along isomorphic �-tournaments (� ≤ k) is also in C. In

particular, observe that each
−→Pn is 2-complete.

We say that an oriented graph � is minimal with some property P , or P-minimal
for short, if � has this property, but no proper subgraph of � has.

Lemma 4 ([14], Lemma 3) Let C be a 2-complete class of oriented graphs, � a min-
imal C-bound, G a graph in C, (u, v) an arc in G and (u′, v′) an arc in �, then there
is a homomorphism φ : G → �, such that φ(u) = u′ and φ(v) = v′.

Remark This result was originally stated for � an oriented graph, but applies (with
identical proof) when � is any digraph.

Recall that the circulant digraph C(n; a1, a2, . . . ak) is the digraph with vertex set
IZn , with an arc from v to w if v−w ≡ ai for some i(1 ≤ i ≤ k). Clearly these digraphs
are oriented if, for all i, j (1 ≤ i, j ≤ k), ai �= −a j , and tournaments, if in addition,
k = (n − 1)/2. An example of these are the Paley Tournaments Pq , defined, for each
prime q ≡ 3 mod 4, by Pq = C(q; a1, a2, . . . a(q−1)/2), where a1, a2, . . . a(q−1)/2 are
the nonzero quadratic residues modulo q. (Since q ≡ 3 mod 4, for each nonzero resi-
due a, exactly one of the residues a and−a is quadratic.) We then define P∗q = Pq [ IZ∗q ],
where IZ∗q = IZq \{0}. When k ∈ IZ∗q , the map v→ kv is an isomorphism of P∗q when k
is a quadratic residue, and an anti-isomorphism when it is not.

In particular, the tournament P∗7 has vertex set IZ∗7 = {1, 2, 3, 4, 5, 6}. The three
quadratic residues (1,2 and 4) have outdegree 3 and indegree 2, while the non-qua-
dratic residues (3,5 and 6) have indegree 3 and outdegree 2. The group of isomorphisms
acts transitively on the quadratic residues, and the group of isomorphisms and anti-
isomorphisms acts transitively on the whole vertex set.

We finish this section by listing the tournaments of order at most 6 for which each
vertex has indegree and outdegree at least 2. Up to isomorphism there are 6 of these
tournaments: T0 = the circulant C(5; 1, 2), T1 = the circulant C(6; 1, 2) with added
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arcs (0, 3), (1, 4) and (2, 5); T2 = T1 with the arc (1, 4) reversed; T3 = P∗7 , T4 = T3
with the arc (1, 3) reversed, and T5 = T3 with the arc (1, 5) reversed. T5 is anti-iso-
morphic to T4 (via the map x → 5x), and the rest are self anti-isomorphic.

Lemma 5 Every proper subgraph of P∗7 either has a vertex with indegree or outdegree
at most 1 or is isomorphic to a subgraph of T4 or T5.

Proof Let H be a proper subgraph of P∗7 . Suppose that (u, v) is an arc missing from
H . If |H | ≤ 5, v is a quadratic residue or u is not, then H has a vertex with indegree
or outdegree at most 1. In the remaining case |H | = 6, u is a quadratic residue and v is
not. By symmetry, we may assume u = 1, whence v ∈ {3, 5}, so that H is isomorphic
to a subgraph of T4 or T5. 	


3 Bounds for Planar Graphs

Let O and Og denote respectively the classes of outerplanar graphs, and of outerplanar
graphs of girth at least g. Pinlou and Sopena [15] have proved

Theorem 6 χo(Og) = 7 for g = 3, 6 for g = 4 and 5 for g ≥ 5.

The next result similarly gives the minimum order of arbitrary (not necessarily

oriented)
−→O -bounds.

Lemma 7
←→
K3 bounds

−→O .
←→
K2 does not bound

−→Og for any g.

Proof By the 4CT, every outerplanar graph is 3-colourable, which proves the first
statement. Directed odd cycles prove the second. 	


For ε1, ε2 ∈ {−1, 1}k we define L(ε1, ε2, N ) to be the oriented planar graph com-
prising a directed path 0, 1, . . . N , and two other vertices a and b, together with an
arc from a to b, an ε1-path from a to each vertex 0, 1, . . . N , and an ε2-path from b
to each of these vertices. We construct the oriented planar graph L(k, N ) in the same
way, except that we now join both a and b to each of the vertices 0, 1, . . . N by a copy
of each of the 2k ε-paths of length k.

For each oriented outerplanar G and ε ∈ {−1, 1}k , we define C(ε, G) to be the
oriented planar graph comprising G, together with another vertex a and an ε-path
from a to each vertex of G. We define the oriented planar graph C(k, G) similarly, by
joining a vertex a to every vertex of G by a copy of each ε-path of length k.

Lemma 8 If a digraph H is a minimal
−−−→P2k+1-bound, then, for each ε, ε1, ε2 ∈

{−1, 1}k
1. For each v ∈ V (H)H [N ε(v)] bounds

−−−→O2k+1. In particular, |N ε(v)| ≥ 3, and if H
is an oriented graph, then |N ε(v)| ≥ 7 for k = 1, and |N ε(v)| ≥ 5 for k ≥ 2.

2. For adjacent vertices v,w ∈ V (H), H [N ε1(v)∩N ε2(w)] contains a directed cycle

(including possibly the 2-cycle, ie
←→
K2 ). Thus N ε1(v)∩ N ε2(w) contains at least 2

vertices and, if H is an oriented graph, at least 3.

If H is a a minimal
−→P2k-bound (k ≥ 2) then,
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3. For each v ∈ V (H) if A = ∩|ε|=k N ε(v), then H [A] bounds
−→O2k . In particular,

|A| ≥ 3, and if H is an oriented graph, then |A| ≥ 6 for k = 2, and |A| ≥ 5 for
k ≥ 3.

4. For adjacent vertices v,w ∈ V (H), if A = ∩|ε|=k(N ε(v) ∩ N ε(w)), then H [A]
contains a directed cycle (including possibly the 2-cycle). Thus |A| ≥ 2 and, if H
is an oriented graph, then |A| ≥ 3.

Proof Let H be a minimal
−−−→P2k+1-bound, v ∈ V (H), and O ∈ −−−→O2k+1. Then C(ε, O) ∈−−−→P2k+1, and so by Lemma 4, there is a homomorphism φ : C(ε, O) → H , such that

φ(a) = v, whence the vertices of O must map into N ε(v). Together with Theorem 6
and Lemma 7, this gives (1).

To prove (2), suppose that v and w are adjacent vertices in H . We may assume

w ∈ out (v). Clearly L(ε1, ε2, N ) ∈ −−−→P2k+1, and so by Lemma 4, there is a homo-
morphism φ : L(ε1, ε2, N ) → H , such that φ(a) = v, φ(b) = w. The vertices in
N ε1(a) ∩ N ε2(b) induce a directed path of length N . If N > |H |, then φ cannot be
injective on this path, whose image thus induces a digraph in N ε1(v)∩ N ε2(w) which
contains a directed cycle.

The proofs of (3) and (4) proceed in exactly the same way, using the graphs C(k, O)

and L(k, N ) in place of C(ε, O) and L(ε1, ε2, N ), respectively. 	

We now apply this lemma to begin the proof of Theorem 2. We must show that no

oriented graph H of order 6 or less bounds
−→P6. In Lemma 8 below, we show that most

of them cannot even bound
−→P8. We stress that this result is purely negative; there is

no claim that any of the target graphs listed actually are bounds, only that all the other
candidates are eliminated.

Lemma 9 1. If H is an oriented
−→P8-bound of order 6 or less, then H is (isomorphic to)

either T0 or a subgraph of T1, T3(= P∗7 ), T4 or T5.

2. If H is an oriented
−→P7-bound of order 6 or less, then H is isomorphic to P∗7

Proof We first prove

Claim No minimal oriented
−→P8-bound of order at most 6 contains a vertex with

indegree or outdegree ≤ 1.

Proof of Claim For a contradiction we assume that H is a minimal oriented
−→P8-bound

of order at most 6 which does contain such a vertex v. Clearly v cannot be a source
or sink. Thus, and by Lemma 3, we may assume that v has a single outneighbour w.
We set A+ = out (w) and A− = in(w) \ {v}.

Note that, for any vertex x of H

x /∈ N (1,1)(x). (1)

We have N (1)(v) = {w}, whence w /∈ N (1,1,1)(v), and so

v /∈ N (1,1,1,−1)(v). (2)
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We also have

N (1,1,1,1)(v) = N (1,1)(A+) (3)

N (1,1,−1,1)(v) = N (−1,1)(A+) (4)

N (1,−1,1,1)(v) = A+ ∪ N (1,1)(A−) (5)

If any of the sets on the right hand sides of (3), (4) or (5) omit any vertex other than

v, then, by (2) and Lemma 8 (3), H doesn’t bound
−→P8, contrary to our assumption.

Therefore we may assume that

N (1,1)(A+) ⊇ V (H)− {v} (6)

N (−1,1)(A+) ⊇ V (H)− {v} (7)

N (1,1)(A−) ⊇ A− ∪ {w}. (8)

Inclusions (6) and (8), together with (1), give |A+| ≥ 2 and |A−| ≥ 2, whence
|A+| = |A−| = 2. Let A+ = {x, y}, with arc (if any) from x to y. By (6) there is a
(1, 1)-trail which begins in A+ and ends in x . The trail must be a path, and can only
begin at y and have middle vertex m(x) ∈ A−. Similarly there is a (1, 1)-path from x
to y with middle vertex m(y) ∈ A−, with m(y) �= m(x). There is also a (1, 1)-path
which begins in A+ and ends in m(y). The middle vertex of this path can only be
m(x), and so there must be an arc from m(x) to m(y). But now m(x) /∈ N (−1,1)(A+),
which contradicts (7). This proves the claim.

Since the only digraphs of order at most 6 with no vertices of indegree or outdegree
at most one are T0 and subgraphs of the tournaments T1, T2, T3, T4 and T5, listed in
Sect. 2, we complete the proof of the first part of the lemma, by showing that no

subgraph of T2 is a minimal
−→P8-bound. Let T be a subgraph of T2. If 0 is a vertex

of T , then N (−1,1,1,1)(0) ∩ N (−1,1,1,−1)(0) ⊆ {1, 2, 4, 5}, and Lemma 8 (3) applies.
Otherwise T has a vertex of indegree or outdegree at most one, and we use (3).

To prove the second part of the lemma it remains to show that T0, the subgraphs

of T1, T4 and T5 and the proper subgraphs of T3 = P∗7 do not bound
−→P7. For

T0, N (1,1,1)(0) = {0, 1, 3, 4}, so Lemma 8(1) shows it is not a minimal
−→P7-bound.

Claim A digraph T of order 6 does not bound
−→P7, if it contains an arc (u, v) with either

d+(u) ≤ 2 or d−(v) ≤ 2, such that for some sequences ε1, ε2 ∈ {−1, 1}3, N ε1(u)

∩ N ε2(v) induces a graph with no cycle.

To prove this it suffices to show that no subgraph T ′ of such a T is a minimal−→P7-bound. Either |T ′| ≤ 5, T ′ has a vertex of indegree or outdegree at most one or
u and v are adjacent in T ′. In the first two cases we have already shown that T ′ does

not bound
−→P7, and in the last, Lemma 8 (2) gives the same conclusion. This proves

the claim.
For T = T1 we let (u, v) = (5, 0) and compute N (1,−1,−1)(5) ∩ N (−1,1,−1)(0) =

{2, 3, 4, 5}; for T =T4, we let (u, v)=(1, 2) and compute N (1,1,1)(1)∩N (−1,1,−1)(2)=
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{1, 3, 4, 5}. Since in each case the vertex set induces a transitive K4, neither of
these tournaments bound

−→P 7, by the claim above. Since T5 is anti-isomorphic to

T4, Lemma 3 now shows that T5 does not bound
−→P 7 either.

By Lemma 5 every proper subgraph of T3 = P∗7 either has a vertex of indegree
or outdegree ≤ 1 or is isomorphic a subgraph of T4 or T5, so that either way we are
already done. 	


In the remaining case, T = T3 = P∗7 , Lemma 8 is of no value, since every pair of
distinct vertices is joined by all 8 kinds of trail of length 3. We need another approach.
The following lemma follows directly from the definitions.

Lemma 10 If there is a homomorphism from G to H, then there is a homomorphism
from Gk to Hk.

Indeed if ϕ : G → H is a homomorphism, then the very same map (regarded as
a function of vertices) is also a homomorphism from Gk to Hk . This lemma is most
useful when k = 2, since the square of an oriented graph has no loops. We use

Corollary 11 If H bounds
−→P2k , then H2 bounds

−→P k .

Proof Suppose that H bounds P2k , and let G ∈ Pk . Construct G̃ from G by replacing
each arc of G by a directed path of length 2. Thus G̃ ∈ P2k , whence there is a homo-
morphism from G̃ to H , and so from G̃2 to H2. But G is a subgraph of G̃2. Thus G
has a homomorphism to H2, so that H2 bounds Pk . 	


Through this result we move naturally from considering oriented target graphs to
target graphs which may have opposite arcs. It is easy to check that (P∗7 )2 has an arc
from n to m, except in the case where m is a quadratic residue and n = −m. That is
U := (P∗7 )2 is the complement of a 6-vertex digraph with 3 mutually non-incident
arcs. We complete the proof of Theorem 2 by showing

Lemma 12 U does not bound
−→P .

Proof We show that if U ′ is a subgraph of U then U is not a minimal
−→P -bound. If

|U ′| ≤ 3, this follows from Lemma 8 (1). Otherwise U ′ contains a quadratic residue
u and a non-quadratic residue v �= −u, and in(u) ∩ out (v) = {1, 2, 3, 4, 5, 6} \
{u,−u, v,−v}, which induces an oriented K2. Now Lemma 8(2) shows that U ′ is not
a minimal

−→P -bound. 	

Note that U contains no

←→
K4 . If it did so, then it would have to bound P by the 4CT.

We now turn to the problem of finding small
←→
K4 -free P-bounds. We first introduce

some notation.

Definition T (t, i) is the complement of the disjoint union of t directed triangles and
i isolated vertices. In other words T (t, i) is obtained by removing t vertex disjoint
directed triangles from

←−→
K3t+i . We will let C1, C2, . . . Ct denote the vertex sets of these

triangles, and s1, s2, . . . si the remaining vertices.
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Lemma 13 1. T (t, i) is
←→
K4 -free if and only if t + i < 4.

2. Every oriented 2t + i − 1-degenerate graph G is T (t, i)-colourable.

Proof The first part is trivial, and the second is proved by induction on |G|. For the
induction step, let G be a 2t + i − 1-degenerate graph, v a vertex of G of order at
most 2t + i − 1 and φ a T (t, i)-colouring of G − {v}. Either there is some k such that
no neighbour of v is coloured sk , or some m such that at most one neighbour of v is
coloured from Cm . In the former case we colour v sk , and in the latter we can colour
it using a colour from Cm . 	


An immediate corollary of this is that T (3, 0), of order 9, bounds the class of ori-
ented 5-degenerate—and hence planar—graphs. This seems to be the smallest bound
that is really easy to prove, but we can do better.

Theorem 14 1. T (2, 1) bounds
−→P

2. T (1, 1) bounds
−→P5.

We prove this in the next section. Theorem 14 naturally raises the following problems.

Problem 1 Does T (1, 2) bound
−→P ? Does T (1, 1) bound

−→P4?

We note that T (1, 2) is the only digraph H of order ≤ 5 that neither contains a
←→
K4

nor is excluded from being a
−→P -bound by Lemma 8. We outline the proof; the reader

may fill in the details. If |H | ≤ 4, then either H is isomorphic to
←→
K4 or Lemma 8(2)

shows that H doesn’t bound P , so we suppose that |H | = 5. If H has two arcs with-
out a common endpoint or three arcs in a transitive triangle, then Lemma 8(2) shows
that H doesn’t bound P; if the arcs in H have a common endpoint, then H contains←→
K4 . The only remaining possibility is that the arcs of H form a directed triangle, ie
H = T (1, 2).

A similar argument shows that T (1, 1) is the only digraph H of order≤ 4 that nei-

ther contains a
←→
K3 , nor is excluded by Lemma 8 from being a

−→P5-bound. In particular

T (1, 1) is—like
←→
K3 —a minimal

−→P5-bound.

4 List Homomorphisms

We now modify two of Thomassen’s list colouring theorems [12,13], in order to prove
Theorem 14. First we generalize his proof of the 5-choosability of planar graphs [12].

Theorem 15 Let H be a digraph, and let A and B be collections of vertex sets such
that, for every B ∈ B, u ∈ V (H) and i ∈ {−1, 1}, B ∩ N (i)(u) contains a subset B ′
for which

1. For all v ∈ V (H) and j ∈ {−1, 1}, B ′ ∩ N ( j)(v) �= ∅
2. For all A ∈ A and j ∈ {−1, 1}, A ∩

( ⋂
w∈B′

N ( j)(w)

)
∈ B.
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Let G be an oriented plane graph, (v1, v2) be an arc on the outer face boundary
and c be a homomorphism of (v1, v2) to H. For each vertex v in G, let L(v) ⊆ V (H).
Suppose that L(v) = {c(v)} if v ∈ {v1, v2}, L(v) ∈ B if v /∈ {v1, v2} is on the
outer face boundary and L(v) ∈ A in all other cases. Then c can be extended to a
homomorphism c̃ : G → H, such that c̃(v) ∈ L(v).

We get the statement of Theorem 15 from Thomassen’s original theorem by substi-
tuting sets in A and in B for 5-sets and 3-sets respectively. His proof then also applies,
with the same modifications. We may recover the original result from Theorem 15 by
letting H be the complete graph on the union of all lists, and A and B comprise the
5-sets and 3-sets respectively.

We can now prove Theorem 14 (1), by applying Theorem 15 with H = T (2, 1),A =
{V (H)} and B is the collection of vertex sets which contain either s1 and one point
from each of C1 and C2, or one of the sets C1, C2 and at least one other point. We
can then always choose B ′ above to be either C1, C2 or a 2-set contained in neither of
these triangles.

Let H be a digraph. Call a subset S of V (H) good if, for any two (not necessarily
distinct) vertices u and v of H , and any i, j ∈ {−1, 1}, S ∩ N (i)(u) ∩ N ( j)(v) �= ∅.

Theorem 16 Let H be a digraph, and G ∈ −→P5. Let c be a homomorphism of a path or
cycle P : v1v2 . . . vq , 1 ≤ q ≤ 6 to H, such that all the vertices of P are on the outer
face boundary. For each vertex v in G, let L(v) ⊆ V (H), be such that, if v ∈ P then
L(v) = {c(v)}, if v /∈ P, then L(v) contains a set of the form S ∩ N (i)(x), where S is
good, and x ∈ V (H), and if v is not on the outer face boundary, then L(v) is good.
Assume furthermore that if an edge, not in P, joins vertices u and v, then at least one
of L(u) and L(v) is good. Then c can be extended to a homomorphism c̃ : G → H,
such that c̃(v) ∈ L(v).

This is an almost verbatim restatement of Thomassen’s list version of Grötzsch’s
theorem [13] (Theorem 2.1). Where in the original theorem we have 3-sets and 2-sets,
we now have respectively good sets and sets of the form S∩ N (i)(x), where S is good,
and x ∈ V (H). The proof in [13] then applies with the same modifications. (Again
we can recover the original list colouring theorem by setting H to be the complete
graph on the union of all the lists, and taking 3-sets as the good sets).

With the hypothesis that V (H) itself is good, we get

Corollary 17 Let H be a digraph with the property that, for any two (not necessarily
distinct) vertices u and v of H and any i, j ∈ {−1, 1}, N (i)(u) ∩ N ( j)(v) �= ∅, then

H bounds
−→P5.

Setting H = T (1, 1) above proves Theorem 14 (2). Here is another application.
Let W := T 2

0 = C(5; 1, 2)2. It is easy to check that W is the complement of a directed
5-cycle. Corollary 17 thus gives

Theorem 18 W bounds
−→P5.

We conjecture two stronger results.
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Conjecture 1 W bounds all oriented graphs with maximum average degree < 10/3.

Conjecture 2 C(5; 1, 2) bounds
−→P10 (whence in particular, χo(P10) ≤ 5).

To see that these are indeed generalizations of Theorem 18, we use respectively
the well known fact that a graph in Pg has maximum average degree < 2g/(g − 2)

(see eg [7]), and Corollary 11.
Here is yet another possible strengthening of Theorem 18.

Problem 2 Does W bound
−→P 4?

Lemma 8 (2) shows that W does not bound
−→P .

Another proof of Theorem 14 can be found in the preprint version of this paper
[16].
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