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Abstract Let a, b, be two even integers. In this paper, we get a sufficient condition
which involves the stability number, the minimum degree of the graph for the existence
of an even [a, b]-factor.

Keywords Even factor · 2-Edge connected · Minimum degree · Stability number

1 Introduction

We consider finite undirected graphs without loops or multiple edges. Let G be a
graph with vertex set V (G) and edge set E(G). For two vertices u and v of G, let
uv and vu denote an edge joining u to v. For a subset A of V (G), let |A| be the
number of vertices in A. The order of G is |G| = |V (G)| = n. Given disjoint subsets
A, B ⊆ V (G), we write eG(A, B) for the number of the edges in G with one extrem-
ity in A and the other one in B. Thus eG(v, V (G) − v) = dG(v) is the degree of v

and δ(G) = min{dG(v) : v ∈ V (G)} is the minimum degree of G. A subgraph of G
containing all of V (G) but possibly not all of E(G) is called a spanning subgraph of
G or a factor in G.

Let g, f be mappings from V (G) into the nonnegative integers N and such that
g(v) ≤ f (v), for all v ∈ V (G). Then F is called a [g, f ]-factor of G if F is a factor
of G with g(v) ≤ dF (v) ≤ f (v) for all v in V (G). For two integers a and b with
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1 ≤ a ≤ b, an [a, b]-factor of G is defined to be a spanning subgraph F of G such
that a ≤ dF (v) ≤ b for all v ∈ G.

A factor F satisfying dF (v) ≡ 0(mod2) for all v in V (G), is called even. An edge
e in E(G) is a bridge if G − e has more components than G. A graph with at least
3 vertices is 2-edge connected if it is connected and has no bridge. The minimum
number of vertices whose deletion disconnects the graph is said the connectivity and
it is noted κ(G).

For S ⊆ V (G), let G[S] be the subgraph of G induced by S. We write G − S
for G[V (G)\S]. A vertex set S ⊆ V (G) is called independent if G[S] has no edges.
Denote by α(G) the stability number of a graph G (i.e., the cardinality of a maximum
independent set of G).

Consider functions g, f on V (G) with g(v) ≤ f (v) for each v ∈ V (G) and an
ordered pair X, Y of disjoint subsets of V (G). A component C of G − (X ∪ Y ) is
called odd if

∑
v∈V (C) f (v) + eG(V (C), Y ) is an odd number. The number of odd

components in G − (X ∪ Y ) is denoted by h(X, Y ).
We recall below the well-known Lovàsz theorem, characterizing graphs having an

even [g, f ]-factor and a fortiori an even [a, b]-factor.

Theorem 1 (Lovàsz’s parity [g, f ]-factor Theorem [10]) Let G be a graph, let g and f
be maps from V (G) into the nonnegative integers such that g(v) ≤ f (v),∀v ∈ V (G),
and g(v) ≡ f (v)(mod2),∀v ∈ V (G). Then G contains a [g, f ]-factor F such that
dF (v) ≡ f (v)(mod2),∀v ∈ V (G), if and only if, for every ordered pair X, Y of
disjoint subsets of V (G),

∑

y∈Y

dG(y) −
∑

y∈Y

g(y) +
∑

x∈X

f (x) − h(X, Y ) − eG(X, Y ) ≥ 0.

Let a and b ≥ 2 be even integers and in the theorem above, let g(v) = a, f (v) =
b,∀v ∈ V (G). Then we immediately obtain.

Corollary 1 G contains an even [a, b]-factor if and only if

∑

y∈Y

dG(y) − a|Y | + b|X | − h(X, Y ) − eG(X, Y ) ≥ 0,

for all ordered pairs X, Y of disjoint subsets of V (G).

2 Known Results

The well-known necessary and sufficient condition for the existence of an [a, b]-factor
established by Tutte [14] is also a corollary of the (g, f )-factor theorem of Lovàsz in
[10]. Many authors have worked on [a, b]-factors as it can be seen in [1,9,13,14] but
only few results are established for the existence of an [a, b]-factor which involves
the stability number and the minimum degree. Some ones relate the stability number
and the connectivity as that of Nishimura [12] and Neumann-Lara and Rivera-Campo
in [11].
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Nishimura had established a sufficient condition for the existence of an odd regular
factor.

Theorem 2 [12] Let r ≥ 1 be an odd integer, and G be a graph of even order of
connectivity κ . If κ ≥ (r + 1)2/2,and, α(G) ≤ 4rκ

(r+1)2 , then G has an r-factor.

Studying connected factors was initiated by Kano [3]. A similar result to that of Neu-
mann-Lara and Rivera-Campo for the connected [2, b]-factors was shown by Brandt
(private communication). For the existence of an f -factor, a condition for the stabil-
ity number was given in [4]. A sufficient condition on the order and on the minimum
degree or on the edge-connectivity for graphs to contain an even [a, b]-factor are given
by Kouider and Vestergaard in [8]. They prove in [7], that if the graph G of order n is
2-edge connected and each vertex of G has degree at least max{3, 2n

b+2 } then G has an
even [2, b]-factor. In [2], they obtain a relationship between the stability number and
a connected factor.

Zhou [15] defines a graph G to be (a, b, k)-critical graph if after deleting any k
vertices from G, the remaining graph has an even [a, b]-factor. He proved that if

κ(G) ≥ max
{

(a+1)b+2k
2 ; (a+1)2α(G)+4bk

4b

}
then the graph G is an (a, b, k)-critical.

For k = 0, we get a condition for the existence of an [a, b]-factor in graphs which
is close to that established by Kouider and Lonc [5] for the κ-connected graphs. We
cite the result of Kouider and Lonc in [5] concerning their condition on the minimum
degree and the stability number for the existence of an [a, b]-factor in graphs.

Theorem 3 [5] Let b ≥ a + 1 and let G be a graph with the minimum degree δ. If

α(G) ≤
{

4b(δ − a + 1)/(a + 1)2, for a odd;
4b(δ − a + 1)/a(a + 2), for a even.

then G has an [a, b]-factor.

Let a, b be two even integers. We give below an example of a graph satisfying the
condition of the theorem above, which has an [a, b]-factor, but no even [a, b]-factor.

Example 1 Let t and p be 2 integers such that t = 2p+1. Let a = 2p, b = (2p+2)3.
We consider t + 1 disjoint complete graphs, G1, . . . , Gt : t copies of K2p and a copy
of Kb, furthermore there are 2 external vertices u and v. For each i ≤ t , let yi be a
fixed vertex of Gi . The vertex v is adjacent to the vertices yi , i ≤ t , the vertex u to
V (Gi ) − yi for each i . The graph G we obtain has minimum degree 2p. G has no
even [a, b] factor F otherwise we should have dF (v) = t . Nevertheless the condition
of the precedent theorem is satisfied.

The existence of an even factor with degrees bounded by the constant a, b is char-
acterized for the complete bipartite graphs by Kouider and Vestergaard [7].

Theorem 4 [7] For 3 ≤ p ≤ q, let K p,q be a complete, bipartite graph and let b ≥ 2
be an even integer. Then the graph K p,q has an even [2, b]-factor if and only if q ≤ b

2 p.

It follows from this theorem that the complete bipartite graph G = K p,q has an
even [2, b]-factor if and only if α(G) ≤ b

2 δ(G).
A sufficient condition for the existence of an even [2, b]-factor for the κ-connected

graphs was established by Kouider and Ouatiki in [6].
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Theorem 5 [6] Let b ≥ 6 be an even integer and let G be a κ-connected graph with
the minimum degree δ such that b ≤ κ and α(G) < (b − 1)(δ − 1)/5 then G contains
an even [2, b]-factor.

3 Main Results

We generalize the result obtained in Theorem 5 to even factors with degrees between
a and b where a is an even integer ≥ 2, in the following form.

Theorem 6 Let a, b be two even integers and let G be a 2-edge connected graph with
the minimum degree δ such that δ ≥ 2a and α(G) ≤ 4b(δ−a)

(a+1)2 , then, G contains an
even [a, b]-factor.

Proof We prove this theorem by contradiction. Suppose that G does not contain any
even [a, b]-factor graph. It follows from the Lovàsz’s condition 1 that there exists an
ordered pair X, Y of disjoint subsets of V (G) for which

τ(X, Y ) =
∑

y∈Y

dG−X (y) − a|Y | + b|X | − h(X, Y ) < 0. (*)

Claim Y 	= ∅.

Proof If |Y | = 0, then τ(X,∅) = b|X | < 0, which is impossible.

Claim X 	= ∅.

Proof If |X | = 0, it follows from (∗) that τ(∅, Y ) = ∑
y∈Y dG(y) − a|Y | − h(∅, Y )

< 0.
We have

2a|Y | ≤ δ|Y | ≤
∑

y∈Y

dG(y). (1)

Otherwise, as G is 2-edge connected graph, then

2h(∅, Y ) ≤
∑

y∈Y

dG(y). (2)

From the Eqs. (1) and (2), we deduce that

2
∑

y∈Y

dG(y) ≥ 2a|Y | + 2h(∅, Y ).

The last inequality implies that

∑

y∈Y

dG(y) − a|Y | − h(∅, Y ) ≥ 0,
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which is equivalent to τ(∅, Y ) ≥ 0. So we get a contradiction with (∗).

Claim |Y | > b
a |X |.

Proof We have h(X, Y ) ≤ ∑
y∈Y dG−X (y) < a|Y | − b|X | + h(X, Y ). This implies

that a|Y | − b|X | > 0 and we get the claim.

We propose the following partition of Y : let x1 be a vertex in Y such that
d(x1) = minx∈G[Y ] d(x) and let N1 = NG[x1] ∩ Y and Y1 = Y . For i ≥ 2, if
Y − ⋃

1≤ j<i N j 	= ∅, let Yi = Y − ⋃
1≤ j<i N j , we take then a vertex xi in Yi such

that d(xi ) = minx∈G[Yi ] d(x) and Ni = NG [xi ] ∩ Yi . We continue this process, we
will get at the rank i = r + 1, Ni = ∅. It follows from this definition that the set
{x1, . . . , xr } is an independent set in G.

As Y 	= ∅ then r ≥ 1. Let |Ni | = ni , we have |Y | = ∑r
i=1 ni and we get

∑

y∈Y

dG−X (y) ≥
∑

y∈Y

dY (y) + h(X, Y ) ≥ h(X, Y ) +
r∑

i=1

∑

y∈Ni

dYi (y)

≥ h(X, Y ) +
r∑

i=1

ni (ni − 1). (3)

From the Eqs. (∗) and (3), we deduce that

h(X, Y ) +
r∑

i=1

[ni (ni − 1) − ani ] ≤
∑

y∈Y

dG−X (y) − a|Y | < h(X, Y ) − b|X |. (4)

One can easily verify that the function f (ni ) = n2
i − (1 + a)ni has its minimum at

n1 = 1+a
2 so f (ni ) ≥ f ( 1+a

2 ). Thus,

h(X, Y ) + −(1 + a)2r

4
≤

∑

y∈Y

dG−X (y) − a|Y | < h(X, Y ) − b|X |. (5)

On the other hand, we have

α(G) ≥ α(G[Y ]) ≥ r. (6)

Let us prove the following result.

Claim |X | < δ − a.

Proof Suppose that |X | ≥ δ − a. According to the Eqs. (5) and (6), we deduce that

b|X | <
(1 + a)2r

4
≤ (1 + a)2α(G)

4
,
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hence,

b(δ − a) ≤ b|X | <
(1 + a)2

4
α(G).

So α(G) >
4b(δ−a)

(1+a)2 , which is a contradiction.
We can deduce from (∗) that

(δ − |X | − a)|Y | ≤
∑

y∈Y

dG−X (y) − a|Y | < −b|X | + h(X, Y ). (7)

From the Claim 3 and Eq. (7), as |X | < δ − a, then |Y | <
−b|X |+h(X,Y )

δ−|X |−a and

h(X, Y ) ≤ α(G), we get |Y | <
−b|X |+ 4b(δ−a)

(a+1)2

δ−|X |−a .

We deduce that |Y | < 4b
(a+1)2

(
1 − ((a+1)2−4)|X |

4(δ−|X |−a)

)
< 4b

(a+1)2 .

By the Claim 3, we have |X | < a
b |Y | < 4a

(a+1)2 < 1, which implies that |X | = 0
and contradicts the Claim 3. This ends the proof of the theorem.

In the Theorem 6, it is necessary to require that G is 2-edge connected graph as
shown in the following example.

Example 2 Let a, b, δ, t be four integers such that δ ≥ a2, b ≥ (a +1)2, and a ≤ δ ≤
t ≤ 4(δ − a). The integers a and b are even non zero integers.

Let us consider t disjoint copies of a complete graph Kt+1, and let x0 be a vertex
with exactly a neighbor on each copy. So, in the resultant graph G, d(x0) = t . The
graph G has no even [a, b]-factor, since if such factor F exists, F will have at least a
components of F − {x0} each of them with exactly one vertex of odd degree.
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