ORIGINAL PAPER

Sufficient Condition for the Existence of an Even [*a, b***]-Factor in Graph**

Mekkia Kouider · Saliha Ouatiki

Received: 28 July 2010 / Revised: 12 March 2012 / Published online: 12 April 2012 © Springer 2012

Abstract Let a, b , be two even integers. In this paper, we get a sufficient condition which involves the stability number, the minimum degree of the graph for the existence of an even [*a*, *b*]-factor.

Keywords Even factor · 2-Edge connected · Minimum degree · Stability number

1 Introduction

We consider finite undirected graphs without loops or multiple edges. Let *G* be a graph with vertex set $V(G)$ and edge set $E(G)$. For two vertices *u* and *v* of *G*, let *uv* and *vu* denote an *edge* joining *u* to *v*. For a subset *A* of $V(G)$, let $|A|$ be the number of vertices in *A*. The *order* of *G* is $|G| = |V(G)| = n$. Given disjoint subsets $A, B \subseteq V(G)$, we write $e_G(A, B)$ for the number of the edges in *G* with one extremity in *A* and the other one in *B*. Thus $e_G(v, V(G) - v) = d_G(v)$ is the *degree* of v and $\delta(G) = \min\{d_G(v) : v \in V(G)\}$ is the *minimum degree* of *G*. A subgraph of *G* containing all of *V*(*G*) but possibly not all of *E*(*G*) is called a *spanning subgraph* of *G* or a *factor* in *G*.

Let g , f be mappings from $V(G)$ into the nonnegative integers N and such that $g(v) \leq f(v)$, for all $v \in V(G)$. Then *F* is called a [*g*, *f*]-*factor* of *G* if *F* is a factor of *G* with $g(v) \leq d_F(v) \leq f(v)$ for all v in $V(G)$. For two integers *a* and *b* with

M. Kouider

S. Ouatiki (⊠) LAID3, Faculté de Mathématiques, U.S.T.H.B, BP. 32, El-Alia, Algeria e-mail: saliha_ouatiki@yahoo.fr

LRI, Univ. Paris-Sud, UMR 8623, 91405, Orsay Cedex, France e-mail: km@lri.fr

 $1 \le a \le b$, an [a, b]-factor of G is defined to be a spanning subgraph F of G such that $a \leq d_F(v) \leq b$ for all $v \in G$.

A factor *F* satisfying $d_F(v) \equiv 0 \pmod{2}$ for all v in $V(G)$, is called *even*. An edge *e* in *E*(*G*) is a *bridge* if *G* − *e* has more components than *G*. A graph with at least 3 vertices is 2-*edge connected* if it is connected and has no bridge. The minimum number of vertices whose deletion disconnects the graph is said the *connectivity* and it is noted $\kappa(G)$.

For $S \subseteq V(G)$, let $G[S]$ be the subgraph of *G* induced by *S*. We write $G - S$ for $G[V(G)\backslash S]$. A vertex set $S \subseteq V(G)$ is called *independent* if $G[S]$ has no edges. Denote by $\alpha(G)$ the *stability number* of a graph G (i.e., the cardinality of a maximum independent set of *G*).

Consider functions *g*, *f* on $V(G)$ with $g(v) \leq f(v)$ for each $v \in V(G)$ and an ordered pair *X*, *Y* of disjoint subsets of $V(G)$. A component *C* of $G - (X \cup Y)$ is called *odd* if $\sum_{v \in V(C)} f(v) + e_G(V(C), Y)$ is an odd number. The number of odd components in $G - (X \cup Y)$ is denoted by $h(X, Y)$.

We recall below the well-known Lovàsz theorem, characterizing graphs having an even [*g*, *f*]-factor and a fortiori an even [*a*, *b*]-factor.

Theorem 1 (Lovàsz's parity [*g*, *f*]-factor Theorem [\[10](#page-5-0)]) *Let G be a graph, let g and f be maps from V*(*G*) *into the nonnegative integers such that* $g(v) \leq f(v)$, $\forall v \in V(G)$, *and* $g(v) ≡ f(v)$ (*mod*2), ∀v ∈ $V(G)$ *. Then G contains a* [*g*, *f*]-*factor F such that* $d_F(v) \equiv f(v) \pmod{2}$, $\forall v \in V(G)$, if and only if, for every ordered pair X, Y of *disjoint subsets of* $V(G)$ *,*

$$
\sum_{y \in Y} d_G(y) - \sum_{y \in Y} g(y) + \sum_{x \in X} f(x) - h(X, Y) - e_G(X, Y) \ge 0.
$$

Let *a* and $b \ge 2$ be even integers and in the theorem above, let $g(v) = a$, $f(v) =$ $b, \forall v \in V(G)$. Then we immediately obtain.

Corollary 1 *G contains an even* [*a*, *b*]*-factor if and only if*

$$
\sum_{y \in Y} d_G(y) - a|Y| + b|X| - h(X, Y) - e_G(X, Y) \ge 0,
$$

for all ordered pairs X, *Y of disjoint subsets of V*(*G*)*.*

2 Known Results

The well-known necessary and sufficient condition for the existence of an [*a*, *b*]-factor established by Tutte [\[14](#page-6-0)] is also a corollary of the (*g*, *f*)-factor theorem of Lovàsz in [\[10](#page-5-0)]. Many authors have worked on $[a, b]$ -factors as it can be seen in [\[1](#page-5-1)[,9](#page-5-2),[13,](#page-6-1)[14\]](#page-6-0) but only few results are established for the existence of an $[a, b]$ -factor which involves the stability number and the minimum degree. Some ones relate the stability number and the connectivity as that of Nishimura [\[12](#page-6-2)] and Neumann-Lara and Rivera-Campo in [\[11](#page-6-3)].

Theorem 2 [\[12](#page-6-2)] *Let* $r \ge 1$ *be an odd integer, and G be a graph of even order of connectivity* κ *. If* $\kappa \ge (r+1)^2/2$ *,and,* $\alpha(G) \le \frac{4r\kappa}{(r+1)^2}$ *, then G has an r-factor.*

Studying connected factors was initiated by Kano [\[3\]](#page-5-3). A similar result to that of Neumann-Lara and Rivera-Campo for the connected [2, *b*]-factors was shown by Brandt (private communication). For the existence of an *f* -factor, a condition for the stability number was given in [\[4](#page-5-4)]. A sufficient condition on the order and on the minimum degree or on the edge-connectivity for graphs to contain an even [*a*, *b*]-factor are given by Kouider and Vestergaard in [\[8\]](#page-5-5). They prove in [\[7\]](#page-5-6), that if the graph *G* of order *n* is 2-edge connected and each vertex of *G* has degree at least max $\{3, \frac{2n}{b+2}\}$ then *G* has an even [2, b]-factor. In [\[2\]](#page-5-7), they obtain a relationship between the stability number and a connected factor.

Zhou $[15]$ defines a graph *G* to be (a, b, k) -critical graph if after deleting any *k* vertices from G , the remaining graph has an even $[a, b]$ -factor. He proved that if $\kappa(G) \geq \max\left\{\frac{(a+1)b+2k}{2}; \frac{(a+1)^2\alpha(G)+4bk}{4b}\right\}$ then the graph *G* is an (a, b, k) -critical. For $k = 0$, we get a condition for the existence of an [*a*, *b*]-factor in graphs which is close to that established by Kouider and Lonc $[5]$ $[5]$ for the κ -connected graphs. We cite the result of Kouider and Lonc in [\[5\]](#page-5-8) concerning their condition on the minimum degree and the stability number for the existence of an [*a*, *b*]-factor in graphs.

Theorem 3 [\[5](#page-5-8)] *Let b* \ge *a* + 1 *and let G be a graph with the minimum degree* δ *. If* $\alpha(G) \leq \begin{cases} 4b(\delta - a + 1)/(a + 1)^2, \text{ for a odd;} \\ 4b(\delta - a + 1)/a(a + 2), \text{ for a even.} \end{cases}$ then G has an [a, b]-factor.

Let *a*, *b* be two even integers. We give below an example of a graph satisfying the condition of the theorem above, which has an [*a*, *b*]-factor, but no even [*a*, *b*]-factor.

Example 1 Let *t* and *p* be 2 integers such that $t = 2p + 1$. Let $a = 2p$, $b = (2p+2)^3$. We consider $t + 1$ disjoint complete graphs, G_1, \ldots, G_t : t copies of K_{2p} and a copy of K_b , furthermore there are 2 external vertices *u* and *v*. For each $i \le t$, let y_i be a fixed vertex of G_i . The vertex *v* is adjacent to the vertices y_i , $i \leq t$, the vertex *u* to $V(G_i) - y_i$ for each *i*. The graph *G* we obtain has minimum degree 2*p*. *G* has no even [a, b] factor F otherwise we should have $d_F(v) = t$. Nevertheless the condition of the precedent theorem is satisfied.

The existence of an even factor with degrees bounded by the constant *a*, *b* is characterized for the complete bipartite graphs by Kouider and Vestergaard [\[7](#page-5-6)].

Theorem 4 [\[7](#page-5-6)] *For* $3 \leq p \leq q$ *, let* $K_{p,q}$ *be a complete, bipartite graph and let* $b \geq 2$ *be an even integer. Then the graph* $K_{p,q}$ *has an even* [2, *b*]-factor if and only if $q \leq \frac{b}{2}p$.

It follows from this theorem that the complete bipartite graph $G = K_{p,q}$ has an even [2, *b*]-factor if and only if $\alpha(G) \leq \frac{b}{2}\delta(G)$.

A sufficient condition for the existence of an even $[2, b]$ -factor for the κ -connected graphs was established by Kouider and Ouatiki in [\[6](#page-5-9)].

Theorem 5 [\[6](#page-5-9)] *Let* $b \ge 6$ *be an even integer and let G be a k-connected graph with the minimum degree* δ *such that* $b \leq \kappa$ *and* $\alpha(G) \leq (b-1)(\delta-1)/5$ *then G contains an even* [2, *b*]*-factor.*

3 Main Results

We generalize the result obtained in Theorem [5](#page-2-0) to even factors with degrees between *a* and *b* where *a* is an even integer \geq 2, in the following form.

Theorem 6 *Let a*, *b be two even integers and let G be a* 2*-edge connected graph with the minimum degree* δ *such that* $\delta \geq 2a$ *and* $\alpha(G) \leq \frac{4b(\delta-a)}{(a+1)^2}$ *, then, G contains an even* [*a*, *b*]*-factor.*

Proof We prove this theorem by contradiction. Suppose that *G* does not contain any even [*a*, *b*]-factor graph. It follows from the Lovàsz's condition [1](#page-1-0) that there exists an ordered pair *X*, *Y* of disjoint subsets of $V(G)$ for which

$$
\tau(X, Y) = \sum_{y \in Y} d_{G-X}(y) - a|Y| + b|X| - h(X, Y) < 0. \tag{*}
$$

Claim $Y \neq \emptyset$.

Proof If $|Y| = 0$, then $\tau(X, \emptyset) = b|X| < 0$, which is impossible.

Claim $X \neq \emptyset$.

Proof If $|X| = 0$, it follows from (*) that $\tau(\emptyset, Y) = \sum_{y \in Y} d_G(y) - a|Y| - h(\emptyset, Y)$ $< 0.$

We have

$$
2a|Y| \le \delta|Y| \le \sum_{y \in Y} d_G(y). \tag{1}
$$

Otherwise, as *G* is 2-edge connected graph, then

$$
2h(\emptyset, Y) \le \sum_{y \in Y} d_G(y). \tag{2}
$$

From the Eqs. [\(1\)](#page-3-0) and [\(2\)](#page-3-1), we deduce that

$$
2\sum_{y\in Y}d_G(y)\geq 2a|Y|+2h(\emptyset, Y).
$$

The last inequality implies that

$$
\sum_{y \in Y} d_G(y) - a|Y| - h(\emptyset, Y) \ge 0,
$$

which is equivalent to $\tau(\emptyset, Y) \geq 0$. So we get a contradiction with (*).

Claim $|Y| > \frac{b}{a}|X|$.

Proof We have $h(X, Y) \le \sum_{y \in Y} d_{G-X}(y) < a|Y| - b|X| + h(X, Y)$. This implies that $a|Y| - b|X| > 0$ and we get the claim.

We propose the following partition of Y : let x_1 be a vertex in Y such that $d(x_1) = \min_{x \in G[Y]} d(x)$ and let $N_1 = N_G[x_1] \cap Y$ and $Y_1 = Y$. For $i \ge 2$, if *Y* − $\bigcup_{1 \leq j < i} N_j \neq \emptyset$, let $Y_i = Y - \bigcup_{1 \leq j < i} N_j$, we take then a vertex x_i in Y_i such that $d(x_i) = \min_{x \in G[Y_i]} d(x)$ and $N_i = N_G[x_i] \cap Y_i$. We continue this process, we will get at the rank $i = r + 1$, $N_i = \emptyset$. It follows from this definition that the set ${x_1, \ldots, x_r}$ is an independent set in *G*.

As $Y \neq \emptyset$ then $r \geq 1$. Let $|N_i| = n_i$, we have $|Y| = \sum_{i=1}^r n_i$ and we get

$$
\sum_{y \in Y} d_{G-X}(y) \ge \sum_{y \in Y} d_Y(y) + h(X, Y) \ge h(X, Y) + \sum_{i=1}^r \sum_{y \in N_i} d_{Y_i}(y)
$$

$$
\ge h(X, Y) + \sum_{i=1}^r n_i (n_i - 1).
$$
 (3)

From the Eqs. $(*)$ and (3) , we deduce that

$$
h(X,Y) + \sum_{i=1}^{r} [n_i(n_i - 1) - an_i] \le \sum_{y \in Y} d_{G-X}(y) - a|Y| < h(X,Y) - b|X|. \tag{4}
$$

One can easily verify that the function $f(n_i) = n_i^2 - (1 + a)n_i$ has its minimum at $n_1 = \frac{1+a}{2}$ so $f(n_i) \ge f(\frac{1+a}{2})$. Thus,

$$
h(X,Y) + \frac{-(1+a)^2r}{4} \le \sum_{y \in Y} d_{G-X}(y) - a|Y| < h(X,Y) - b|X|.\tag{5}
$$

On the other hand, we have

$$
\alpha(G) \ge \alpha(G[Y]) \ge r. \tag{6}
$$

Let us prove the following result.

Claim $|X| < \delta - a$.

Proof Suppose that $|X| \ge \delta - a$. According to the Eqs. [\(5\)](#page-4-1) and [\(6\)](#page-4-2), we deduce that

$$
b|X| < \frac{(1+a)^2r}{4} \le \frac{(1+a)^2\alpha(G)}{4},
$$

 \mathcal{D} Springer

hence,

$$
b(\delta - a) \le b|X| < \frac{(1+a)^2}{4}\alpha(G).
$$

So $\alpha(G) > \frac{4b(\delta-a)}{(1+a)^2}$, which is a contradiction. We can deduce from (∗) that

$$
(\delta - |X| - a)|Y| \le \sum_{y \in Y} d_{G - X}(y) - a|Y| < -b|X| + h(X, Y). \tag{7}
$$

From the Claim [3](#page-4-2) and Eq. [\(7\)](#page-5-10), as $|X| < \delta - a$, then $|Y| < \frac{-b|X| + h(X,Y)}{\delta - |X| - a}$ and $h(X, Y) \le \alpha(G)$, we get $|Y| < \frac{-b|X| + \frac{4b(\delta - a)}{(a+1)^2}}{\delta - |X| - a}$.

We deduce that $|Y| < \frac{4b}{(a+1)^2} \left(1 - \frac{((a+1)^2 - 4)|X|}{4(\delta - |X| - a)}\right) < \frac{4b}{(a+1)^2}$.

By the Claim [3,](#page-3-1) we have $|X| < \frac{a}{b}|Y| < \frac{4a}{(a+1)^2} < 1$, which implies that $|X| = 0$ and contradicts the Claim [3.](#page-3-2) This ends the proof of the theorem.

In the Theorem [6,](#page-3-3) it is necessary to require that *G* is 2-edge connected graph as shown in the following example.

Example 2 Let *a*, *b*, δ , *t* be four integers such that $\delta \ge a^2$, $b \ge (a+1)^2$, and $a \le \delta \le$ $t \leq 4(\delta - a)$. The integers *a* and *b* are even non zero integers.

Let us consider *t* disjoint copies of a complete graph K_{t+1} , and let x_0 be a vertex with exactly a neighbor on each copy. So, in the resultant graph $G, d(x_0) = t$. The graph *G* has no even [*a*, *b*]-factor, since if such factor *F* exists, *F* will have at least *a* components of $F - \{x_0\}$ each of them with exactly one vertex of odd degree.

Acknowledgments The authors express sincere thanks for the suggestions of referees which led to an improvement of the paper.

References

- 1. Akiyama, J., Kano, M.: Factors and factorizations of graphs, a survey. J. Graph Theory **9**, 1–42 (1985)
- 2. Cai, J., Liu, G., Hou, J.: The stability number and connected [*k*, *k* + 1]-factor in graphs. Appl. Math. Lett. **22**(6), 927–931 (2009)
- 3. Kano M.: An Ore-type sufficient condition for a graph to have a connected [2, *k*]-factor, (preprint)
- 4. Katerinis, P., Tsikopoulos, N.: Independence number, connectivity and *f* -factors. Utilitas Math **57**, 81–95 (2000)
- 5. Kouider, M., Lonc, Z.: Stability number and [*a*, *b*]-factors in graphs. J. Graph Theory **46**(4), 254–264 (2004)
- 6. Kouider, M., Ouatiki, S.: Stability number and even [2,b]-factors in graphs. AKCE J. Graphs Combin. **7**(2), 151–169 (2010)
- 7. Kouider, M., Vestergaard, P.D.: On even [2, *b*]-factors in graphs. Aust. J. Combin. **27**, 139–147 (2003)
- 8. Kouider, M., Vestergaard, P.D.: Even [*a*, *b*]-factors in graphs. Disc. Math. Graph Theory **24**, 431–441 (2004)
- 9. Kouider, M., Vestergaard, P.D.: Connected factors in graphs, a survey. Graphs Combin. **21**, 1–26 (2005)
- 10. Lovász, L.: Subgraphs with prescribed valencies. J. Combin. Theory **9**, 391–416 (1970)
- 11. Neumann-Lara, V., Rivera-Campo, E.: Spanning trees with bounded degrees. Combinatorica **11**(1), 55–61 (1991)
- 12. Nishimura, T.: Independence number, connectivity, and r-factors. J Graph Theory **13**(1), 63–69 (1989)
- 13. Plummer, M.D.: Graph factors and factorization, a survey. Discret. Math. **307**(7–8), 791–821 (2007)
- 14. Tutte, W.T.: Graph factors. Combinatorica **1**, 70–97 (1981)
- 15. Zhou, S.: Indepenpdence number connectivity and (*a*, *b*, *k*)-critical graphs. Discret. Math. **309**(12), 4144–4148 (2009)