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Abstract For integers l and k with l > 0 and k > 0, let C (l, k) denote the family
of 2-edge-connected graphs G such that for each bond cut |S| ≤ 3, each compo-
nent of G − S has at least (|V (G)| − k)/ l vertices. In this paper we prove that if
G ∈ C (7, 0), then G is not supereulerian if and only if G can be contracted to one of
the nine specified graphs. Our result extends some earlier results (Catlin and Li in J
Adv Math 160:65–69, 1999; Broersma and Xiong in Discrete Appl Math 120:35–43,
2002; Li et al. in Discrete Appl Math 145:422–428, 2005; Li et al. in Discrete Math
309:2937–2942, 2009; Lai and Liang in Discrete Appl Math 159:467–477, 2011).
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1 Introduction

Graphs in this paper are finite, undirected, and loopless. Graphs may have multiple
edges. A graph G is nontrivial if it contains at least one edge. We follow Bondy and
Murty [1] for undefined notation and terminology.
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Let H be a subgraph of a graph G. For u ∈ V (H), let dH (u) denote the degree of u
in H . For a subgraph H of G, let ∂(H) denote the number of edges with one endpoint
in H and the other endpoint in G − V (H). An edge cut X ⊂ E(G) is a bond if X is a
minimal edge cut. A path P : v1v2 . . . vt of a graph G is a branch of G if d(v1) ≥ 3,
d(vt ) ≥ 3 and d(vi ) = 2 for each i ∈ {2, 3, . . . , t − 1}. P is trivial if t = 2 and a
nontrivial branch otherwise.

For a graph G, let O(G) denote the set of all odd degree vertices of G. For
F ⊂ E(G), the contraction G/F is obtained from G by contracting each edge
of F and deleting the resulting loops. For a subgraph H of G, we write G/H for
G/E(H). A graph G is eulerian if it is a connected graph with O(G) = ∅. A graph is
supereulerian if it has a spanning eulerian subgraph. In particular, K1 is both eulerian
and supereulerian. For integers l and k with l > 0 and k > 0, let C (l, k) denote the
family of 2-edge-connected graphs G such that for every bond S with two or three
edges, each component of G − S has at least (|V (G)| − k)/ l vertices.

It is well known that the following graphs are not supereulerian, some of which are
mentioned in [5,2,7–9].

For simplicity, we define

F ′ = {G1, G2, G5, G6, G8, G9}
and

F = {G1, G2, G3, . . . , G9}.
Jaeger [6] showed that every 4-edge-connected graph is supereulerian. It is well

known that if G is supereulerian, then G is 2-edge-connected. Thus, for supereuleria-
nity, one has to investigate k-edge-connected graphs, where k = 2, 3. For this purpose,
Catlin and Li [5] investigated the family graphs C (5, 0) and proved that G ∈ C (5, 0) is
not supereulerian if and only if G can be contracted to K2,3. This result was improved
by Broersma and Xiong [2], who proved that G ∈ C (5, 2) with |V (G)| ≥ 13 is not
supereulerian if and only if G can be contracted to K2,3 or K2,5. Li et al.[8] generalized
the results of Catlin and Li, Broersma and Xiong by showing that G ∈ C (6, 0) with
|V (G)| sufficient large is not supereulerian if and only if G can be contracted to K2,3
or K2,5 or G2 in Fig.1. Li et al. [9] proved that G ∈ C (6, 5) is not supereulerian if and
only if G can be contracted to one of Gi , 1 ≤ i ≤ 6, in Fig.1, where |V (G)| > 35.
Recently, Lai and Liang [7] improved this result by showing that there exist an integer
N (k) ≤ 7k, where k > 0 is an integer, such that, for any graph G ∈ C (6, k) with
|V (G)| > N (k), G is not supereulerian if and only if G can be contracted to a member
in F ′. Motivated by these results, we prove the following result in this paper.

Theorem 1.1 If G ∈ C (7, 0), then G is not supereulerian if and only if G can be
contracted to a member in F .

2 Catlin’s Reduction and Previous Results

A graph G is collapsible if for every set X ⊂ V (G) with |X | even, G has a span-
ning connected subgraph G X with O(G X ) = X . Thus, K1 is both supereulerian and
collapsible, and every collapsible graph is also supereulerian.
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Fig. 1 9 non-supereulerian graphs

Catlin [3] showed that every graph G has a unique collection of pairwise disjoint
maximal collapsible subgraphs H1, H2, . . . , Hc. The contraction of G obtained from
G by contracting each Hi , where 1 ≤ i ≤ c, into a single vertex vi , is called the reduc-
tion of G. The vertex vi is said to be the image of Hi and Hi is called the preimage
of vi . A graph is reduced if it is the reduction of itself. Thus, a reduced graph does not
have a nontrivial collapsible subgraph.

Theorem 2.1 (Catlin [3]) If G be a connected graph, then each of the following holds.

(i) If H is a collapsible subgraph of a graph G, then G is supereulerian if and only
if G/H is supereulerian.

(ii) Let G ′ be the reduction of G. G is supereulerian if and only if G ′ is supereule-
rian, and G is collapsible if and only if G ′ = K1.

Theorem 2.2 (Catlin et al. [4]) Let G be a connected reduced graph. If 2|V (G)|
− |E(G)| ≤ 4, then either G is K1, or K2 or a K2,t for some inter t ≥ 1.

For each integer i ≥ 1, denote di=|Di (G)|, where Di (G)={v ∈ V (G)|dG(v)=i}.
Theorem 2.3 (Catlin [3]) If G is a graph, then each of the following holds.

(i) G is reduced if and only if G has no nontrivial collapsible subgraph.
(ii) If G is reduced and κ ′(G) ≥ 2, then d2 + d3 ≥ 4, and when d2 + d3 = 4,

G must be eulerian.
(iii) If G is reduced, then G is simple, K3-free, and G cannot have a nontrivial

subgraph with 2 edge-disjoint spanning trees, and for any subgraph H of G,
either H ∈ {K1, K2} or |E(H)| ≤ 2|V (H)| − 4.
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The following theorem is due to Lai and Liang [7], which will play a key role in
the proof of our main theorem.

Theorem 2.4 If G is a 2-edge-connected reduced graph which satisfies

(i) d2 + d3 ≤ 6, and
(ii) d3 + d5 ≤ 2,

then G is supereulerian if and only if G is not a member in F ′.

3 Proof of Theorem 1.1

By Theorem 2.1, it is sufficient for us to show that if G cannot be contracted to a
member in F , then G is supereulerian. We will proceed our proof by contradiction,
and assume that G ∈ C (7, 0) cannot be contracted to any Gi in F , where 1 ≤ i ≤ 9,
such that

G is a counterexample to Theorem 1.1. (1)

Let G ′ be the reduction of G. If G ′ = K1, then G is supereulerian, contrary to (1).
Assume that G ′ �= K1, Since G is 2-edge-connected, then G ′ is 2-edge-connected
and nontrivial. Define V ′

4 = {v ∈ G ′ : dG ′(v) ≥ 4} and di (G ′) = |Di (G ′)|, where
Di (G ′) = {v ∈ V (G ′) : dG ′(v) = i}. For simplicity, we use Di and di for Di (G ′)
and di (G ′), respectively, in this section. We establish the following lemmas.

Lemma 3.1 d2 + d3 ≤ 7. Moreover, if d2 + d3 = 7, then |V ′
4| = 0.

Proof Suppose, to the contrary, that d2+d3 ≥ 8. Let v1, v2, . . . , v8 denote the vertices
of V (G ′) such that dG ′(vi ) ≤ 3, where 1 ≤ i ≤ 8, and let Hi denote the preimage of
vi , where 1 ≤ i ≤ 8. For 1 ≤ i ≤ 8, ∂(Hi ) ≤ 3. Since G ∈ C (7, 0), |V (Hi )| ≥ n

7

and hence n = |V (G)| ≥ ∑8
i=1 |V (Hi )| ≥ 8n

7 . This contradiction establishes that

d2 + d3 ≤ 7. Moreover by G ∈ C (7, 0), n = |V (G)| ≥ ∑7
i=1 |V (Hi )| + |V ′

4|≥ n + |V ′
4| which implies that |V ′

4| = 0. 	

Lemma 3.2 Each of the following holds.

(i) 2d2 + d3 ≥ 10 + ∑
i≥4(i − 4)di .

(ii) d2 ≥ 4 and d3 ≤ 3.
(iii) 5 ≤ d2 + d3 ≤ 7.
(iv) di = 0 for i ≥ 7.

Proof (i). Assume first that 2|V (G ′)|−|E(G ′)| ≤ 4. Since G is 2-edge-connected,
G ′ has no cut edge. By Theorem 2.2 and Lemma 3.1, G ′ is K1 or G ′ = K2,t

for some integer t ≥ 1. In the former case, G is collapsible and so G is supere-
ulerian, contrary to (1). In the later case, when t is even, G ′ is supereulerian.
By Theorem 2.1, G is supereulerian, contrary to (1). When t is odd, since
G ∈ C (7, 0), s = 3, 5, that is, G ′ is G1 or G5, contrary to (1).
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Thus, we assume that 2|V (G ′)| − |E(G ′)| ≥ 5. Since G ′ is 2-edge-connected,
|V (G ′)| = ∑

i≥2 di and 2|E(G ′)| = ∑
i≥2 idi . It follows that 2

∑
i≥2 di

− (
∑

i≥2 idi )/2 ≥ 5, that is,
∑

i≥2(4di − idi ) ≥ 10, which implies

2d2 + d3 ≥ 10 +
∑

i≥4

(i − 4)di .

(ii). By (i), 2d2+d3 ≥ 10. By Lemma 3.1, d2+d3 ≤ 7. Thus, d2≥10−(d2+d3)≥3.
We show that d2 �= 3. Suppose otherwise that d2 = 3 and D2 = {v1, v2, v3}. By
(i), d3 ≥ 4. By Lemma 3.1, d3 ≤ 4. Thus, d3 = 4. In this case, by Lemma 3.1,
|V ′

4| = 0. Denote by G ′′ the graph obtained from G ′ by replacing each branch
with an edge. Thus, G ′′ ∼= K4 and G ′′ is supereulerian. By Theorem 2.1, we
may assume that G ′ has no spanning eulerian subgraph containing all three ver-
tices v1, v2, v3. It follows that G ′′ contains either a vertex incident with three
edges, each of which has exactly one of v1, v2, v3, or a triangle, each edge
of which has exactly one vertex of v1, v2, v3. In the latter case, G ′ contains a
triangle, contrary to Theorem 2.3. In the former case, G can be contracted to
G7, contrary to (1). Thus, d2 ≥ 4 as desired. By Lemma 3.1, d3 ≤ 3.

(iii). By Lemma 3.1, d2 + d3 ≤ 7. By (ii), d2 ≥ 4. Thus, 4 ≤ d2 + d3 ≤ 7. If
d2 + d3 = 4, it follows from Theorem 2.3 that G ′ is spereulerian, contrary to
(1). We conclude that 5 ≤ d2 + d3 ≤ 7.

(iv). By (i), (iii) and (1), 14 ≥ 2(d2 +d3) ≥ 2d2 +d3 ≥ 10+∑
i≥4(i −4)di , which

implies that di = 0 for i ≥ 9. If d7 �= 0, then 2d2 + d3 ≥ 13. Since d7 �= 0, by
Lemma 3.1, d2 + d3 ≤ 6. Thus, 13 ≤ d2 + (d2 + d3) ≤ d2 + 6, which implies
d2 ≥ 7. In this case, n = ∑

i=1 |V (Hi )| ≥ 7 n
7 + 1 > n, a contradiction. If

d8 �= 0, by (iii), then d2 = 7. Similarly, we get a contradiction. 	

Lemma 3.3 d3 + d5 = 2.

Proof We first prove d3 ≤ 2. By Lemma 3.2 (ii), d3 ≤ 3. It is sufficient to show that
d3 �= 3. Suppose otherwise that d3 = 3. Since the number of vertices of odd degree
is even, it follows by Lemma 3.2 (iv) that d5 ≥ 1 and d5 is odd. By Lemma 3.2 (i),
2d2 + d3 ≥ 10 + (5 − 4)d5 ≥ 11, which implies that d2 ≥ 4. By Lemma 3.2 (iii),
d2 = 4. Thus, d2 + d3 = 7 and |V ′

4| ≥ 1, contrary to Lemma 3.1.
Next, we prove d5 ≤ 2. Suppose otherwise that d5 ≥ 3. By Lemma 3.2 (i), 2d2 +d3

≥ 10 + (5 − 4)d5 ≥ 13. Since D5 ⊂ V ′
4 and |V ′

4| ≥ 3, by Lemma 3.1, d2 + d3 ≤ 6.
Applying the inequality d2 + d3 ≤ 6 to the inequality 2d2 + d3 ≥ 13, we get d2 ≥ 7.
Thus, d2 + d3 ≥ 7, contrary to Lemma 3.1.

Finally, we prove that d3 + d5 = 2. It is sufficient to show that there does not exist
the case when d3 = 2 and d5 = 2. Suppose otherwise that such case exists. Since
d2 + d3 ≤ 7, by Lemma 3.2, 4 ≤ d2 ≤ 5. If d2 = 5, then d2 + d3 = 7, contrary
to Lemma 3.1. Thus, d2 = 4. In this case, by Lemma 3.2 (i), 10 = 2d2 + d3 ≥
10 + (5 − 4)d5 = 12, a contradiction. 	

Proof of Theorem 1.1 Note that G is 2-edge-connected, so is G ′. By Lemma 3.1,
d2 + d3 ≤ 7. Suppose first that d2 + d3 ≤ 6. By Lemma 3.3, d3 + d5 = 2. By The-
orem 2.4 and by the assumption that G cannot be contracted to a member in F , G ′
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is supereulerian. It follows by Theorem 2.1 that G is supereulerian, contrary to (1).
Thus, we may assume that d2 + d3 = 7.

Thus, |V (G ′)| = 7. By Lemma 3.1, V ′
4 = ∅. It follows that d5 = 0. By Lemma 3.3,

d3 = 2. Let u and v denote two vertices of degree 3 in G ′. If uv ∈ E(G ′), then
let NG ′(u) = {v, u1, u2} and NG ′(v) = {u, v1, v2}. Since G ′ is reduced, by Theo-
rem 2.3, G ′ is K3-free, and hence {u1, u2} ∩ {v1, v2} = ∅. Since G ′ is 2-edge-con-
nected, there are two edge-disjoint branches from {u1, u2} to {v1, v2}, which implies
that G ′ is hamiltonian and hence supereulerian. By Theorem 2.1, G is supereuleri-
an, contrary to (1). Thus, uv /∈ E(G ′). In this case, let NG ′(u) = {u1, u2, u3} and
NG ′(v) = {v1, v2, v3}. Note that d2 = 5 and {u1, u2, u3, v1, v2, v3} ⊆ D2. It follows
that {u1, u2, u3} ∩ {v1, v2, v3} �= ∅. Since d2 = 5, |{u1, u2, u3} ∩ {v1, v2, v3}| ≤ 2.
If |{u1, u2, u3} ∩ {v1, v2, v3}| = 1, then G ′ is isomorphic to G4 in Fig.1, a contra-
diction; if |{u1, u2, u3} ∩ {v1, v2, v3}| = 2, then G ′ is isomorphic to G3 in Fig.1, a
contradiction. 	

Acknowledgments The authors would like to thank the referees for the valuable comments and sugges-
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[7, Theorem 3.1] to shorten the proof of our main theorem.
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