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Abstract We show that every K4-free planar graph with at most ν edge-disjoint tri-
angles contains a set of at most 3

2ν edges whose removal makes the graph triangle-free.
Moreover, equality is attained only when G is the edge-disjoint union of 5-wheels plus
possibly some edges that are not in triangles. We also show that the same statement
is true if instead of planar graphs we consider the class of graphs in which each edge
belongs to at most two triangles. In contrast, it is known that for any c < 2 there are
K4-free graphs with at most ν edge-disjoint triangles that need more than cν edges to
cover all triangles.
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1 Introduction

The main motivation for this paper is an old conjecture of Tuza about packing and
covering of triangles by edges. A triangle packing in a graph G is a set of pairwise
edge-disjoint triangles. A triangle edge cover in G is a set of edges meeting all trian-
gles. We denote by ν(G) the maximum cardinality of a triangle packing in G, and by
τ(G) the minimum cardinality of a triangle edge cover for G. It is clear that for every
graph G we have ν(G) ≤ τ(G) ≤ 3ν(G).

In 1984, Tuza [11] proposed the following conjecture.

Conjecture 1 For every graph G, τ(G) ≤ 2ν(G).

The complete graphs K4 and K5 show that this bound is tight. The conjecture is
known to be true for certain special classes of graphs, for example K5-free chordal
graphs and planar graphs [12], more generally, graphs without a subdivision of K3,3 [8],
tripartite graphs [6], odd-wheel-free graphs and four-colourable graphs [1]. Weighted
versions of the problem were studied in [2]. The only general bound known [5] shows
that τ(G) ≤ 66

23ν(G) for every graph G.
Our aim in this paper is to study the planar case more closely. As just mentioned,

Tuza [12] proved that the conjecture is true for planar graphs, and it is tight for K4.
In [3] it was shown that equality holds if and only if G is an edge-disjoint union of
copies of K4 plus possibly some edges that are not in triangles. Here we consider the
next step.

Theorem 1 Let G be a K4-free planar graph. Then τ(G) ≤ 3
2ν(G), and equality

holds if and only if G is an edge-disjoint union of 5-wheels plus possibly some edges
that are not in triangles.

Our main tool will be a similar result for a different class of graphs. A graph G is
flat if each edge of G belongs to at most two triangles. Observe that a planar graph is
flat if it does not have separating triangles. Flat graphs can be far from planar, but the
result we prove for them is the same:

Theorem 2 Let G be a K4-free flat graph. Then τ(G) ≤ 3
2ν(G), and equality holds

if and only if G is an edge-disjoint union of 5-wheels plus possibly some edges that
are not in triangles.

It is worth mentioning that excluding K4 does not have a similar effect in the general
case of Tuza’s Conjecture: for every ε > 0 there exists a K4-free graph Gε satisfying
τ(Gε) > (2 − ε)ν(Gε) (see [7]).

Our proof of Theorem 1 makes use of some special properties of the triangle graph
T = T (G), defined as follows: the vertices of T are the triangles of G, and two vertices
are adjacent if the corresponding triangles have an edge in common. These properties
are established in Sect. 2 for flat graphs. Then in Sect. 3 we prove Theorem 1.

2 Triangle Graphs of Flat Graphs

For every flat graph G, each edge of the triangle graph T = T (G) naturally corre-
sponds to an edge of G. Moreover T (G) is subcubic (i.e. has maximum degree at most
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three), the parameter ν(G) is equal to the independence number α(T ) of T , and τ(G)

is the minimum size β ′(T ) of an edge cover of the vertices of T . If T has no isolated
vertices then by Gallai’s Theorem, β ′(T )+α′(T ) = |V (T )|, where α′(T ) denotes the
maximum size of a matching in T . Thus to get information on packing and covering
triangles in G, we will start by studying α(T ) and α′(T ).

Let F denote the family of all triangle graphs for flat K4-free graphs. Graphs in F
have some interesting properties.

Claim 3 If triangles B1, B2, B3 of a flat graph G form a triangle in the triangle graph
T (G), then |V (B1 ∪ B2 ∪ B3)| = 4.

Proof Since B1 and B2 share an edge, |V (B1 ∪ B2)| = 4. If B3 has a vertex not in
B1∪ B2, then it shares the same edge with both B1 and B2. But then this edge witnesses
that G is not flat. �

Claim 4 Each triangle graph T ∈ F has no K3-subgraphs.

Proof Suppose that triangles B1, B2, B3 induce a K3 in T . Then by Claim 3, all these
triangles are contained in the same 4-element set, say M . But then all the 6 pairs of
vertices of M must be edges, and hence G[M] is a K4, a contradiction to the definition
of F . �

Claim 5 Let G be a flat K4-free graph. Then any 5-cycle (B1, . . . , B5) in T (G)

corresponds to a 5-wheel in G.

Proof Since B2 shares two vertices with B1 and two vertices with B3, there is a vertex
v0 that belongs to all three triangles. So we have the situation in Fig. 1. Triangle B4
must share with B3 either v3v4 or v0v4. If it shares v3v4, then since G is K4-free,
its third vertex, say v5, is not v1. Then B5 needs to share two vertices with each
of the two disjoint triangles, B1 and B4, an impossibility. So, {v0, v4} ⊂ B4. Since
B1 B4 /∈ E(T (G)), v5 �= v1. Then the only way that a triangle B5 shares an edge with
B1 and an edge with B4 is that v0 ∈ B5. Since B5 B2, B5 B3 /∈ E(T (G)), the other two
vertices of B5 are v1 and v5. �

To study the independence number of graphs in F we make use of the following
theorem of Fajtlowicz [4] and Stanton [10].

Theorem 6 Every triangle-free subcubic graph with n vertices has an independent
set of size at least 5n/14.

Remark 1 Let Q denote the graph shown in Fig. 2. It is routine to check that Q is the
unique triangle-free subcubic graph with 11 vertices and independence number 4 (see
Appendix).

Lemma 7 Let n be odd and H be a triangle-free subcubic graph with n vertices. Then
α(H) ≥ (n + 1)/3. Moreover if equality holds then H is a 5-cycle or a copy of Q.
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Fig. 1 Proof of Claim 5
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Proof We note that 5n/14 > (n + 1)/3 for n ≥ 15, so by Theorem 6 we only need to
consider odd n ≤ 13. It is easy to check that the inequality 	5n/14
 ≥ (n + 1)/3 also

holds for these values (for example,
⌈

5·13
14

⌉
= 5 > 13+1

3 ), and that equality occurs

only for n ∈ {5, 11}. The only 5-vertex triangle-free graph with independence number
2 is C5. By Remark 1, if n = 11 and α(H) = 4, then H = Q. �

Lemma 8 Let H be a triangle-free subcubic graph without isolated vertices that does
not contain Q. Then β ′(H) ≤ 3

2α(H). Moreover, if equality holds then H is a disjoint
union of C5’s.

Proof Since β ′(H) = n − α′(H) where n = |V (H)|, it suffices to prove that
n − α′(H) ≤ 3

2α(H). Now if H has a perfect matching then α′(H) = n/2 and
the result follows immediately from Theorem 6. Thus we may assume that H has no
perfect matching. Let S be a Tutte set, that is, a subset of V (H) such that H − S has
c = |S| + n − 2α′(H) odd components. If we let S be a set of maximal size with
respect to this property then every component of H − S is odd and hypomatchable.
Let Hi , 1 ≤ i ≤ c denote the components of H − S, and set ni = |V (Hi )|.

Now α(H) ≥ ∑c
i=1 α(Hi ) ≥ ∑c

i=1(ni + 1)/3 (using Lemma 7), and so we obtain

α(H) ≥ (n − |S| + c)/3 = (2n − 2α′(H))/3.

This implies the first assertion of the lemma. To show the second assertion, assume
equality holds. Since H contains no copy of Q we know that

∑c
i=1 α(Hi ) =∑c

i=1(ni + 1)/3 implies that every component of H − S is a 5-cycle. If S = ∅,
then H is the disjoint union of c 5-cycles, as claimed. Suppose that x ∈ S. Since H is
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triangle-free, x has at most two neighbors in each of the 5-cycles, H1, . . . , Hc. So, in
each Hi we can choose two non-neighbors yi , y′

i of x such that yi y′
i /∈ E(H). Since

the set {x}∪⋃c
i=1{yi , y′

i } is independent, we have α(H) ≥ 1+2c >
∑c

i=1(ni +1)/3,
a contradiction to our assumption of equality. This completes the proof. �

Proof of Theorem 2. By Claim 4 we know that T (G) is triangle-free, and we may
assume that T (G) has no isolated vertices. We claim that T (G) does not contain Q, in
which case the proof is complete by Lemma 8 and Claim 5. Suppose on the contrary
that T (G) does contain Q. Observe that Q contains a 5-cycle C (marked in bold in
Fig. 2) together with another vertex x that is adjacent to two non-adjacent vertices
of C (see Fig. 2). By Claim 5 we know that C corresponds to a 5-wheel W in G.
Then since G is flat, it is not possible for another triangle x to share an edge with two
non-adjacent triangles in W , as each must be adjacent to x along a rim edge. Thus
T (G) cannot contain Q, as required. �

3 Planar Graphs

We are now ready to prove Theorem 1. Let G be a counter-example with the small-
est |V (G)| + |E(G)|. For graphs with at most 4 vertices the statement is evident, so
|V (G)| ≥ 5. Also by the minimality we have:

(S1) Each edge of G belongs to a triangle;
(S2) For each triangle B, at least 2 edges of B belong to other triangles.

By Theorem 2, G is not flat. This means that there is a separating triangle B0
such that some other triangles are inside B0 and some outside. We choose B0 to be
a separating triangle with minimum interior, so that in particular the subgraph of G
induced by the vertices inside and on B0 is a flat plane graph without separating tri-
angles (and B0 is one of its triangles). We denote this subgraph by G1 and the graph
G1 − E(B0) by G ′

1. Similarly the “outside” subgraph G − G ′
1 will be denoted by G2,

and G − G1 = G2 − E(B0) will be denoted by G ′
2.

For i = 1, 2, let νi = ν(G ′
i ) and τi = τ(G ′

i ). We now derive some properties of G.

(S3) Let W be a 5-wheel in G and (x, y, z) be a 3-face of W . Then it cannot happen
that all vertices of G not in W are inside (x, y, z) while all of W −{x, y, z} are outside
(x, y, z).

Proof Let x be the vertex of degree 5 in W and let the rim of W be (y, u, v, w, z). Sup-
pose that only the face (x, y, z) contains vertices of G − W . Let G ′ := G −u −v−w.
Then ν(G ′ − xy) ≤ ν(G) − 2, since any set of edge-disjoint triangles in G − xy
can be complemented by (x, y, u) and (x, v, w). So, if T (G ′ − xy) is not a disjoint
union of C5s, then by the minimality of G, τ(G ′ − xy) < 3(ν(G) − 2)/2, and we
can add 3 edges including xy (e.g. {xy, xv, xw}) that cover all remaining triangles
of G. Thus, T (G ′ − xy) is the disjoint union of C5s. If one of the corresponding
5-wheels in G contains the edge xz, then we can choose a covering of this wheel with
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3 edges using xz and cover the triangles of W not containing xz with two edges, one
of which is xy. So, xz does not belong to triangles in G ′ − xy. By symmetry, we find
that T (G ′ − xz) is the disjoint union of C5s and xy does not belong to triangles in
G ′ − xz. Therefore T (G ′ − xy) = T (G ′ − xz) = T (G ′ − xy − xz) is a disjoint
union of C5s. Now a similar argument shows that yz does not belong to triangles in
G ′ − xy − xz. It follows that T = T (G) is a disjoint union of C5s, a contradiction. �

Everywhere below we assume that B0 = (x, y, z).
(S4) ν(G) = ν1 + ν2 + 1.

Proof Indeed, since the edges in B0 do not participate in triangles of G ′
1 and G ′

2,
ν(G) ≥ ν1 + ν2 + 1. On the other hand, suppose ν(G) ≥ ν1 + ν2 + 2. By definition,
τ(G) ≤ τ1 +τ2 +|E(B0)| = τ1 +τ2 +3. By the minimality of G, τ1 +τ2 ≤ 3

2 (ν1 +ν2)

with equality only if all components of T (G − E(B0)) are C5. So, we may assume
that all components of T (G − E(B0)) are C5 and that ν(G) = ν1 + ν2 + 2, since
otherwise we are done.

By (S1) and (S2), ν1 ≥ 1 and ν2 ≥ 1, and hence each of G ′
1 and G ′

2 contains at
least one 5-wheel. Moreover, each such 5-wheel shares an edge with a triangle con-
taining an edge of B0, since otherwise, we can delete the edges of a 5-wheel W and
use induction for G − E(W ).

Case 1: Every 5-wheel in G ′
1 shares at most one edge with triangles containing

edges of B0. Then we can cover all triangles in G1 apart from B0 with 3k edges,
where k is the number of (edge disjoint) 5-wheels in G ′

1, which is equal to ν1/2. On
the other hand, ν(G2) ≤ ν − ν1 and by the minimality of G, τ(G2) < 1.5(ν − ν1),
unless T (G2) is a union of disjoint C5. But G2 is obtained from G ′

2 by adding the
edges of B0, and the edges of a triangle in a 5-wheel (or any two edges) do not cover
all triangles in this wheel. So if T (G ′

2) is the union of disjoint C5, then T (G2) is not.
This finishes the case.

Case 2: Some 5-wheel W in G ′
1 shares more that one edge with triangles containing

edges of B0. By the choice of B0, the outside face of W is its 5-face. If a triangle D in
G shares an edge with W and shares an edge with B0, then W shares a vertex with B0.
Furthermore, W cannot share more than one vertex with B0 = (x, y, z), since other-
wise G[W ] contains an edge not in W and adding any edge to W creates a K4. We
may assume that x belongs to W and y and z not. Then there is no triangle containing
yz sharing an edge with W . Let the rim of W be (x, x1, x2, x3, x4) and the center be
x0. Since the center of W is inside its rim (we call such a 5-wheel normal) and G1 is
flat, we may assume that the triangles containing an edge of W and an edge of B0 are
(x, y, x1) and (x, z, x4). The edges yx1 and zx4 cannot belong to the same 5-wheel in
G ′

1, since it would be normal and yx1 and zx4 would be rim edges, so together with
yz we would find a K4 in G. Hence, there is a set F of ν1 + 2 edge-disjoint trian-
gles in G1 − zy consisting of triangles (x, y, x1), (x, z, x4), (x0, x1, x2), (x0, x3, x4),
and two triangles from each other 5-wheel in G1 − zy (see Fig. 3). It follows that
ν(G2 − xy − xz) ≤ ν2. Now T (G ′

2) is a disjoint union of C5, and y and z do not both
belong to the same 5-wheel in G ′

2 otherwise they form a K4. Thus if yz is in a triangle
in G2 − xy − xz then we could find ν2 triangles in G ′

2 avoiding it, giving a total of
|F |+ ν2 + 1 = ν1 + ν2 + 3 edge-disjoint triangles, a contradiction. Therefore yz does
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Fig. 3 The shaded triangles form an example of the set F

not belong to a triangle in G2 other than B0. There is at most one triangle, say (y, z, u)

in G1 distinct from B0 that contains zy. If there is no such triangle, or (y, z, u) shares
an edge with a 5-wheel in G ′

1, then we find a covering containing 1.5ν2 edges in G ′
2,

edges xy, xz and 1.5ν1 edges in G ′
1 covering all triangles in 5-wheels of G ′

1 and the
triangle (y, z, u), if it exists. See Fig. 3, where the bold edges are an example of part
of a suitable cover. But if (y, z, u) exists and does not share any edge with a 5-wheel
in G ′

1, then ν(G1) ≥ ν1 + 3, a contradiction. �

Property (S4) implies also

(S5) For i = 1, 2, ν(Gi ) = νi + 1.

(S6) For every X ⊂ E(B0), ν(G1 − X) + ν(G2 − (E(B0) − X)) ≤ ν1 + ν2 + 1.

(S7) For every edge e of B0, either ν(G ′
1 + e) = ν1 + 1 or ν(G ′

2 + e) = ν2 + 1.

Proof Assume that ν(G ′
1 + xy) = ν1 and ν(G ′

2 + xy) = ν2. If neither of T (G ′
1 + xy)

and T (G ′
2 + xy) is a disjoint union of C5s, then we can get a triangle cover for G by

adding edges yz and xz to the union of optimum triangle coverings in G ′
1 + xy and

G ′
2 + xy. This would imply that

τ(G) ≤ 2 + (1.5ν1 − 0.5) + (1.5ν2 − 0.5) = 1.5(ν1 + ν2) + 1 = 1.5ν(G) − 0.5.

So, there is j ∈ {1, 2} such that T (G ′
j + xy) is a disjoint union of C5s.

Case 1: Neither of xz and yz belongs to a triangle in G j other than B0. If xy also
does not belong to a triangle in G j other than B0, then each triangle of G belongs
either to G ′

j or to G3− j which are edge-disjoint. So we are done by the minimality of
G. So, xy belongs to a 5-wheel in G ′

j + xy, and hence there is a set S of 1.5ν j edges

123



660 Graphs and Combinatorics (2012) 28:653–662

covering all triangles in G ′
j + xy such that xy ∈ S. If T (G3− j ) is not a disjoint union

of C5s, then there is S′ ⊂ E(G3− j ) covering all triangles with |S′| < 1.5(ν3− j + 1);
so that |S ∪ S′| < 1.5ν(G). Suppose that T (G3− j ) is a disjoint union of C5s. Since B0
is a triangle in G3− j , and xy ∈ S, we again need fewer than 1.5ν3− j edges to cover
triangles in G3− j − xy.

Case 2: The edge xz belongs to a triangle in G j other than B0 (say, (x, z, u)), and
the edge yz does not. We claim that

ν(G ′
j + xz) ≥ ν j + 1. (1)

If (1) does not hold, then some 5-wheel W in G ′
j + xy does not have two edge-dis-

joint triangles that are also disjoint from (x, z, u) and do not contain edge xy. Since
xz /∈ E(G ′

j + xy), W has at most two common vertices with (x, z, u), otherwise G
contains a K4. Thus xy is an edge of W and some edge e ∈ {xu, zu} is an edge of W .
If e = zu, then W contains all of (x, z, u). So, e = xu. Since W − xy − xu has no two
edge-disjoint triangles, x is the center of W . Since G[{x, y, z, u}] �= K4, uy /∈ E(G).
Then there is no face of W to put z so that it is adjacent to all of x, y and u. So, (1)
holds.

By (1) and (S6), ν(G3− j − xz) = ν3− j . In our case (i.e. yz is not in a triangle in
G j other than B0) we also have ν(G j − xz) = ν j . So we can get a triangle cover
for G by adding edge xz to the union of optimum triangle coverings in G1 − xz and
G2 − xz. This yields τ(G) ≤ 1.5ν1 + 1.5ν2 + 1 < 1.5ν(G).

Case 3: Edge xz belongs to a triangle (x, z, u) in G j other than B0 and the edge
yz belongs to a triangle (y, z, v) in G j other than B0. Since G is K4-free, v �= u.
Similarly to Case 2, we claim that

ν(G j ) ≥ ν j + 2, (2)

which would contradict (S4). If (2) does not hold, then some 5-wheel W in G ′
j + xy

does not have two edge-disjoint triangles that are also disjoint from (x, z, u) and
(y, z, v). Then W contains an edge e1 ∈ {xu, uz} and an edge e2 ∈ {yv, vz}, and at
least one of them is incident to the center of W . If e1 = xu then z /∈ W , otherwise
W + zx contains K4. Thus e2 = yv and one of {x, u, v, y} is the center of W , but
then we find a K4 containing z. This contradiction shows that e1 = uz, and similarly
e2 = vz. Then z is the center of W and x, y /∈ W .

Since xy ∈ E(G), x and y are in the same face of W . Since the set {x, y} is adjacent
to z, u, and v, this face should be (u, z, v). In particular, the triangle (u, z, v) separates
(x, z, y) from all other vertices of W . So, by the choice of (x, z, y), j = 2. If a face
F of W distinct from (u, z, v) contains a vertex not in W , then by (S1) it contains
a triangle distinct from itself. Since T (G ′

j + xy) is a disjoint union of C5s, F con-
tains a 5-wheel W ′ distinct from W and hence edge-disjoint from W . So, deleting the
edges of W ′ from G does not destroy other triangles of G, and we can apply induction
hypothesis to G − E(W ′), a contradiction. Thus no face of W apart from (u, z, v)

contains vertices. Now we are done by (S3). �
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3.1 Final Calculations

By (S7), there is j ∈ {1, 2} such that ν(G ′
j + xy) = ν j + 1. Then by (S6), ν(G3− j −

xy) = ν3− j . Then again by (S7), ν(G ′
j + xz) = ν j +1 and ν(G ′

j + zy) = ν j +1, and
again by (S6), ν(G3− j − xz) = ν3− j and ν(G3− j − zy) = ν3− j . By the minimality
of G there is an edge-cover S j of triangles in G j with |S j | ≤ 1.5(1 + ν j ) (with equal-
ity only if T (G j ) is the disjoint union of C5s). Since S j covers B0, we may assume
that xy ∈ S j . By above, there is an edge-cover S3− j of triangles in G3− j − xy with
|S3− j | ≤ 1.5ν3− j (with equality only if T (G3− j − xy) is the disjoint union of C5s).
So, if at least one of T (G j ) and T (G3− j − xy) is not the disjoint union of C5s, then
we are done. Suppose now that they both are. If the 5-wheels of G3− j − xy contain
neither xz nor yz, then T (G) is the disjoint union of C5s, and we are done. So, we may
assume that xz is in some 5-wheel in G3− j −xy. Note that there is an edge-cover S′

j of
triangles in G j with |S′

j | = 1.5(1+ ν j ) containing xz. Furthermore, if we delete from
G3− j − xy the edge xz, we destroy one of the 5-wheels, and when we then add to it
the edge xy, the resulting graph G3− j − xz is not the edge-disjoint union of 5-wheels.
Since ν(G3− j − xz) = ν3− j , we are done.

4 Appendix

Here for completeness we show that if G is a triangle-free subcubic graph on 11
vertices with independence number 4, then it is isomorphic to the graph Q shown in
Fig. 2.

Since G has 11 vertices we know that it has a vertex a with even degree. If d(a) = 0
then G − a is a graph with 10 vertices, that contains no triangle and no independent
set of size 4, contradicting the fact that the Ramsey number R(3, 4) is 9. Therefore
d(a) = 2. Let b and c denote the neighbours of a. Then G ′ = G − {a, b, c} has 8
vertices, no triangle and no independent set of size 4. Thus G ′ is an extremal Ramsey
graph for R(3, 4), which means that it shows R(3, 4) ≥ 9. A complete list of such
graphs is known (see e.g. [9]). They are: the graph H obtained by removing the ver-
tex u of degree 2 in Q together with its neighbours v and w (see Fig. 2), the graph
H1 = H + pq, and H2 = H1 + rs.

Observe that in H2 (and therefore also in H and H1), for each y ∈ {p, q, r, s} there
exists an independent set Sy of size 3 that contains y and no element of {p, q, r, s}\{y}.
Since there must be an edge of G from {b, c} to Sy (otherwise G contains an indepen-
dent set of size 5), and the two vertices in Sy \ {y} each have degree 3 in H , the only
possibility is that G ′ = H and each of b and c has two neighbours in {p, q, r, s}. Since
ps and qr are edges and G is triangle-free, we conclude that G is isomorphic to Q. �
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