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Abstract. In this paper we study the resonance variety of a line combinatorics. We
introduce the concept of combinatorial pencil, which characterizes the components of this
variety and their dimensions. The main theorem in this paper states that there is a corre-
spondence between components of the resonance variety and combinatorial pencils. As a
consequence, we conclude that the depth of a component of the resonance variety is deter-
mined by its dimension; and that there are no embedded components. This result is useful to
study the isomorphisms between fundamental groups of the complements of line arrange-
ments with the same combinatorial type. The definition of combinatorial pencil generalizes
the idea of net given by Yuzvinsky and others.
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Introduction

The problem of the relationship between the topology of a line arrangement in CP
2

and its combinatorial structure has been one of the most studied in the theory of
hyperplane arrangements. After the work of Arnol’d ([1]) and Brieskorn ([4]), Orlik
and Solomon showed in [15] that the cohomology algebra of the complement is
determined by the intersection lattice. Rybnikov exhibited in [17] the existence of
two combinatorially equivalent line arrangementsL1,L2, whose complements have
non-isomorphic fundamental groups. His approach had essentially two parts: On
one hand, he stated that an isomorphism between the fundamental groups should
preserve the homology classes of meridians (which depend only on the combinator-
ics). On the other hand, he could distinguish both arrangements using an invariant
under such isomorphisms. In the first part is where most details are missing.

In [2] a detailed proof of Rybnikov’s result is given. In this paper we generalize
the concepts and methods introduced in [2]. The main object of this paper is the study
of the resonance variety of a line combinatorics. Historically, its components have
been related to combinatorial objects such as neighborly partitions (see [7,8,14]),
but this relation is not one to one, because there are neighborly partitions that
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do not correspond to components of the resonance variety. Yuzvinsky introduced
the concept of net (see [18]), that solved this problem, but presented the opposite,
that is, every net corresponds to a component of the resonance variety, but there
are components that do not correspond to any net. In this paper, we introduce
the concept of admissible class, which characterizes the components of the reso-
nance variety in characteristic zero. The main result of this paper is Theorem 2.
It shows that maximal admissible classes are in one-to-one correspondence with
combinatorial pencils. This equivalence has not only a theoretical relevance, but
also computational: checking the admissibility of a combinatorics involves solv-
ing a system of quadratic equations, whereas doing the same for a combinatorial
pencil only involves solving linear systems. As a consequence of the main result, we
can obtain some results about the structure of the resonance variety of matroids,
such as Corollary 1 and Theorem 4. They state that the resonance variety is a finite
union of linear subspaces, whose depth coincide with their dimension. These facts
were proved for the case of realizable matroids in [14] using geometric tools. Our
approach focuses only on the combinatorics, and hence, it can be applied to any line
combinatorics, regardless of the existence of realizations.

Section 1 contains the definitions of admissibility for maps, classes and
combinatorics. Some examples of admissible combinatorics are shown. It also con-
tains the definition of combinatorial pencil, which captures the combinatorial prop-
erties of a line arrangement contained in a pencil of curves. This naturally extends
the idea of net allowing weights and arbitrary combinatorics of each fiber. Combi-
natorial pencils are a particular case of neighborly partitions. The proof of the main
theorem is provided in Section 2. It uses the Vinberg classification of real matri-
ces, which is included for completeness. The relationship between admissible classes
and components of the resonance variety is also shown in this section. This proof
sharpens the one given by Libgober and Yuzvinsky in [14], with some modifications
to rule out the indefinite case. This way we obtain the one-to-one correspondence
between the irreducible components of the resonance variety and combinatorial
pencils1.

Assume a line combinatorics admits more than one realization. Section 3
describes a method to study the possible isomorphisms between the fundamen-
tal groups of their complements. This method involves studying the permutation
induced in the set of maximal admissible classes, Adm(L ,P). Such a permutation
must preserve some structure in Adm(L ,P). In Section 3 we give a formal descrip-
tion of this structure through the function Υ , which allows us to define the concept
of triangle of admissible classes. By studying the set of triangles, we can conclude
which are the possible permutations of admissible classes. And, if the combinatorics
is rich enough, we can also enumerate all the possible isomorphisms induced in the
homology. This method follows some of the ideas behind the one given by Falk
in [7, Thm. 3.20], but can be used in a more general family of combinatorics. In
Section 4 we give an example of how to use it in one of these combinatorics. The
condition of strong connectedness is still used, although a weaker condition should
work. Section 5 is an appendix that includes, for the sake of completeness, a proof

1 This fact was independently discovered by Falk and Yuzvnsky in [9]
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of the well-known duality between the second level of the lower central series of the
fundamental group of a line arrangement, and its Orlik-Solomon algebra.

1. Preliminary Definitions

Definition 1. A line combinatorics is a finite set L := {l1, . . . , ln} together with a
subset P ⊆ P(L ) satisfying the following properties:

i) #p > 1, for every p ∈ P.
ii) for every li , l j ∈ L , li �= l j , there exists a unique p ∈ P such that li , l j ∈ p.

This element will be called the intersection of li and l j , and will be denoted by
li ∩ l j .

The elements of L and P will be called lines and points respectively.

This definition captures the incidence properties of the set of lines and the set
of points (identifying a point with the set of lines that pass through it) of a line
arrangement in a projective plane. Given a line arrangement in the complex projec-
tive plane, some of the invariants of its topology depend only on the combinatorics;
so we will refer to them as invariants of the combinatorics. In the following we will
assume that we have fixed a line combinatorics of n lines. In this context, we will
define H as the quotient of the lattice Z

n by the sublattice generated by the vector
(1, . . . , 1). We fix an order in L that allows us to establish a bijection between the
lines {l1, . . . , ln} and the elements of the canonical generating system {e1, . . . , en} of
H , (these are the classes in H of the canonical basis of Z

n). For the sake of simplicity,
el with l ∈ L will also denote a canonical generator of H . If there existed a realiza-
tion of the combinatorics in the complex projective plane, H would be canonically
isomorphic to the first homology group of the complement.

Definition 2. Let k be a positive integer greater than 2. A k-admissible map is a
Z-epimorphism α : H → Z

k−1 such that, for every p ∈ P and for every li ∈ p, the
vectors {α(ei ),

∑
l j ∈p α(e j )} are linearly dependent.

Given an admissible map, we define its associated subcombinatorics as the
combinatorics whose set of lines is Lα := {li | α(ei ) �= 0}, and its set of points
is Pα := {p ∩ Lα | p ∈ P, #(p ∩ Lα) > 1}. That reflects the intuitive idea of
“deleting" the lines li where α(ei ) vanishes.

A line combinatorics is said to be k-admissible if it admits a k-admissible map
α such that α(el) �= 0 for every l ∈ L .

The group AutZ(Zk−1) acts on the set of k-admissible maps by composition.
The orbits of this action will be called k-admissible classes.

We will say that a k-admissible map is maximal if it can not be obtained by
composition of a (k + 1)-admissible map and a Z-epimorphism Z

k → Z
k−1. Anal-

ogously we will talk about maximal k-admissible combinatorics and classes. The
set of maximal k-admissible classes will be denoted by Admk(L ,P); and the set
of all maximal admissible classes (that is,

⋃
k>2 Admk(L ,P)) will be denoted by

Adm(L ,P).
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Remark 1. The combinatorics (Lα,Pα) associated with an admissible map α is an
invariant of its admissible class.

Example 1. Let l1, . . . , lk be k concurrent lines (with k ≥ 3). One can define a
k-admissible map as follows: consider {v1, . . . , vk−1} a basis of Z

k−1. Now let α

be the map given by α(e j ) = v j for j = 1, . . . , k − 1, and α(ek) = −v1 − · · ·− vk−1.
This is an admissible map, in fact this k-admissible combinatorics is maximal, we
will call it of point type. An admissible map whose associated subcombinatorics is
of point type is also called an admissible map of point type.

Example 2. Let l1, . . . , l6 be six lines whose non-double points are
{l1, l2, l3}, {l1, l5, l6}, {l2, l4, l6}, {l3, l4, l5}. Let {v1, v2} be a basis of Z

2, we can define
the following 3-admissible map α given by α(e1) = α(e4) = v1, α(e2) = α(e5) = v2,
α(e3) = α(e6) = −v1 − v2. It is again easy to check that α is admissible. The admis-
sible classes of this form will be called of Ceva type. As in the previous example, we
can talk about subcombinatorics of Ceva type.

Example 3. Consider a finite field F of k elements, and consider F
2 the affine plane

over F. In this plane there are k + 1 directions, and for every direction there are
k lines. For each point of the plane passes exactly one line of each direction. So
we can construct (k + 1)-admissible combinatorics as follows: for each direction
D, construct a combinatorics (LD,PD) using the lines whose direction is D, and
consider the combinatorics (L ,P) such that L is the set of all lines in F

2, and P
is the union of all the PD plus the points of F

2. Then choose a basis (v1, . . . , vk) of
Z

k , and order the directions of the plane. Now define vk+1 := −v1 − · · · − vk and
let α(el) = vi if l goes in the i ’th direction. This map will be admissible regardless
of the election of PD .

In the case of Z/2Z, there is only one way of choosing the intersections inside
each direction (two lines only have one way to intersect), and the result is the Ceva
combinatorics.

In the case of Z/3Z, and choosing the lines in each direction to be in general
position, the result is the combinatorics of the twelve lines joining the nine flexes of
a smooth cubic. This one is called the Hesse combinatorics. Explicit equations of a
realization can be found, for instance, in [9, Section 3].

There is also a “degenerated" Hesse combinatorics, which is not realizable in the
complex plane, where the combinatorics (LD,PD) of each direction D is chosen
to be a triple point.

Example 4. From the Ceva combinatorics, we can construct another classical
combinatorics (see [7, Example 4.6] and [9]) by adding lines joining every pair of
double points. The result is a combinatorics of nine lines, as shown in Figure 1, and
is called generalized Ceva combinatorics. In Figure 1 we can see that it is admissible.
Note that in this case, there are non-equal proportional vectors.

Its realization in the complex (or real) plane is the union of the three special fibers
of the pencil of rational nodal quartics, generated by x2(y2 + z2) and y2(x2 + z2)

(up to projective transformation).
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Fig. 1. Ceva and generalized Ceva combinatorics

The concept of admissible map can be presented in a way that is more
independent of the election of a basis in H . Consider the Z−submodule R � H ∧ H
generated by the family {e j ∧∑

i∈p ei | p ∈ P , j ∈ p} (where ∧ denotes the exterior
product).

Proposition 1. An epimorphism α : H → Z
k−1 is k-admissible if and only if α∧α(x) =

0 ∀x ∈ R.

Proof. Let p be a point, l j ∈ p and consider a generator e j ∧∑
i∈p ei of R. Its image

under α ∧ α is α(ei ) ∧ ∑
i∈p α(ei ), which is zero if and only if α(ei ) and

∑
i∈p α(ei )

are linearly dependent in Z
k−1. �

The definition of R is motivated by the complement of a realization in the
complex projective plane: the second factor of the lower central series of its funda-
mental group is isomorphic to (H ∧ H)/R, see [17]. This group also appears in the
study of the truncated Alexander invariant of the complement of a line arrange-
ment. In [2] this group was used to study the set of isomorphisms of fundamental
groups of both McLane’s and Rybnikov’s arrangements.

A straightforward consequence of [14, Prop. 7.2] is that a line arrangement whose
combinatorics is k-admissible is a union of fibers of a pencil. In particular, Exam-
ple 1 is trivially the union of some fibers of a pencil of lines; Example 2 is the union
of the three singular fibers of a pencil of conics in general position; and Example 4,
as explained before, is the union of three non-reduced fibers of a pencil of quartics.
The following definition captures the combinatorial properties of a pencil of lines:

Definition 3. A combinatorial pencil is a line combinatorics together with a partition
F1, F2, . . . , Fk of L into k ≥ 3 subsets, and a weight map w : L → Z

+ such that
at any point p ∈ P only one of the following two possibilities occurs:

i) p ⊆ Fi for some i ∈ {1, 2, . . . , k}.
ii) ∀i ∈ {1, 2, . . . , k}, p ∩ Fi �= ∅ and

∑
l∈p∩Fi

w(l) = ∑
l∈p∩Fj

w(l) for all Fi , Fj .
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The points satisfying property ii) will be called the base points of the combinatorial
pencil, and the elements Fi of the partition will be called fibers.

We will call a combinatorial pencil maximal if no other combinatorial pencil
can be constructed by refining the partition.

Remark 2. From a combinatorial pencil of k fibers F1, . . . , Fk , we can construct
a k-admissible map as follows: let {v1, . . . , vk−1} be a basis of Z

k−1, and vk :=
−v1 − · · · − vk−1, now consider the map α : H → Z

k−1 given by α(ei ) := w(li ) · v j ,
where li ∈ Fj . The map α satisfies the condition in Def. 2. Thus, each combinatorial
pencil determines an admissible map; the goal of Section 2 is to prove its converse.

Remark 3. It can be shown that, when the combinatorics is realizable, any maximal
combinatorial pencil with relatively prime weights is in fact a geometrical pencil
(see [14] and [6])

Example 5. From a combinatorial pencil with weight map w and partition � of
k fibers, another one of fewer fibers and with the same base points can be con-
structed as follows: take a partition of �, say {�1, . . . ,�m}, and consider the par-
tition �̄ := {⋃ �1, . . . ,

⋃
�m} of L . Define the weight map given by w̄(l) =

lcd({#�i |i=1,...,m})
#� j

w(l), where l ∈ F ∈ � j . Both �̄ and w̄ determine a combinatorial
pencil. This justifies the following

Definition 4. A combinatorial pencil is said to be maximal if every two lines in the
same fiber can be connected by non-base points.

Remark 4. Every combinatorial pencil is a neighborly partition (see [7, 3.9]), but
the converse is not true. A simple example can be constructed by joining two fibers
of the Hesse combinatorics as in the previous example, and then deleting one line
from one of these two fibers. The result would be a combinatorics of eleven lines
with the following multiple points: {l1, l4, l8, l10}, {l1, l5, l9, l11}, {l1, l6, l7}, {l2, l4, l9},
{l2, l5, l7, l10}, {l2, l6, l8, l11}, {l3, l4, l7, l11}, {l3, l5, l8}and {l3, l6, l9, l10}; the rest of the
intersections are in double points. The partition {{l1, l2, l3}, {l4, l5, l6}, {l7, . . . , l11}}
is a neighborly partition (every point either has only lines of the same component or
has lines of every component), but one can easily check that it is not a combinatorial
pencil.

Falk and Yuzvinsky refined in [9] the concept of neighborly partition to the one
of weak multinet, which coincides with the definition of combinatorial pencil. Mul-
tinets are exactly the maximal combinatorial pencils with relatively prime weights.

2. Decomposition in Fibers

The goal of this section is to prove that each admissible map determines a combi-
natorial pencil. In order to do so, we will use some ideas from [14] and the Vinberg
classification of matrices (see [11]), which we will include here for completeness. In
particular, we will use [11, Thm. 4.3]:
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Notation 1. Given a vector u ∈ R
n , we will write u ≥ 0 (resp. >,≤ or <) to denote

that all its entries are nonnegative (resp. positive, nonpositive or negative).

Theorem 1. Let M = (ai, j ) be a real n × n matrix such that:

– M is indecomposable.
– ai, j ≤ 0 for i �= j .
– ai, j = 0 implies a j,i = 0.

Then only one of the following three possibilities hold for both M and its transposed:

(Fin) det(M) �= 0; there exists u > 0 such that Mu > 0; Mv ≥ 0 implies v = 0 or
v > 0.

(Aff) corank(M) = 1; there exists u > 0 such that Mu = 0; Mv ≥ 0 implies
Mv = 0.

(Ind) there exists u > 0 such that Mu < 0; Mv ≥ 0, v ≥ 0 imply v = 0.

In all this section we will assume that (L ,P) is a maximal k-admissible line com-
binatorics with admissible map α. First consider χα := {p ∈ P | ∑

li ∈p α(ei ) = 0}.
If #χα = 1 then (L ,P) is of point type, otherwise there exists a line li that

does not go through the only point in χα. Then for every line l j , the corresponding
vector α(e j ) is proportional to α(ei ), since both are proportional to

∑
lk∈li ∩l j

α(ek),
which is not zero. This contradicts the admissibility of α. From Example 1 a max-
imal k-admissible combinatorics of point type defines a combinatorial pencil with
k fibers (one per line).

From now, we will assume that #χα ≥ 2. Consider a graph whose vertices are
the lines and whose edges join every two lines that intersect outside χα. We have a
partition of L given by the connected components of this graph; let us denote such
a partition by �. We can assume that the lines are ordered in a way compatible with
� (that is, if li and l j are in the same component, and i < k < j , then lk is also in
the component of li and l j ).

Remark 5. This same decomposition is done in [14] with a slightly different approach.
Consider Q the (n × n) matrix whose entries are Qi,i := #{p ∈ χα | li ∈ p} − 1
in the diagonal; Qi, j := 0 if the intersection of li and l j is in χα; and Qi, j := −1
otherwise. This is a symmetric matrix that can be decomposed in a direct sum of inde-
composable matrices ⊕F∈�MF . This decomposition corresponds to the connected
components of the previous graph. It is straightforward to check that Qi,i ≥ 1 for
every i . Another way to define Q is Q := J T J − U , where J is the incidence matrix
between χα and L , and U is the #L × #L matrix whose every entry is 1.

Note that if two lines li , l j are in the same component of �, the vectors α(ei )

and α(e j ) are linearly dependent, and hence if F ∈ �, there exists a primitive vector
vF ∈ Z

k−1 such that ∀l ∈ F , α(el) = wlvF for some wl ∈ Z.

Lemma 1. Let F ∈ �, then all the entries of the weight vector (wl)l∈F have the same
sign. In particular (wl)l∈F can be chosen to be positive.
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Proof. Fix a line li , the following equations hold
⎧
⎨

⎩

∑

l j ∈p

α(e j ) = 0

∣
∣
∣
∣
∣
∣

p ∈ χα, li ∈ p

⎫
⎬

⎭
. (1)

The following properties hold for the system (1)

– α(ei ) appears in Qi,i + 1 equations,
– if li ∩ l j ∈ χα, α(l j ) appears exactly once,
– if li ∩ l j /∈ χα, α(l j ) does not appear.

Hence if we substract every equation in (1) from the equation
n∑

j=1

α(e j ) = 0, (2)

we obtain that

− Qi,iα(ei ) +
∑

li ∩l j /∈χα

α(e j ) = 0. (3)

Since for all such l j , α(e j ) = w jv for a certain v �= 0, the equation (3) can be
expressed as

Qi,iwi −
∑

li ∩l j /∈χα

w j = 0, (4)

which means in particular that the weight vector (w1, . . . , wn) is in the kernel of Q.
Moreover, for every F ∈ �, the weight vector (wl)l∈F associated with F is in the
kernel of the corresponding indecomposable matrix MF . Since all these matrices
satisfy the hypothesis of Theorem 1, MF is of one of the three types (Aff), (Fin) or
(Ind). We have found a nonzero vector in its kernel, so it cannot be of (Fin) type.
Now suppose that, for a certain G ∈ �, the matrix MG is of (Ind) type. There exists
a positive vector uG > 0 such that MGuG < 0. Now, for every F ∈ � \ {G}, there
exist a vector uF < 0 such that MF uF > 0 (if MF is of (Ind) type), or MF uF = 0
(if MF is of (Aff) type). By multiplying each uF by an adequate positive constant,
we can assume that

∑
l∈L ul = 0. Consider the vector u = (ul)l∈L obtained by

concatenation of all the uF . Since the sum of the entries of u is zero, Uu = 0. Then,
denoting by (•, •) the standard scalar product, we have:

0 ≤ (Ju, Ju) = (Qu, u) + (Uu, u) = (MGuG , uG) +
∑

F∈�\{G}
(MF uF , uF )

≤ (MGuG, uG) < 0 (5)

which is a contradiction. We conclude that all the MF are of (Aff) type, and since the
vectors (wl)l∈F generate the kernel of MF , all its entries must have the same sign.

�
In particular, since α(e1), . . . , α(en) generate Z

k−1 and
∑n

i=1 ei = 0, the previ-
ous {vF }F∈� is a linearly dependent generating system in Z

k−1. So we can conclude
that #� ≥ k.
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Remark 6. By multiplying the vF ’s by appropriate constants, we can assume that∑
l∈F wl is constant for all F ∈ �.

We now will recall the definition of the Orlik-Solomon algebra of a line combi-
natorics (see [16]) in order to use some of its properties.

Definition 5. Let (L ,P) be a line combinatorics. L = {l1, . . . , ln}. Consider the
(n −1)-dimensional vector space E1 over a field K generated by x1, . . . , xn satisfying
the relation x1 + · · ·+ xn = 0. Let E be the graded exterior algebra of E1 (note that
x1, . . . , xn correspond to the generators e1, . . . , en of H but it is more convenient to
use a different notation to distinguish both objects). Now consider the differential
δ : E p → E p−1 given by

δ(xi1 ∧ · · · ∧ xi p ) =
p∑

j=1

(−1) j−1(xi1 ∧ · · · ∧ x̂i j ∧ · · · ∧ xi p ).

The Orlik-Solomon algebra over K of (L ,P) is defined as the quotient A of E by
the ideal generated by {δ(xi1 ∧· · ·∧xin ) | n > 3}, {δ(xi1 ∧xi2 ∧xi3) | li1 ∩li2 = li1 ∩li3},
and {(xi1 ∧ xi2 ∧ xi3) | li1 ∩ li2 �= li1 ∩ li3}.

If K is not specified, it will be assumed to be Q.

There is a grading in A induced by the grading in E , and A1 = E1. In the fol-
lowing, we will fix the base {x1, . . . , xn} to take coordinates. We will say that two
vectors v1, v2 ∈ A1 are orthogonal if v1 ∧ v2 = 0 ∈ A. Given a subspace C ⊂ A1, we
will denote by C⊥ the set of all vectors v ∈ A1 such that v and w are orthogonal for
every w ∈ C ; this is a linear subspace that will be called the orthogonal space of C .

Lemma 2. Let α : H → Z
k−1 be a homomorphism, and let M be the matrix whose

columns are α(e1), . . . , α(en). Then α is admissible if and only if the rows of the matrix
M (as elements of A1) are orthogonal in A.

Proof. We will consider the non-broken-circuit basis of A2 for the given ordering
(see [16]). It can constructed as follows: take the generators xi ∧ x j such that li is
the first line of li ∩ l j , and the rest of the generators can be expressed in terms of
these as follows: let li be the first line of the point l j ∩ lk , then if j < k, we can
use δ(xi ∧ x j ∧ xk) to see that x j ∧ xk = (xi ∧ xk) − (xi ∧ x j ). It is not hard to
see that the rest of the relations are a consequence of the previous ones. Now let
a := (a1, . . . , an) and b := (b1, . . . , bn) be two such rows, l j ∈ p ∈ P, and let li be
the first line of p. The coefficient of a ∧ b in xi ∧ x j is

∣
∣
∣
∣
a j

∑
lk∈p ak

b j
∑

lk∈p bk

∣
∣
∣
∣ . (6)

It is immediate that all such coefficients to be zero is the necessary and sufficient
condition for both the admissibility of α and the orthogonality of its rows in A. �
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Definition 6. For every element ω ∈ E1, we consider the complex

K
dω �� A1

dω �� A2 �� 0

where dω represents the left multiplication by ω. We will denote its cohomology as
H•(A, ω). The resonance variety of A is the set R1 := {ω ∈ A1 | H1(A, ω) �= 0}.

Remark 7. An element a ∈ A is in R1 if and only if there exists another b ∈ A \ Ka,
such that a∧b = 0. In that case, the matrix whose rows are a and b defines an admis-
sible map; and vice-versa: the rows of an admissible map are elements of R1. More
precisely, maximal admissible classes correspond exactly to irreducible components
of the resonance variety, as will be shown later.

Notation 2. The row vectors of the matrix M in Lemma 2 will be denoted by
s1, . . . , sk−1, and the subspace of E1 they span will be denoted by Cα; note that
this subspace depends only on the admissible class α.

Lemma 3. For any admissible class α, the space Cα satisfies the following properties:

i) Cα ⊆ C⊥
α .

ii) if α is maximal, Cα ⊆ Cβ =⇒ α = β (as a class).
iii) if α is maximal, Cα = C⊥

α .
iv) dim(Cα) = k − 1 if α is maximal k-admissible.

Proof. Properties i) and ii) are direct consequences of Lemma 2 and the definition
of maximal admissible class respectively. To prove iii), suppose that v ∈ C⊥

α but
v /∈ Cα. Then v could be appended as a row to the matrix M in Lemma 2; and
the columns of the resulting matrix would correspond to an admissible map, which
contradicts the maximality of α. The rows of the matrix M give a basis of Cα, which
proves iv). �

We can find a basis {rF | F ∈ �} of the kernel of Q formed by the vectors that
generate the kernels of the indecomposable submatrices MF . As in Remark 6, we
can choose all these vectors to be positive, and to have the property that the sum of
their entries is the same for all of them.

Proposition 2. The subspace Cα = 〈s1, . . . , sk−1〉E1 is exactly ker(Q) ∩ ker(U ).

Proof. Equation (3) implies M Q = 0. Since Q is symmetric, QMt = 0 and therefore
Cα ⊆ ker(Q). On the other hand, since e1 + · · · + en = 0, α(e1) + · · · + α(en) = 0,
and therefore the sum of the coefficients of each si equals zero. Note that ker(U ) =
{(v1, . . . , vn) ∈ E1 | ∑n

i=1 vi = 0} and hence 〈s1, . . . , sk−1〉 ⊆ ker(Q) ∩ ker(U ).
For the other inclusion, fix a certain F̄ ∈ �, and define r̃F := rF − rF̄ for all

F ∈ �\{F̄}. Since the rF are not in ker(U ), ker(Q) � ker(U ); that, together with the
fact that codim(ker(U )) = 1, implies that dim(ker(Q)∩ker(U )) = dim(ker(Q))−1.
Hence, {r̃F }F �=F̄ forms a basis of ker(Q) ∩ ker(U ). We will prove that they are pair-
wise orthogonal (as elements of A). Take a point p ∈ P. If p /∈ χα, then all the
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lines in p are in the same component G of �. The coefficients of r̃F ∧ r̃F ′ on xi ∧ x j

are zero for li , l j ∈ p: if G = F̄ , the coefficient (6) is the determinant of a matrix
with two equal rows; if G = F or G = F ′, one of the rows is zero; and otherwise,
both rows are zero.

If p ∈ χα,
∑

l∈p r̃F,l is the dot product of the row of J corresponding to p by
r̃F . Since r̃F is in ker(Q) ∩ ker(U ), it is also in ker(J t J ). But if J t J r̃F = 0, then
(J r̃F )t (J r̃F ) = r̃ t

F J t J r̃F = r̃ t
F 0̄ = 0. Since wall matrices and vectors have real

entries (J r̃F )t (J r̃F ) = 0 implies J r̃F = 0. Hence, the coefficients of r̃F ∧ r̃F ′ in the
generators of A2 corresponding to p are again zero.

Therefore, all the r̃F ’s are pairwise orthogonal. In particular, they are orthogonal
to all si ’s, and since α is maximal, the space they span must be the same.

Theorem 2. If α is a k-admissible map, then its corresponding admissible subcombin-
atorics is a maximal combinatorial pencil of no less than k fibers. Furthermore, if α is
maximal, then the number of fibers of the pencil is exactly k.

Proof. Since there is a basis of ker(Q) formed by positive vectors, ker(Q) � ker(U ),
which means that dim(ker(Q) ∩ ker(U )) = dim(ker(Q)) − 1. This implies that
k = #�.

Equation (2) can be expressed as
∑

F∈�

WFvF = 0, (7)

where WF = ∑
l∈F wl . We then have a family of k vectors, {vF }F∈� that span Z

k−1;
that is, all the possible linear combinations satisfied by {vF }F∈� are proportional.
By dividing each vF by a positive integer zF , we may assume that

∑
F∈� vF = 0. The

equations {∑l∈p α(l) = 0 | p ∈ χα} can be rewritten as {∑F∈�
∑

l∈F∩p wl zFvF =
0 | p ∈ χα}, which means that at each point p ∈ χα,

∑
l∈F∩p wl zF must be constant

for all F ∈ �. If we denote w̄l := zFwl for l ∈ F ∈ �, (L ,P), is a combinatorial
pencil with the partition � and the weights (w̄l)l∈L . �

As a direct consequence of the previous Theorem and Remark 7, we obtain the
following result about the resonance variety:

Theorem 3. Given a combinatorics (L ,P), there is a bijection between the k-dimen-
sional components of its resonance variety and the maximal combinatorial pencils
of k + 1 fibers contained in it.

Note that R1 = ⋃
α∈Adm(L ,P) Cα. Note also that the number of possible Cα is

finite, since each one is determined by the subcombinatorics and the base points.
If two different Cα and Cβ (in the sense that α and β represent two distinct max-
imal admissible classes) intersected outside the origin, there would exist a vector
0 �= v ∈ E1 orthogonal to both Cα an Cβ ; and hence, it would also be orthogonal
to Cα + Cβ . This means in particular that Cα + Cβ ⊆ R1, but since R1 is a finite
union of subspaces, Cα + Cβ must be contained in a certain Cγ . By Lemma 3, this
implies that α = β = γ , which contradicts the hypothesis that α and β represent
two distinct maximal admissible classes. Hence we have immediately the following:
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Corollary 1. The resonance variety R1 is the union of a finite number of linear
subspaces that meet only at the origin. Each one of those subspaces corresponds exactly
with a maximal admissible class. Moreover, the orthogonal of a vector in R1 is exactly
the subspace to which it belongs.

In particular, since the dimension of each component corresponds to the num-
ber of fibers of a combinatorial pencil, the dimension of R1 cannot be greater than
the number of lines. Moreover, there are #P(L ) subcombinatorics, and for each
one there are no more than #P(P) possible elections of base points. This gives a
boundary on the number of components of R1, answering the question raised in
[13, 5.5].

The definition of resonance variety in 6 can be generalized as follows:

Definition 7. For i ∈ N, the i-th resonance variety is the set Ri := {ω ∈ A1 | dim(H1

(A, ω)) ≥ i}.

It is straightforward that Ri+1 ⊆ Ri , and that Ri is a union of subspaces of
dimension ≥ i + 1.

Lemma 4. For every i ∈ N, the following equality holds:

Ri =
⋃

α∈Adm j (L ,P)

j≥i+2

Cα (8)

Proof. Consider v ∈ Ri , v �= 0. If the dimension of H1(A, v) is greater or equal to i ,
v⊥ must have dimension at least i + 1. By Corollary 1, v⊥ is exactly Cα for a certain
maximal admissible class α. By Lemma 3, α must be at least (i + 2)-admissible.
Hence, Ri ⊆ ⋃

α∈Adm j (L ,P)

j≥i+2

Cα.

To prove the other inclusion, consider v ∈ Cα \ {0} for a certain maximal
k-admissible class α with k ≥ i + 2. Consider the matrix M associated with α;
its rows span a (k − 1)-dimensional space, whose quotient by 〈v〉 has dimension
k − 2 ≥ i and is contained in H1(A, v). Therefore v ∈ Ri . �

As a consequence of Lemmas 3, 4 and Corollary 1, the following result follows:

Theorem 4. For every i ∈ N, (Ri \ Ri+1) ∪ {0} =
⋃

α∈Admi+2(L ,P)

Cα, which is a linear

variety of pure dimension i + 1.

3. Permutations of the Admissible Classes

Let Aut1(H) := {φ ∈ Aut(H) | φ ∧φ(R) = R}. For some combinatorics, this group
is as small as it gets, that is, {±I d} × Aut(L ,P) where Aut(L ,P) is the group of
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automorphisms of the combinatorics. Such combinatorics are called homologically
rigid.

In the following, we will see some results that can be helpful to establish the
homological rigidity of a given combinatorics.

From Proposition 1 we obtain the following result.

Corollary 2. Any φ ∈ Aut1(H) induces a permutation σφ of the set of k-admissible
classes by composition. In fact, there is a group antihomomorphism between Aut1(H)

and the group of permutations of Admk(L ,P).

These permutations must preserve some structure in the admissible classes. Con-
sider the function Υ : P(Adm(L ,P)) → Z given by

Υ (S) := codim

(
⋂

α∈S

ker(α)

)

.

Note that if two admissible maps belong to the same admissible class, their kernel
must be equal, and hence Υ is well defined. Also note that, if α is a k-admissible
map, then Υ ({α}) = k − 1.

The function Υ can be seen as the dual description of the polymatroid deter-
mined by the configuration of subspaces (ker(α)⊥). It was already used to study
isomorphisms of Orlik-Solomon algebras in [7].

For every φ ∈ Aut1(H), σφ induces also a permutation σ̄φ in P(Adm(L ,P)).
It is straightforward to prove the following.

Lemma 5. For every φ ∈ Aut1(H), and every S ∈ P(Adm(L ,P)), Υ (σ̄φ(S)) =
Υ (S).

The previous lemma allows us to calculate the set of the possible σφ (which is a
subgroup of the permutations of Adm(L ,P), in particular it is the image of the
morphism mentioned in Corollary 2) as follows: consider the natural action of the
group of permutations of Adm(L ,P) in P(Adm(L ,P)). Now, for every couple
of positive integers (i, j), consider the subset Pi, j := {S ∈ P(Adm(L ,P)) | #S =
i, Υ (S) = j}. Any σφ must be in the stabilizer of Pi, j for each (i, j) ∈ Z

2. There-
fore, calculating the intersection of all such stabilizers gives us a group that contains
{σφ | φ ∈ Aut1(H)} as a subgroup.

But in most cases it is enough to use a particular version of the previous method,
by considering only the concept of triangle, which we define below.

Definition 8. Let α1, α2 and α3 be admissible maps. We will say that they form
a triangle (of admissible classes) if

Υ ({α1, α2, α3}) =
3∑

i=1

Υ ({αi }) − 1 (9)
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If the admissible classes are clear from the context, we can also talk about tri-
angles of admissible subcombinatorics.

Example 6. Let p1, p2 and p3 be three points of multiplicities m1, m2 and m3 greater
than two. They are admissible subcombinatorics as in Example 1. These admissi-
ble classes form a triangle if and only if pi ∩ p j �= ∅ for i, j = 1, 2, 3 but p1 ∩
p2 ∩ p3 = ∅. This fact can be easily checked case by case (see [2] for details).

A direct consequence of Lemma 5 is the following.

Lemma 6. If α1, α2 and α3 are k1, k2 and k3-admissible maps respectively that form a
triangle, their images under σφ are k1, k2 and k3 admissible maps that form a triangle
too. Thus σφ maps triangles to triangles.

This fact can be used to study the possible permutations induced by φ and, in
certain cases, that is enough to calculate all the possible automorphisms of H that
fix R.

Given φ ∈ Aut1(H), consider a matrix M that represents φ with respect to the
generating system (e1, . . . , en). Not that, since the relation e1 + · · · + en holds, this
matrix is not unique. In particular, we can add a multiple of the vector (1, . . . , 1)

to each column, and the resulting matrix would represent the same automorphism.
By doing so, we can assume that the first row of M has all its entries equal to
0.

Now consider a multiple point p = {li1 , . . . , lim }, and the corresponding admis-
sible class αp. If we look at the submatrix Mp obtained by taking the rows i1, . . . , im

of M , and see it as a linear map H → Z
m/(1, . . . , 1), it is easy to check that this map

represents σ−1
φ (αp). In particular, if a line l j is not in the subcombinatorics corre-

sponding to σ−1
φ (αp), the j ’th column of Mp must be proportional to (1, . . . , 1),

that is, all its entries must be equal.
Using these idea, given a permutation of the admissible classes σ we can see

which elements of Aut1(H) can induce it. If the combinatorics is rich enough (in
the sense of having "enough multiple points"), there will be very few possibilities, as
show the following results:

We will now define the concept of strong connetedness, introduced in [7].

Definition 9. A combinatorics (L ,P) is said to be strongly connected if for any
three lines la, lb, lc ∈ L , there exists a chain l1, p1, l2, p2, . . . , ln, pn, ln+1 such that:

– l1 = la
– ln+1 = lb
– li , li+1 ∈ pi ∀i ∈ {1, . . . , n}
– #pi ≥ 3 ∀i ∈ {1, . . . , n}
– lc /∈ pi ∀i ∈ {1, . . . , n}
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Theorem 5. Let (L ,P) be a strongly connected combinatorics, σ ∈ Aut(L ,P) and
σ̄ the induced permutation of the admissible classes. Then there are only two elements
of Aut1(H) that induce σ̄ , which are given by ±φ(ei ) = ±eσ(i).

Proof. It is immediate that, for any combinatorics, ±φ induce σ̄ .
Let’s now see the uniqueness. Consider φ ∈ Aut1(H) inducing the permutation

σ̄ , and consider M an n × n matrix representing φ (it does not matter if the first row
is zero or not). Take the i ’th column of M . In this column, consider two entries a j,i

and ak,i such that l j and lk intersect in a multiple point p not containing lσ(i). Since
p maps by σ̄ to a point not containing li , a j,i and ak,i must be equal. By the strong
connectedness of (L ,P), we can extend this relation to all the entries of the i ’th
column except aσ(i),i . Now we can add to this column a multiple of (1, . . . , 1) in
order to obtain all these entries equal to zero.

Repeating the previous process for all the columns, we can assume that each
column has only one entry different from zero. Consider a multiple point p, and use
the condition given by the fact that the submatrix formed by the rows corresponding
to p represents the admissible class σ̄−1(p). In particular, the columns correspond-
ing to σ̄−1(p) (which are precisely the ones with nonzero entries) must add up to a
multiple of (1, . . . , 1). That is, the nonzero entries of the rows corresponding to p
are all equal. Again, the strong connectedness allow us to extend this relation to all
the rows.

Finally, this matrix must represent an automorphism of Z
n/(1, . . . , 1) as abelian

group, so the nonzero entries must be ±1. �

So, if given a strongly connected combinatorics, we can conclude that the only
permutations of the admissible classes that preserve Υ are the ones induced by
the automorphisms of the combinatorics, then we obtain directly the homological
rigidity as a consequence. This happens almost trivially in the following class of
combinatorics:

Definition 10. A combinatorics (L ,P) is said to have enough triangles if every line
passes through at least two multiple points, and every two aligned multiple points
are in triangle.

Example 7. Ceva combinatorics is strongly connected. To check this, just notice that
when one line is removed, the result is two triple points with a common line; any
two lines can be connected through this point.

Moreover, this combinatorics has enough triangles, since any three triple points
are in triangle.

Example 8. If we modify the Ceva combinatorics by substituting one triple point
with three double points (see figure below), we obtain a combinatorics which does
not have enough triangles (every two aligned triple points are in a triangle, but
there are lines that go through only one triple point), nor is it strongly connected
(if we erase one of the lines that join two triple points, there are two lines that don’t
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go through any triple point, and hence cannot be connected to any other line by
multiple points).

Theorem 6. Let (L ,P) be a strongly connected combinatorics with enough triangles,
and let φ ∈ Aut1(H) be an automorphism such that the induced permutation of the
admissible classes preserves the point-type classes.

Then φ is induced by an automorphism of the combinatorics, up to change of sign.

Proof. We can identify each line with the set of multiple points that it crosses. Since
each line passes through at least two multiple points, there is no ambiguity in this
identification.

Given three multiple points {p1, p2, p3} such that the three do not form a triangle,
but each two of them are in a triangle (that is, there exist points {l4, l5, l6} such that
{l1, l2, l4}, {l1, l3, l5} and {l2, l3, l6} are triangles), they must be aligned. Hence, every
permutation of the multiple points that preserves triangles must preserve lines seen
as sets of multiple points. This permutation of the lines preserves points (trivially
preserves the multiple points, and double points are precisely the pairs of lines that
are not in any multiple point), so it must be an automorphism of the combinatorics.

Using the previous theorem, it is straightforward to check that the element of
Aut1(H) induced by this permutation must be either φ or −φ.

And as a corollary, we have the following criteria for the homological rigidity of
certain combinatorics.

Corollary 3. Every strongly connected combinatorics with enough triangles and such
that all permutations of the admissible classes that preserve Υ preserve the point-type
classes (for instance, when there are no classes of other type) is homologically rigid.

4. An Example

The existence of two real line arrangements with the same combinatorial type, but
different topology of the embedding was shown in [3]. These arrangements have
11 lines, and are conjugated in Q(

√
5). They can be constructed after two other

arrangements (also conjugated in Q(
√

5)), whose non-generic braid monodromies
were shown to be non-equivalent. Here we will show that the combinatorics of
these arrangements of ten lines is homologically rigid by studying the possible per-
mutations of the admissible classes induced by Aut1(H). This combinatorics is the
result of adding one line to the Falk-Sturmfels combinatorics described in [5]. This
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Fig. 2. A realization

example is intended to show how to use Lemmas 5 and 6 to study the homological
rigidity of a given combinatorics.

The combinatorics that we will study has ten lines {l1, . . . , l10}, ten triple points:
{l1, l6, l7}, {l1, l8, l9}, {l2, l9, l10}, {l2, l7, l8}, {l3, l6, l8}, {l3, l7, l10}, {l4, l6, l10}, {l4, l7,
l9}, {l5, l8, l10}, and {l5, l6, l9}, and a quintuple point {l1, l2, l3, l4, l5}. The remaining
are double points. A real realization, where l1 is the line at infinity, can be seen in
Figure 2.

We could calculate the admissible classes by solving the quadratic equation sys-
tem that the coefficients of any admissible map should satisfy, but it is much faster to
use Theorem 2, which allows us to calculate the possible combinatorial pencils just
by solving systems of linear equations. The result is that the only non-point-type
admissible classes are the following ten Ceva type classes:

– {l1, l4, l5, l9, l6, l7}
– {l2, l4, l5, l6, l9, l10}
– {l1, l2, l4, l7, l9, l8}
– {l1, l2, l3, l8, l6, l7}
– {l2, l3, l5, l10, l8, l7}
– {l1, l3, l4, l10, l6, l7}
– {l3, l4, l5, l10, l8, l6}
– {l1, l2, l5, l10, l8, l9}
– {l1, l3, l5, l6, l9, l8}
– {l2, l3, l4, l7, l9, l10}

There is only one 5-admissible subcombinatorics, which must be preserved by
the permutation induced by any φ ∈ Aut1(H). For each of the 20 3-admissible clas-
ses, we can count to how many triangles of maximal 3-admissible maps it belongs.
The result is that each point-type combinatorics belongs to 15 such triangles, while
each Ceva type belongs to 9. Hence σφ must induce a permutation of the triple
points that preserves triangles. These computations were done in a few seconds in
a computer using GAP [10].
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Now consider four points p1, p2, p3, p4 of multiplicity greater than two such
that pi , p j , p4 form a triangle for all i, j ∈ {1, 2, 3}, i �= j . Then p1, p2 and p3
are aligned if and only if they do not form a triangle. In our combinatorics, for
any three aligned points of multiplicity greater than two, there is a fourth one that
forms a triangle with any two of them. Since σφ must preserve triangles, it must
also preserve lines considered as sets of multiple points. Up to composition with the
automorphism of H induced by σ−1

φ (seen as a permutation of the elements of the
canonical generating system of H ), we may assume that σφ is the identity.

Now we can consider the basis of H given by ē1, . . . , ē9 (being ēi the class of
ei modulo (1, . . . , 1)) and the matrix B = (bi, j ) related to φ in this basis. Using
the fact that σφ is the identity, we can deduce that for any point p of multiplicity
greater than two, bi,k = b j,k for all li , l j ∈ p and lk /∈ p. If l10 ∈ p then these entries
are actually 0. These conditions to all the multiple points, forces B to be diagonal.
Since B must be an integer matrix with determinant equal to ±1, all the entries in
the diagonal must be ±1. Now given a multiple point p such that l10 /∈ p, we have
that the submatrix of B obtained by selecting the rows and columns corresponding
to the lines in p must have columns that add up to a multiple of (1, . . . , 1), so it
means that bi,i = b j, j for all li , l j ∈ p. If we use these conditions in all the multiple
points, we obtain that B must be ±I d.

This method also works with the combinatorics of McLane and Rybnikov [17],
and the one of eleven lines studied in [3]. This same kind of arguments were used
by Falk in [7] to show that strongly connected combinatorics in which all combina-
torial pencils are point-type are homologically rigid. In fact this method could be
seen as a generalization of his.

5. Apppendix: Duality Between (H � H)/R and the Orlik-Solomon Algebra

The method in the previous section can allow us to calculate Aut1(H). Here we will
see that this group coincides with the group of automorphisms of the Orlik-Solomon
algebra.

Let (ai, j ) be the matrix that represents an automorphism of H in the basis
{e1, . . . , en}. Let’s denote this automorphism by φ, and the automorphism induced
in H ∧ H by φ̂. As a sublattice of H ∧ H , R is generated by {ei ∧ ∑

l j ∈p e j | li ∈
p, p ∈ P}. Since

∑
li ∈p(ei ∧∑

l j ∈p e j ) = 0 when #p > 2, we can eliminate the first
one and then use these relations to give a basis of the quotient. In particular, for
each point p = {li1, . . . , li#p }, we can express the generators of the form ei1 ∧ ei j as
∑#p

k= j+1 ei j ∧ eik − ∑ j−1
k=1 eik ∧ ei j . Therefore a basis of the quotient is given by the

generators of the form ei ∧ e j where i < j and both i and j are not the first line in
li ∩ l j .

The image of ei1 ∧ ei2 under φ is

∑

1≤ j1< j2≤n

∣
∣
∣
∣
a j1,i1 a j1,i2
a j2,i1 a j2,i2

∣
∣
∣
∣ (e j1 ∧ e j2),
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so the image of a generator of R of the form ei ∧ ∑
lk∈p ek is

∑

1≤ j1< j2≤n

∣
∣
∣
∣
a j1,i

∑
lk∈p a j1,k

a j2,i
∑

lk∈p a j2,k

∣
∣
∣
∣ (e j1 ∧ e j2).

If we project this to the quotient, its coefficient in a generator of the form ec ∧ ed

(if the first line that goes through the intersection point of lc and ld is lb) is

∣
∣
∣
∣
ac,i

∑
lk∈p ac,k

ad,i
∑

lk∈p ad,k

∣
∣
∣
∣−

∣
∣
∣
∣
ab,i

∑
lk∈p ab,k

ad,i
∑

lk∈p ad,k

∣
∣
∣
∣+

∣
∣
∣
∣
ab,i

∑
lk∈p ab,k

ac,i
∑

lk∈p ac,k

∣
∣
∣
∣=

∣
∣
∣
∣
∣
∣

ab,i
∑

lk∈p ab,k 1
ac,i

∑
lk∈p ac,k 1

ad,i
∑

lk∈p ad,k 1

∣
∣
∣
∣
∣
∣
. (10)

The extra condition that φ ∈ Aut1(H) is equivalent to asking (10) to vanish for
every point p, every line li ∈ p and every three concurrent lines lb, lc, ld such that
lb is the first line in their intersection point.

Now let’s look at the second level of the Orlik-Solomon algebra A2. The relations
we have are of the form (xb ∧ xc) − (xb ∧ xd) + (xc ∧ xd) for every three concurrent
lines lb, lc, ld . Now let’s suppose that there are three concurrent lines such that the
first line that goes through their intersection point is la ; we can express the relation
(xb ∧ xc) − (xb ∧ xd) + (xc ∧ xd) as ((xa ∧ xb) − (xa ∧ xc) + (xb ∧ xc))−((xa ∧ xb) −
(xa ∧ xd)+ (xb ∧ xd))+((xa ∧ xc)− (xa ∧ xd)+ (xc ∧ xd)). In particular we only need
the relations where the first line in the intersection point appears. These relations
allow us to express any xb ∧ xc as (xa ∧ xc) − (xa ∧ xb) (where again b < c and la
is the first line that goes through lb ∩ lc. Hence a basis of A2 is given by the xi ∧ x j

such that li is the first line in li ∩ l j . Let lb, lc, ld be three concurrent lines; the image
of (xb ∧ xc) − (xb ∧ xd) + (xc ∧ xd) by φ̂ is

∑

1≤i< j≤n

(∣
∣
∣
∣
ai,b ai,c
a j,b a j,c

∣
∣
∣
∣ −

∣
∣
∣
∣
ai,b ai,d
a j,b a j,d

∣
∣
∣
∣ +

∣
∣
∣
∣
ai,c ai,d
a j,c a j,d

∣
∣
∣
∣

)

(xi ∧ x j )

=
∑

1≤i< j≤n

∣
∣
∣
∣
∣
∣

ai,b ai,c ai,d
a j,b a j,c a j,d

1 1 1

∣
∣
∣
∣
∣
∣
(xi ∧ x j ). (11)

Now let’s take a point p whose first line is li and l j , lk ∈ p; by the previous
relations, x j ∧ xk maps by the projection to xi ∧ xk − xi ∧ x j . This means that if we
want to calculate the coefficient of the projection of (11) in xi ∧ x j , we have to add
or substract adequately its coefficients in all x j ∧ xk such that lk ∈ p. The result is
that the coefficient of (11) in xi ∧ x j is

∣
∣
∣
∣
∣
∣

∑
k∈p ak,a

∑
k∈p ak,b

∑
k∈p ak,c

a j,a a j,b a j,c
1 1 1

∣
∣
∣
∣
∣
∣
. (12)

In order for the matrix (ai, j ) to induce an automorphism of the Orlik-Solomon
algebra, (12) must hold for all three concurrent lines lb, lc, ld , each point p, and each
line l j ∈ p. Comparing (10) and (12), we have the following result.
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Proposition 3. The matrix (ai, j ) induces an automorphism of the Orlik-Solomon alge-
bra if and only if its transpose (a j,i ) induces an automorphism of H∧H that preserves R.

Remark 8. The subspace R can be seen as the image of the dual of the product map
A1 ∧ A1 → A2, and so, H ∧ H/R is dual to its kernel, which is the degree-two part of
the Orlik-Solomon ideal, and coincides with the degree-two part of the holonomy
Lie algebra (see [12]).

References

1. Arnol’d, V.I.: The cohomology ring of the group of dyed braids. Mat. Zametki 5, 227–231
(1969)

2. Artal, E., Carmona, J., Cogolludo, J.I., Marco, M.Á.: Invariants of combinatorial
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