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Abstract. A real number α ∈ [0, 1) is a jump for an integer r ≥ 2 if there exists c > 0 such
that for any ε > 0 and any integer m ≥ r , there exists an integer n0 such that any r -uniform
graph with n > n0 vertices and density ≥ α + ε contains a subgraph with m vertices and
density ≥ α + c. It follows from a fundamental theorem of Erdös and Stone that every
α ∈ [0, 1) is a jump for r = 2. Erdös also showed that every number in [0, r !/rr ) is a jump for
r ≥ 3 and asked whether every number in [0, 1) is a jump for r ≥ 3 as well. Frankl and Rödl
gave a negative answer by showing a sequence of non-jumps for every r ≥ 3. Recently, more
non-jumps were found for some r ≥ 3. But there are still a lot of unknowns on determining
which numbers are jumps for r ≥ 3. The set of all previous known non-jumps for r = 3 has
only an accumulation point at 1. In this paper, we give a sequence of non-jumps having an
accumulation point other than 1 for every r ≥ 3. It generalizes the main result in the paper
‘A note on the jumping constant conjecture of Erdös’ by Frankl, Peng, Rödl and Talbot
published in the Journal of Combinatorial Theory Ser. B. 97 (2007), 204–216.
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1. Introduction

For a finite set V and a positive integer r we denote by
(V

r

)
the family of all

r -subsets of V . An r -uniform graph G is a set V (G) of vertices together with a

set E(G) ⊆ (V (G)
r

)
of edges. The density of G is defined by d(G) = |E(G)| /

∣
∣∣
(V (G)

r

)∣∣∣.
An r -uniform graph H is called a subgraph of an r -uniform graph G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). We write H ⊆ G if H is a subgraph of G. A subgraph H of G
is called induced if E(H) = E(G) ∩ (V (H)

r

)
. An argument in [6] by Katona, Nemetz,

and Simonovits shows the following fact:

Fact 1.1. [6] Let G be an r -uniform graph and m ≥ r be an integer. Then the average
density of all induced subgraphs of G with m vertices is d(G).

Therefore, G always contains a subgraph with any given order (≥ r) and density
≥ d(G). A question is whether there exists a subgraph of any given order with density
≥ d(G) + c, where c > 0 is a constant? To be precise, the concept of ‘jump’ is given
below.
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Definition 1.1. A real number α ∈ [0, 1) is a jump for an integer r ≥ 2 if there exists a
constant c > 0 such that for any ε > 0 and any integer m ≥ r , there exists an integer
n0(ε, m) such that any r -uniform graph with n > n0(ε, m) vertices and density ≥ α+ε

contains a subgraph with m vertices and density ≥ α + c.

The study of jump is closely related to the study of Turán density. Finding good
estimation for Turán densities in hypergraphs (r ≥ 3) is believed to be one of the most
challenging problems in extremal set theory. For a family F of r -uniform graphs,
the Turán density [17] of F , denoted by γ (F) is the limit of the maximum density
of an r -uniform graph of order n not containing any member of F as n → ∞, i.e.,

γ (F) = lim
n→∞

max{|E | : G = (V, E) is an F − free r−uniform graph of order n}
(n

r

) .

Such a limit exists since the sequence in the right hand side decreases as n increases
by Fact 1.1. The set of all possible Turán densities for r ≥ 2 is denoted by �r , i.e.,

�r = {γ (F) : F is a family of r − uniform graphs}.
It was shown in [4] that α is a jump for r if and only if there exists c > 0 such

that �r ∩ (α, α + c) = ∅. Consequently, �r is a well-ordered set if and only if every
α ∈ [0, 1) is a jump for r . Erdös and Stone[2] showed that every α ∈ [0, 1) is a
jump for r = 2. For r ≥ 3, Erdös [1] proved that every α ∈ [0, r !/rr ) is a jump.
Furthermore, Erdös proposed the jumping constant conjecture: Every α ∈ [0, 1) is a
jump for every integer r ≥ 2. In [4], Frankl and Rödl disproved the Conjecture by
showing that

Theorem 1.2. [4] 1 − 1
lr−1

is not a jump for r if r ≥ 3 and l > 2r .

However, there are still a lot of unknowns on determining whether a number is a
jump for r ≥ 3. A well-known open question of Erdös is whether r !/rr is a jump for
r ≥ 3 and what is the smallest non-jump? Another question raised in [5] is whether
there is an interval of non-jumps for some r ≥ 3? Both questions seem to be very
challenging. Regarding the first question, the following was shown in [5].

Theorem 1.3. [5] 5r !
2rr is a non-jump for r ≥ 3.

At this moment, this is the smallest known non-jump. Some efforts were made in
finding more non-jumps for some r ≥ 3: One more infinite sequence of non-jumps
(converging to 1) for r = 3 was given in [5]. Several infinite sequences of non-jumps
(converging to 1) for r = 4 were found in [8], [9], [10], [11] and [12]. Then every
non-jump in the above papers was extended to many sequences of non-jumps (still
converging to 1) in [14]. The approach in the above papers is still based on the
approach developed by Frankl and Rödl in [4]. In [13], a way to generate non-jumps
for every p ≥ r based on a non-jump for r was given. The following result was
shown there.
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Theorem 1.4. [13] Let p ≥ r ≥ 3 be positive integers. If α · r !
rr is a non-jump for r , then

α · p!
p p is a non-jump for p.

From the definition of a ‘jump’, if a number α is a jump, then there exists a
constant c such that every number in [α, α + c) is a jump. Consequently, if there is a
set A of non-jumps such that the closure of A is an interval [a, b], then every number
in the interval [a, b) is a non-jump. We do not know whether or not such a dense
set of non-jumps exists and it seems to be very challenging to answer this question.

We feel that there might exist a dense set of non-jumps for sufficiently large r .
If this is true, more non-jumps should be found in addition to the current known
non-jumps. The set of the known non-jumps for some r ≥ 3 before Theorem 1.4
has only an accumulation point at 1. Combining Theorem 1.4 and results in [5], [8],
[9], [10], [11], [12], and [14], we obtain several sequences of non-jumps for r ≥ 4
with accumulation points different from 1 in [13]. But the set of all previous known
non-jumps for r = 3 has only an accumulation point at 1. In this paper we first give
a sequence of non-jumps for r = 3 with accumulation point other than 1. Since it is
difficult to determine jumps or non-jumps for r ≥ 3 in general and the set of jumps
or non-jumps remains a lot of mystery to us, such a new sequence of non-jumps
with accumulation point other than 1 might be interesting. Our main result is

Theorem 1.5. Let l be any positive integer. Then 7
12 − 1

4·9l is not a jump for r = 3.

The proof of Theorem 1.5 will be given in Section 3. Combining Theorem 1.5
and Theorem 1.4, we obtain the following

Corollary 1.6. Let l be any positive integer. Then
(

21
8 − 1

8·9l−1

)
r !/rr is not a jump for

r ≥ 3.

Taking l = 1 in Corollary 1.6, we obtain Theorem 1.3.
In the following section, we will introduce some preliminary results and sketch

the general idea of our proof. The general method is still based on the approach
developed by Frankl and Rödl in [4].

2. Preliminaries and Sketch of the General Approach

We first give the definition of the Lagrangian of an r -uniform graph, a helpful tool
in our approach. More studies of Lagrangians can be found in [3], [4], [7] and [16].

Definition 2.1. For an r -uniform graph G with vertex set {1, 2, . . . , m}, edge set E(G)

and a vector �x = (x1, . . . , xm) ∈ Rm , define

λ(G, �x) =
∑

{i1,...,ir }∈E(G)

xi1 xi2 . . . xir .

xi is called the weight of the vertex i .
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Definition 2.2. Let S = {�x = (x1, x2, . . . , xm) : ∑m
i=1 xi = 1, xi ≥ 0 for i =

1, 2, . . . , m}. The Lagrangian of G, denoted by λ(G), is defined as

λ(G) = max{λ(G, �x) : �x ∈ S}.

A vector �y ∈ S is called an optimal vector for λ(G) if λ(G, �y) = λ(G).
The following fact is easily implied by the definition of the Lagrangian.

Fact 2.1. If G1 ⊆ G2, then

λ(G1) ≤ λ(G2).

For an r -uniform graph G and i ∈ V (G) we define Gi to be the (r − 1)-uniform
graph on V −{i} with edge set E(Gi ) given by e ∈ E(Gi ) if and only if e ∪ {i} ∈ E(G).

We call two vertices i, j of an r -uniform graph G equivalent if for all
f ∈ (V (G)−{i, j}

r−1

)
, f ∈ E(Gi ) if and only if f ∈ E(G j ).

The following lemma (given in [4]) will be useful when calculating Lagrangians
of certain graphs.

Lemma 2.2. (c.f. [4]) Suppose G is an r -uniform graph on vertices {1, 2, . . . , m}.
1. If vertices i1, i2, ..., it are pairwise equivalent, then there exists an optimal vector

�y = (y1, y2, . . . , ym) of λ(G) such that yi1 = yi2 = · · · = yit .
2. Let �y = (y1, y2, . . . , ym) be an optimal vector of λ(G) and yi > 0. Let ŷi be the

restriction of �y on {1, 2, . . . , m} \ {i}. Then λ(Gi , ŷi ) = rλ(G). To simplify the
notation, we write λ(Gi , ŷi ) as λ(Gi , �y) sometimes.

We also note that for an r -uniform graph G with m vertices, if we take �u =
(u1, . . . , um), where each ui = 1/m, then

λ(G) ≥ λ(G, �u) = |E(G)|
mr

≥ d(G)

r ! − ε

for m ≥ m′(ε), where m′(ε) is a sufficiently large integer.
On the other hand, we introduce the blow-up of an r -uniform graph G which will

allow us to construct r -uniform graphs with large number of vertices and density
close to r !λ(G).

Definition 2.3. Let G be an r -uniform graph with V (G) = {1, 2, . . . , m} and
(n1, . . . , nm) be a positive integer vector. Define the (n1, . . . , nm) blow-up of G,
(n1, . . . , nm)⊗G as an m-partite r -uniform graph with vertex set V1 ∪ . . .∪Vm, |Vi | =
ni , 1 ≤ i ≤ m, and edge set E((n1, . . . , nm) ⊗ G) = {{vi1, vi2 , . . . , vir }, where
{i1, i2, . . . , ir } ∈ E(G) and vik ∈ Vik for 1 ≤ k ≤ r}.

Remark 2.3. [4] Let G be an r -uniform graph with m vertices and �y = (y1, . . . , ym)

be an optimal vector for λ(G). Then for any ε > 0, there exists an integer n1(ε),
such that for any integer n ≥ n1(ε),

d((ny1�, ny2�, . . . , nym�) ⊗ G) ≥ r !λ(G) − ε. (1)
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Let us also state a fact which follows directly from the definition of the
Lagrangian.

Fact 2.4. [4] For every r -uniform graph G and every positive integer
n, λ((n, n, . . . , n) ⊗ G) = λ(G) holds.

Lemma 2.5 proved in [4] gives a necessary and sufficient condition for a number
α to be a jump.

Lemma 2.5. [4] The following two properties are equivalent.

1. α is a jump for r .
2. There exists some finite family F of r -uniform graphs satisfying γ (F) ≤ α and

λ(F) >
α

r ! for all F ∈ F .

We also need the following lemma from [4] in the proof of our main result.

Lemma 2.6. [4] For any σ ≥ 0 and any integer k ≥ r , there exists t0(k, σ ) such that
for every t ≥ t0(k, σ ), there exists an r -uniform graph A = A(k, σ, t) satisfying:

1. |V (A)| = t,
2. |E(A)| ≥ σ tr−1,

3. For all V0 ⊂ V (A), r ≤ |V0| ≤ k, we have |E(A) ∩ (V0
r

)| ≤ |V0| − r + 1.

The general approach in proving Theorem 1.5 is sketched as follows: Let α be
the number to be proved to be a non-jump for r = 3. Assuming that α is a jump for
r = 3, we will derive a contradiction by the following steps.

Step1. Construct a 3-uniform graph with the Lagrangian slightly smaller than α
6 ,

then use Lemma 2.6 to add a 3-uniform graph with a large enough number of edges
but sparse enough (guaranteed by properties 2 and 3 in Lemma 2.6) and obtain
a 3-uniform graph with the Lagrangian at least α

6 + ε for some ε > 0. Then we
‘blow up’ it to a 3-uniform graph, say H with a large enough number of vertices and
density ≥ α + ε (see Remark 2.3). If α is a jump, then by Lemma 2.5, γ (F) ≤ α

for some finite family F of 3-uniform graphs with Lagrangians > α
6 . So H must

contain some member of F as a subgraph.
Step 2. We show that any subgraph of H with the number of vertices not greater

than max{|V (F)|, F ∈ F} has the Lagrangian ≤ α
6 and derive a contradiction.

We would like to point out that it is certainly nontrivial to construct an r -uniform
graph satisfying the properties in both Steps 1 and 2. Generally, whenever we find
such a construction, we can obtain a corresponding non-jump. This method was
first developed by Frankl and Rödl in [4], then it was used in [5], [8], [9], [10], [11]
and [12] to find more non-jumps by giving this type of construction. The critical
and technical part in the proof of the main theorem in this paper is to show that the
construction satisfies the property in Step 2 (Lemma 3.1 in Section 3.1).
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3. Proof of Theorem 1.5

We first define a 3-uniform graph G on 3 disjoint sets V1, V2, V3, each of cardinality

s = 3l−1t,

where t is an integer. For each Vi1 , 1 ≤ i1 ≤ 3, we partition Vi1 into 3 equal parts,
denoted by Vi1i2 , 1 ≤ i2 ≤ 3. Then partition each Vi1i2 into 3 equal parts, denoted
by Vi1i2i3 , 1 ≤ i3 ≤ 3. Continue the process until we have 3l disjoint equal parts
Vi1i2...il , 1 ≤ i j ≤ 3, 1 ≤ j ≤ l.

For 2 sets U and V , let
(U

2

) × V be the set of 3 vertices choosing 2 from U and 1
from V .

The edge set of G is

(V1×V2×V3)
⋃ ((

V1
2

)
× V2

)⋃ ((
V2
2

)
×V3

)⋃ ((
V3
2

)
×V1

) 3⋃

i1=1

(Vi11×Vi12×Vi13)

⋃

1≤i1,i2≤3

(Vi1i21 × Vi1i22 × Vi1i23)
⋃

· · ·
⋃

1≤i1,...,il−1≤3

(Vi1...il−11 × Vi1...il−12 × Vi1...il−13).

Note that the density of G is close to

α = 7
12

− 1
4 · 9l

if s is large enough. In fact,

|E(G)| = s3 + 3
(

s

2

)
s + s3

(
l−1∑

i=1

1
9i

)

=
(

21
8

− 1
8 · 9l−1

)
s3 − c0s2 + o(s2), (2)

where c0 is positive (we omit giving the precise calculation here). Let
�u = (u1, . . . , u3s), where ui = 1/(3s) for each i, 1 ≤ i ≤ 3s, then

λ(G) ≥ λ(G, �u) = |E(G)|
(3s)3

= 7
72

− 1
24 · 9l

− c0

27s
+ o

(
1
s

)
= α

6
− c0

27s
+ o

(
1
s

)

which is close to α
6 when s is large enough.

We will use Lemma 2.6 to add 3l 3-uniform graphs to G so that the Lagrangian
of the resulting 3-uniform graph is > α

6 + ε(s) for some ε(s) > 0. The precise
argument is given below.

Suppose that α is a jump. In view of Lemma 2.5, there exists a finite collection
F of 3-uniform graphs satisfying the following:

i) λ(F) >
α

6
for all F ∈ F , and

ii) γ (F) ≤ α.
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Set k0 = maxF∈F |V (F)| and σ0 = 3l c0. Let r = 3 in Lemma 2.6 and t0(k0, σ0)

be given as in Lemma 2.6. Take an integer t > max(t0, t1), where t1 is determined in
(3). For each (i1, i2, . . . , il), 1 ≤ i1, i2, . . . , il ≤ 3, take a 3-uniform graph A(k0, σ0)

satisfying the conditions in Lemma 2.6 with V (A(k0, σ0)) = Vi1i2...il . The 3-uniform
graph H is obtained by adding all A(k0, σ0) to the 3-uniform hypegraph G. Then

λ(H) ≥ |E(H)|
(3s)3

.

In view of the construction of H and equation (2), we have

|E(H)|
(3s)3

≥ |E(G)| + 3lσ0t2

(3s)3

(2)
=

(
21
8 − 1

8·9l−1

)
s3 − c0(3l−1t)2 + 3l · 3l c0t2 + o(1/s)

(3s)3

≥ 1
6
(

7
12

− 1
4 · 9l

) + c0

33l t

= α

6
+ c0

33l t
(3)

for t ≥ t1, where t1 is a sufficiently large integer. Consequently,

λ(H) ≥ α

6
+ c0

33l t
(4)

for t ≥ t1.
Now suppose �y = (y1, y2, ..., y3l t ) is an optimal vector of λ(H). Let ε = 3c0

33l t
and

n > n1(ε) as in Remark 2.3. Then 3-uniform graph Sn = (�ny1�, . . . , �ny3l t�) ⊗ H
has density at least α + ε. Since γ (F) ≤ α, some member F of F is a subgraph of
Sn for n sufficiently large. For such F ∈ F , there exists a subgraph M of H with
|V (M)| ≤ |V (F)| ≤ k0 so that F ⊂ (n, n, . . . , n) ⊗ M . By Fact 2.1 and Fact 2.4, we
have

λ(F)
Fact 2.1

≤ λ((n, n, . . . , n) ⊗ M)
Fact 2.4

= λ(M). (5)

Theorem 1.5 will follow from the following lemma to be proved in Section 3.1.

Lemma 3.1. Let M be any subgraph of H with |V (M)| ≤ k0. Then

λ(M) ≤ 1
6
α = 7

72
− 1

24 · 9l
(6)

holds.

Assuming that Lemma 3.1 is true and applying Lemma 3.1 to (5), we have

λ(F) ≤ 1
6
α

which contradicts our choice of F , i.e., contradicts that λ(F) >
1
6
α for all F ∈ F .

To complete the proof of Theorem 1.5, what remains is to show Lemma 3.1.
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3.1. Proof of Lemma 3.1

By Fact 2.1, we may assume that M is an induced subgraph of H . For each
(i1, i2, ..., il), where 1 ≤ i j ≤ 3 and 1 ≤ j ≤ l, let

Ui1i2...il = V (M) ∩ Vi1i2...il = {v1
i1i2...il

, v2
i1i2...il

, . . . , v
p
i1i2...il

}.
where p might be different for different (i1, i2, ..., il). To make the notation shorter,
we simply write a uniform p without affecting the proof. We will apply the following
Claim proved in [4].

Claim 3.2. (c.f. [4]) If N is the 3-uniform graph formed from M by removing the
edges contained in each Ui1i2...il and inserting the edges {{v1

i1i2...il
, v2

i1i2...il
, v

q
i1i2...il

} :
3 ≤ q ≤ p} then λ(M) ≤ λ(N ).

By Claim 3.2 the proof of Lemma 3.1 will be completed if we show thatλ(N ) ≤ α
6 .

Since v1
i1i2...il

, v2
i1i2...il

are pairwise equivalent and v3
i1i2...il

, . . . v
p
i1i2...il

are pairwise
equivalent we can use Lemma 2.2 (part 1) to obtain an optimal vector �z of λ(N )

such that

w(v1
i1i2...il

) = w(v2
i1i2...il

)
def= ρi1i2...il , w(v3

i1i2...il
)

= w(v4
i1i2...il

) = · · · = w(v
p
i1i2...il

)
def= ζi1i2...il , (7)

where w(v) denotes the component of �z corresponding to vertex v.
Let ai1i2...il be the sum of the components of �z corresponding to all vertices in

Ui1i2...il . Note that

3∑

i=1

ai = 1,

and
3∑

i j+1=1

ai1i2...i j i j+1 = ai1i2...i j (8)

holds for each i1i2 . . . i j , 1 ≤ j ≤ l − 1.
We will apply the following 2 claims.

Claim 3.3. We may assume that ai > 0 for each i = 1, 2, 3.

Claim 3.4. Let 1 ≤ q ≤ l be an integer. If ai1i2...iq > 0, then

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1i2i3...iq−1iq+1ai1i2i3...iq−1iq+2

+ 1
8

(
1 − 1

9l−q

)
a2

i1i2...iq
+

∑

1≤iq+1,iq+2...,il≤3

ρ2
i1i2...il

,
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where all subscripts are mod 3. For example, a1−1 = a3 and a3+1 = a1. Note that when
q = 1, terms ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1i2i3...iq−1iq+1ai1i2i3...iq−1iq+2
are vacant.

Proofs of Claims 3.3 and 3.4 will be given later. Now let us assume that Claims
3.3 and 3.4 hold and we will apply them to prove Lemma 3.1.

Proof of Lemma 3.1. By Claim 3.3, we can assume that ai > 0 for each i = 1, 2, 3.
Applying Claim 3.4 to a1, a2 and a3 respectively, we have

3λ(N ) ≤ a2a3 + a1a2 +
⎛

⎝1
2

a2
3 −

∑

1≤i2,...,il≤3

ρ2
3i2...il

⎞

⎠

+ 1
8

(
1 − 1

9l−1

)
a2

1 +
∑

1≤i2,...,il≤3

ρ2
1i2...il

; (9)

3λ(N ) ≤ a1a3 + a2a3 +
⎛

⎝1
2

a2
1 −

∑

1≤i2,...,il≤3

ρ2
1i2...il

⎞

⎠

+ 1
8

(
1 − 1

9l−1

)
a2

2 +
∑

1≤i2,...,il≤3

ρ2
2i2...il

; (10)

and

3λ(N ) ≤ a1a2 + a1a3 +
⎛

⎝1
2

a2
2 −

∑

1≤i2,...,il≤3

ρ2
2i2...il

⎞

⎠

+ 1
8

(
1 − 1

9l−1

)
a2

3 +
∑

1≤i2,...,il≤3

ρ2
3i2...il

. (11)

Adding equations (9), (10) and (11), we have

9λ(N ) ≤ 2(a1a2 + a2a3 + a1a3) +
(

1
2

+ 1
8

− 1
8 · 9l−1

)
(a2

1 + a2
2 + a2

3)

=
(

5
8

− 1
8 · 9l−1

)
(a2

1 + a2
2 + a2

3 + 2a1a2 + 2a2a3 + 2a1a3)

+
(

2 − 5
4

+ 1
4 · 9l−1

)
(a1a2 + a2a3 + a1a3)

= 5
8

− 1
8 · 9l−1

+
(

2 − 5
4

+ 1
4 · 9l−1

)
(a1a2 + a2a3 + a1a3).

Notice that a1a2 + a2a3 + a1a3 has the maximum 1
3 when a1 = a2 = a3 = 1

3 ,
therefore,

9λ(N ) ≤ 5
8

− 1
8 · 9l−1

+ 1
3

(
2 − 5

4
+ 1

4 · 9l−1

)
= 7

8
− 1

24 · 9l−1
.
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Consequently,

λ(N ) ≤ 7
72

− 1
24 · 9l

.

This completes the proof of Lemma 3.1. �

What left is to show Claims 3.3 and 3.4.

3.1.1. Proof of Claim 3.3

Proof of Claim 3.3. If one of the ai is 0, without loss of generality, assuming that
a1 = 0, then in view of the possible edges of N , we have

λ(N ) ≤ 1
2

a2
2a3 + λ(N [V2], �z|N [V2]) + λ(N [V3], �z|N [V3]),

where �z|N [V2] (�z|N [V3]) is the restriction of �z on N [V2] (N [V3]). To shorten the
notation, we write λ(F, �z|F) as λ(F, �z) in general for any subgraph F . Using this
simplified notation, we rewrite the above inequality as

λ(N ) ≤ 1
2

a2
2a3 + λ(N [V2], �z) + λ(N [V3], �z). (12)

Claim 3.5.

λ(N [Vi ], �z) ≤ 1
24

(
1 − 1

9l

)
a3

i

holds for i = 2, 3.

The proof of Claim 3.5 will be given later. Assume that Claim 3.5 holds. Then
in view of (12), we have

λ(N ) ≤ 1
2

a2
2a3 + 1

24

(
1 − 1

9l

)
(a3

2 + a3
3)

= 1
24

(
1 − 1

9l

)
(a3

2 + a3
3 + 3a2

2a3 + 3a2a2
3) + 1

2
a2

2a3

−1
8

(
1 − 1

9l

)
a2a3(a2 + a3) = 1

24

(
1 − 1

9l

)
+ 1

2
a2a3

[
a2 − 1

4

(
1 − 1

9l

)]

≤ 1
24

(
1 − 1

9l

)
+ 1

2
a2a3

[
a2 − 1

4
· 8

9

]

= 1
24

− 1
24 · 9l

+ 1
2

a2a3

[
a2 − 2

9

]

= 1
24

− 1
24 · 9l

+ 2
3

· 1
2

a2 · 3
2

a3

(
a2 − 2

9

)
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≤ 1
24

− 1
24 · 9l

+ 2
3

(
1
2 a2 + 3

2 a3 + a2 − 2
9

3

)3

= 1
24

+ 2
3

(
23
54

)3

− 1
24 · 9l

<
7

72
− 1

24 · 9l
.

Consequently, Lemma 3.1 holds. Therefore, we may assume that all ai > 0 and this
completes the proof of Claim 3.3. �

Now we give a proof of Claim 3.5.

Proof of Claim 3.5. We only show it for i = 2. The proof for i = 3 is exactly the
same. In view of the edge set of N [V2], we have

λ(N [V2], �z) = a21a22a23 +
∑

1≤i2≤3

a2i21a2i22a2i23 +
∑

1≤i2,i3≤3

a2i2i31a2i2i32a2i2i33

+ · · · +
∑

1≤i2,...il−1≤3

a2i2...il−11a2i2...il−12a2i2...il−13 +
∑

1≤i2,...,il≤3

ρ2
2i2...il

(a2i2...il − 2ρ2i2...il ).

Since

ρ2
2i2...il

(a2i2...il − 2ρ2i2...il ) ≤
(a2i2...il

3

)3
,

we have

λ(N [V2], �z) ≤ a21a22a23 +
∑

1≤i2≤3

a2i21a2i22a2i23 +
∑

1≤i2,i3≤3

a2i2i31a2i2i32a2i2i33

+ · · · +
∑

1≤i2,...il−1≤3

a2i2...il−11a2i2...il−12a2i2...il−13 +
∑

1≤i2,...,il≤3

(a2i2...il

3

)3
. (13)

For 1 ≤ q ≤ l − 1, let

fq =
∑

i1=2,1≤i2,...,iq≤3

ai1i2...iq 1ai1i2...iq 2ai1i2...iq 3

+
∑

i1=2,1≤i2,...,iq+1≤3

ai1i2...iq+11ai1i2...iq+12ai1i2...iq+13

+ · · · +
∑

i1=2,1≤i2,...,il−1≤3

ai1i2...il−11ai1i2...il−12ai1i2...il−13

+
∑

i1=2,1≤i2,...,il≤3

(ai1i2...il

3

)3
.

Let

fl =
∑

i1=2,1≤i2,...,il≤3

(ai1i2...il

3

)3
.

The proof of Claim 3.5 will be completed by proving the following:
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Claim 3.6. For 1 ≤ q ≤ l, the following holds:

fq ≤ 1
24

(
1 − 1

9l−q+1

) ∑

i1=2,1≤i2,...,iq≤3

(ai1i2...iq )
3. (14)

In view of (13), λ(N [V2], �z) ≤ f1. Assuming that Claim 3.6 holds and applying
Claim 3.6 by taking q = 1, we get

λ(N [V2], �z) ≤ 1
24

(
1 − 1

9l

)
a3

2

and Claim 3.5 holds. �

Now we need to prove Claim 3.6.

Proof of Claim 3.6. Use induction on q. If q = l, then

fl = 1
27

∑

i1=2,1≤i2,...,il≤3

a3
2i2...il

and (14) holds for q = l.
Now assume that

fq+1 ≤ 1
24

(
1 − 1

9l−q

) ∑

i1=2,1≤i2,...,iq+1≤3

(ai1i2...iq+1)
3 (15)

holds for 1 ≤ q ≤ l − 1. Need to show that

fq ≤ 1
24

(
1 − 1

9l−q+1

) ∑

i1=2,1≤i2,...,iq≤3

(ai1i2...iq )
3

holds. Notice that

fq =
∑

i1=2,1≤i2,...,iq≤3

ai1i2...iq 1ai1i2...iq 2ai1i2...iq 3 + fq+1.

Applying induction assumption (i.e. (15)) to fq+1, we have

fq ≤
∑

i1=2,1≤i2,...,iq≤3

ai1i2...iq 1ai1i2...iq 2ai1i2...iq 3

+ 1
24

(
1 − 1

9l−q

) ∑

i1=2,1≤i2,...,iq≤3

(a3
i1i2...iq 1 + a3

i1i2...iq 2 + a3
i1i2...iq 3). (16)

Then we will apply the following Claim proved in [15]. Its proof will be also
given later.
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Claim 3.7. Let µ be a constant in [0, 1
24 ] and c be a positive constant. Then

g(c1, c2, c3) = c1c2c3 + µ(c3
1 + c3

2 + c3
3)

≤ g
( c

3
,

c

3
,

c

3

)
= 1

27
(1 + 3µ)c3

holds under the constraints c1 + c2 + c3 = c and each ci ≥ 0.

Applying Claim 3.7 into (16) and noting that ai1i2...iq 1 + ai1i2...iq 2 + ai1i2...iq 3 =
ai1i2...iq , we obtain that

fq ≤ 1
27

[
1 + 3 × 1

24

(
1 − 1

9l−q

)] ∑

i1=2,1≤i2,...,iq≤3

a3
i1i2...iq

= 1
27

(
9
8

− 1
8 · 9l−q

) ∑

i1=2,1≤i2,...,iq≤3

a3
i1i2...iq

= 1
24

(
1 − 1

9l−q+1

) ∑

i1=2,1≤i2,...,iq≤3

a3
i1i2...iq

.

This completes the proof of Claim 3.6. �

Next we give a proof of Claim 3.7.

Proof of Claim 3.7. Since every term in g has degree 3, we will assume that c = 1.
Suppose that g reaches the maximum at (b1, b2, b3). If one of bi ’s equals 0, say b3 = 0
(without loss of generality), then g(b1, b2, 0) = µ(b3

1 + b3
2) ≤ µ ≤ 1

27 (1 + 3µ) since
µ ≤ 1

24 . So assume that b1, b2, b3 > 0. We show that for any pair i, j , where
1 ≤ i < j ≤ 3, bi = b j . Otherwise, without loss of generality, assume that 0 < b1 <

b2. Then

g(b1 + ε, b2 − ε, b3) − g(b1, b2, b3)

= [(b1 + ε)(b2 − ε)b3 − b1b2b3)] + µ[(b1 + ε)3 + (b2 − ε)3 − b3
1 − b3

2]
= [(b2 − b1)b3ε − ε2b3] + µ[3ε(b2

1 − b2
2) + 3ε2(b1 + b2)]

= ε(b2 − b1)[b3 − 3µ(b1 + b2)] + ε2[3µ(b1 + b2) − b3]. (17)

If b3 − 3µ(b1 + b2) > 0, then the right hand side of equation (17) > 0 for small
enough ε > 0. If b3 − 3µ(b1 + b2) < 0, then the right hand side of equation (17)
> 0 for ε < 0 with |ε| small enough. In either case it contradicts the assumption
that g reaches the maximum at (b1, b2, b3). Now assume that b3 − 3µ(b1 + b2) = 0,
it follows that b3 = 3µ

3µ+1 and b1 + b2 = 1
3µ+1 . Then
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g(b1, b2, b3) = 3µ

3µ + 1
b1b2 + µ(b3

1 + b3
2) + µ

(
3µ

3µ + 1

)3

= 3µb1b2(b1 + b2) + µ(b3
1 + b3

3) + µ

(
3µ

3µ + 1

)3

= µ[b3
1 + 3b2

1b2 + 3b1b2
2 + b3

2] + µ

(
3µ

3µ + 1

)3

= µ(b1 + b2)
3 + µ

(
3µ

3µ + 1

)3

= µ

[(
1

3µ + 1

)3

+
(

3µ

3µ + 1

)3
]

. (18)

Observe that

µ

[(
1

3µ + 1

)3

+
(

3µ

3µ + 1

)3
]

− 1
27

(1 + 3µ)

= µ

[(
1

3µ + 1

)3

+
(

3µ

3µ + 1

)3

− 1
9

]

− 1
27

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
24

[(
9

10

)3

+
(

1
9

)3

− 1
9

]

− 1
27

, i f
1

27
≤ µ ≤ 1

24

1
27

[(
3µ + 1
3µ + 1

)3

− 1
9

]

− 1
27

, i f 0 ≤ µ <
1

27
.

< 0. (19)

Therefore, g(b1, b2, b3) ≤ 1
27 (1 + 3µ). �

3.1.2. Proof of Claim 3.4

Proof of Claim 3.4. Use induction on q. If q = l and ai1i2...il > 0, then take ui1i2...il =
v3

i1i2...il
if ζi1i2...il > 0, take ui1i2...il = v1

i1i2...il
otherwise (see (7)). Then by Lemma 2.2

part 2, we have

3λ(N ) = λ(ui1i2...il , �z).

Considering all possible edges incident to ui1i2...il , we have

λ(ui1i2...il , �z) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · ·
+ ai1i2i3...il−1il+1ai1i2i3...il−1il+2 + ρ2

i1i2...il
.
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In the above inequality,
∑

1≤i2,...,il≤3 ρ2
i1−1i2...il

is subtracted from 1
2 a2

i1−1 since

w(ui1i2...il ) · w(ui1i2...il ) = ρ2
i1−1i2...il

does not contribute to λ(ui1i2...il , �z) but it is

calculated in 1
2 a2

i1−1. By the above inequality, Claim 3.4 holds for q = l.
Now assume that the conclusion is true for q + 1, i.e., if ai1i2...iq+1 > 0, then

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1i2i3...iq iq+1+1ai1i2i3...iq iq+1+2

+ 1
8

(
1 − 1

9l−q−1

)
a2

i1i2...iq+1
+

∑

1≤iq+2,iq+3...,il≤3

ρ2
i1i2...il

(20)

holds. We need to show that if ai1i2...iq > 0, then

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1i2i3...iq−1iq+1ai1i2i3...iq−1iq+2

+ 1
8

(
1 − 1

9l−q

)
a2

i1i2...iq
+

∑

1≤iq+1,iq+2...,il≤3

ρ2
i1i2...il

(21)

holds.

Case 1. If ai1i2...iq 1 > 0, ai1i2...iq 2 > 0, and ai1i2...iq 3 > 0, then applying induction
assumption ((20)) to each ai1i2...iq iq+1 , 1 ≤ iq+1 ≤ 3, we have

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ ai1i2i3...iq iq+1+1ai1i2i3...iq iq+1+2

+ 1
8

(
1 − 1

9l−q−1

)
a2

i1...iq iq+1
+

∑

1≤iq+2,iq+3...,il≤3

ρ2
i1i2...il

holds for each 1 ≤ iq+1 ≤ 3. Taking
∑

1≤iq+1≤3 in both sides of the above inequal-
ities and dividing by 3, we get

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ ai1i2i3...iq 1ai1i2i3...iq 2 + ai1i2i3...iq 2ai1i2i3...iq 3 + ai1i2i3...iq 1ai1i2i3...iq 3

3

+ 1
24

(
1 − 1

9l−q−1

)
[a2

i1i2...iq 1 + a2
i1i2...iq 2 + a2

i1i2...iq 3] +
∑

1≤iq+1,iq+2...,il≤3

ρ2
i1i2...il

.
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Note that
ai1i2i3...iq 1ai1i2i3...iq 2 + ai1i2i3...iq 2ai1i2i3...iq 3 + ai1i2i3...iq 1ai1i2i3...iq 3

3

+ 1
24

(
1 − 1

9l−q−1

)
[a2

i1i2...iq 1 + a2
i1i2...iq 2 + a2

i1i2...iq 3]

= 1
24

(
1 − 1

9l−q−1

)
[a2

i1i2...iq 1 + a2
i1i2...iq 2 + a2

i1i2...iq 3

+ 2ai1i2...iq 1ai1i2...iq 2 + 2ai1i2...iq 2ai1i2...iq 3 + 2ai1i2...iq 1ai1i2...iq 3]
+

[
1
3

− 1
12

(
1 − 1

9l−q−1

)]

×(ai1i2...iq 1ai1i2...iq 2 + ai1i2...iq 2ai1i2...iq 3 + ai1i2...iq 1ai1i2...iq 3)

= 1
24

(
1 − 1

9l−q−1

)
a2

i1i2...iq

+
[

1
3

− 1
12

(
1 − 1

9l−q−1

)]

(
ai1i2...iq 1ai1i2...iq 2 + ai1i2...iq 2ai1i2...iq 3 + ai1i2...iq 1ai1i2...iq 3

)

≤ 1
24

(
1 − 1

9l−q−1

)
a2

i1i2...iq
+

[
1
3

− 1
12

(
1 − 1

9l−q−1

)]
1
3

a2
i1i2...iq

= 1
8

(
1 − 1

9l−q

)
a2

i1i2...iq

since ai1i2...iq 1ai1i2...iq 2 +ai1i2...iq 2ai1i2...iq 3 +ai1i2...iq 1ai1i2...iq 3 has the maximum value
1
3 a2

i1i2...iq
when ai1i2...iq 1 = ai1i2...iq 2 = ai1i2...iq 3 = ai1i2 ...iq

3 . Combining the above two
inequalities, we obtain that

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ 1
8

(
1 − 1

9l−q

)
a2

i1i2...iq
+

∑

1≤iq+1,iq+2...,il≤3

ρ2
i1i2...il

.

Case 2. Two of ai1i2...iq 1, ai1i2...iq 2, and ai1i2...iq 3 are positive and one of them is 0.
Without loss of generality, assume that ai1i2...iq 1 > 0, ai1i2...iq 2 > 0, and ai1i2...iq 3 = 0.
Applying induction assumption to ai1i2...iq iq+1 , where iq+1 = 1, 2 (see (20) ), we have

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ 1
8

(
1 − 1

9l−q−1

)
a2

i1i2...iq iq+1
+

∑

1≤iq+2,iq+3...,il≤3

ρ2
i1i2...il
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holds for each iq+1 = 1, 2. (observing that ai1i2...iq iq+1+1ai1i2...iq iq+1+2 = 0 for each
iq+1 = 1, 2).

Taking
∑2

iq+1=1 in both sides of the above inequality and dividing by 2, we have

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ 1
8

(
1 − 1

9l−q−1

) a2
i1i2...iq 1 + a2

i1i2...iq 2

2
+

∑

1≤iq+1,...,il≤3

ρ2
i1i2...il

.

Since

1
8

(
1 − 1

9l−q−1

) a2
i1i2...iq 1 + a2

i1i2...iq 2

2
<

1
8

(
1 − 1

9l−q

)
a2

i1i2...iq
,

then

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ 1
8

(
1 − 1

9l−q

)
a2

i1i2...iq
+

∑

1≤iq+1,...,il≤3

ρ2
i1i2...il

.

Case 3. Only one of ai1i2...iq 1, ai1i2...iq 2, and ai1i2...iq 3 is positive. Without loss of
generality, assume that ai1i2...iq 2 = ai1i2...iq 3 = 0 and ai1i2...iq 1 = ai1i2...iq . Apply-
ing induction assumption to ai1i2...iq 1 and noting that ai1i2...iq 2 · ai1i2...iq 3 = 0 and
a2

i1i2...iq 1 = a2
i1i2...iq

, we have

3λ(N ) ≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ 1
8

(
1 − 1

9l−q−1

)
a2

i1i2...iq
+

∑

1≤iq+2,...,il≤3

ρ2
i1i2...il

≤ ai1+1ai1+2 + ai1ai1+1 +
⎛

⎝1
2

a2
i1−1 −

∑

1≤i2,...,il≤3

ρ2
i1−1i2...il

⎞

⎠

+ ai1i2+1ai1i2+2 + ai1i2i3+1ai1i2i3+2 + · · · + ai1...iq−1iq+1ai1...iq−1iq+2

+ 1
8

(
1 − 1

9l−q

)
a2

i1i2...iq
+

∑

1≤iq+1,...,il≤3

ρ2
i1i2...il

.

The proof of Claim 3.4 is completed. �
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