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Abstract. A (3, 4)-biregular bigraph G is a bipartite graph where all vertices in one part have
degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning
subgraph whose components are nontrivial paths. We prove that a simple (3, 4)-biregular
bigraph always has a path factor such that the endpoints of each path have degree three.
Moreover we suggest a polynomial algorithm for the construction of such a path factor.
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1. Introduction

We use [9] and [7] for terminology and notation not defined here and consider finite
loop-free graphs only. V (G) and E(G) denote the sets of vertices and edges of a
graph G, respectively. A proper edge coloring of a graph G with colors 1, 2, 3, . . .

is a mapping f : E(G) → {1, 2, 3, . . . } such that f (e1) �= f (e2) for every pair
of adjacent edges e1 and e2. A bipartite graph with bipartition (Y, X) is called an
(a, b)-biregular bigraph if every vertex in Y has degree a and every vertex in X has
degree b. A path factor of a graph G is a spanning subgraph whose components
are nontrivial paths. Some results on different types of path factors can be found
in [1,2,17,18,20,23]. In particular, Ando et al. [2] showed that a claw-free graph
with minimum degree d has a path factor whose components are paths of length
at least d. Kaneko [17] showed that every cubic graph has a path factor such that
each component is a path of length 2, 3 or 4. It was shown in [18] that a 2-connected
cubic graph has a path factor whose components are paths of length 2 or 3.

In this paper we investigate the existence of path factors of (3, 4)-biregular
bigraphs such that the endpoints of each path have degree three. Our investiga-
tion is motivated by a problem on interval colorings. A proper edge coloring of
a graph G with colors 1, 2, 3, . . . is called an interval (or consecutive) coloring if
the colors received by the edges incident with each vertex of G form an interval of
integers. The notion of interval colorings was introduced in 1987 by Asratian and
Kamalian [5] (available in English as [6]). Generally, it is an NP-complete problem
to determine whether a given bipartite graph has an interval coloring [22]. Never-
theless, trees, regular and complete bigraphs [13,16], doubly convex bigraphs [16],
grids [12] and all simple outerplanar bigraphs [8,11] have interval colorings. Hansen
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[13] proved that every (2, β)-biregular bigraph admits an interval coloring if β is an
even integer. A similar result for (2, β)-biregular bigraphs for odd β was given in
[14,19]. Only a little is known about (3, β)-biregular bigraphs. It follows from the
result of Hanson and Loten [15] that no such a graph has an interval coloring with
fewer than 3+b −gcd(3, b) colors, where gcd denotes the greatest common divisor.
We showed in [3] that the problem to determine whether a (3, β)-biregular bigraph
has an interval coloring is NP-complete in the case when 3 divides β.

It is unknown whether all (3, 4)-biregular bigraphs have interval colorings.
Pyatkin [21] showed that such a graph G has an interval coloring if G has a 3-
regular subgraph covering the vertices of degree four. Another sufficient condition
for the existence of an interval coloring of a (3, 4)-biregular bigraph G was obtained
in [4,10]: G admits an interval coloring if it has a path factor where every component
is a path of length not exceeding 8 and the endpoints of each path have degree three.
It was conjectured in [4] that every simple (3, 4)-biregular bigraph has such a path
factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple (3, 4)-biregular
bigraph always has a path factor such that the endpoints of each path have degree
three. Moreover, we suggest a polynomial algorithm for the construction of such a
path factor.

Note that (3, 4)-biregular bigraphs with multiple edges need not have path fac-
tors with the required property. For example, consider the graph G formed from
three triple-edges by adding a claw; that is, the pairs xi yi have multiplicity three for
i ∈ {1, 2, 3}, and there is an additional vertex y0 with neighborhood {x1, x2, x3}.
Clearly, there is no path factor of G such that the endpoints of each path have
degree 3.

2. The Result

A pseudo path factor of a (3, 4)-biregular bigraph G with bipartition (Y, X) is a
subgraph F of G, such that every component of F is a path of even length and
dF (x) = 2 for every x ∈ X . Let VF = {y ∈ Y : dF (y) > 0}.

Theorem 1. Every simple (3, 4)-biregular bigraph has a pseudo path factor.

Proof. Let G be a simple (3, 4)-biregular bigraph with bipartition (Y, X). The
algorithm below constructs a sequence of subgraphs F0,F1,F2, . . . of G, where
V (F0) = V (G), ∅ = E(F0) ⊂ E(F1) ⊂ E(F2) ⊂ . . . and each component of
Fj is a path, for every j ≥ 0. At each step i ≥ 1 the algorithm constructs Fi by
adding to Fi−1 one or two edges until the condition dFj (x) = 2 holds for all x ∈ X ,
where j ≥ 1. Then F = Fj is a pseudo path factor of G. Parallelly the algorithm
constructs a sequence of subgraphs U0, U1, U2, . . . of G, where V (U0) = V (G),
∅ = E(U0) ⊂ E(U1) ⊂ E(U2) ⊂ · · · ⊂ E(U j ). The edges of each Ui will not be in
the final pseudo path factor F . The algorithm is based on Properties 1-4. During
the algorithm the vertices in the set Y are considered to be unscanned or scanned.
Initially all vertices in Y are unscanned. At the beginning of each step i ≥ 1 we have
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a current vertex xi . The algorithm selects an unscanned vertex yi , adjacent to xi ,
and determines which edges incident with yi will be in Fi and which ones in Ui . If
dFi (v) = 2 for each v ∈ X , the algorithm stops. Otherwise the algorithm selects a
new current vertex and goes to the next step.
Algorithm

Initially F0 = (V (G),∅), U0 = (V (G),∅) and all vertices in Y are unscanned.
Step 0. Select a vertex y0 ∈ Y . Let x0, x1, w be the vertices in X adjacent to y0 in
G. Put F1 = F0 + {wy0, y0x0} and U1 = U0 + y0x1. Consider the vertex y0 to be
scanned. Go to step 1 and consider the vertex x1 as the current vertex for step 1.

Step i (i ≥ 1). Suppose that a vertex xi with dFi−1(xi ) ≤ 1 was selected at step
(i − 1) as the current vertex. By Property 4 (see below), dUi−1(xi ) ≤ 2. Therefore
there is an edge xi yi with yi ∈ Y which neither belongs to Fi−1, nor to Ui−1. Then,
by Property 3, the vertex yi is an unscanned vertex and therefore the subgraph
Fi−1 + xi yi does not contain a cycle. Since dG(yi ) = 3, the vertex yi , besides xi , is
adjacent to two other vertices, w

(i)
1 and w

(i)
2 .

Case 1. dFi−1(w
(i)
1 ) = 2 = dFi−1(w

(i)
2 ).

Put Fi = Fi−1 + xi yi and Ui = Ui−1 + {yiw
(i)
1 , yiw

(i)
2 }. Consider the vertex yi to

be scanned. If dFi (v) = 2 for every vertex v ∈ X then Stop. Otherwise select an
arbitrary vertex xi+1 ∈ X with dFi (xi+1) ≤ 1, go to step (i + 1) and consider xi+1
as the current vertex for step (i + 1).

Case 2. dFi−1(w
(i)
1 ) = 2 and dFi−1(w

(i)
2 ) ≤ 1.

Put Fi = Fi−1 + xi yi , Ui = Ui−1 + {yiw
(i)
1 , yiw

(i)
2 } and consider the vertex yi to be

scanned. Furthermore put xi+1 = w
(i)
2 , go to step (i + 1) and consider the vertex

xi+1 as the current vertex for step (i + 1).

Case 3. dFi−1(w
(i)
1 ) ≤ 1 and dFi−1(w

(i)
2 ) ≤ 1.

Subcase 3a. dFi−1(w
(i)
1 ) = 0 or dFi−1(w

(i)
2 ) = 0.

We assume that dFi−1(w
(i)
1 ) = 0. Put Fi = Fi−1 + {xi yi , yiw

(i)
1 }, Ui = Ui−1 + yiw

(i)
2

and consider the vertex yi to be scanned. Furthermore put xi+1 = w
(i)
2 , go to step

(i + 1) and consider the vertex xi+1 as the current vertex for step (i + 1).
Subcase 3b. dFi−1(w

(i)
1 ) = 1 = dFi−1(w

(i)
2 ).

Since yi is an unscanned vertex and Fi−1 + xi yi does not contain a cycle, the vertex
yi is an endvertex of only one path in Fi−1 + xi yi . Then at least one of the graphs
Fi−1 + {xi yi , yiw

(i)
1 } and Fi−1 + {xi yi , yiw

(i)
2 } does not contain a cycle. Assume,

for example, that Fi−1 + {xi yi , yiw
(i)
1 } does not contain a cycle. Then put Fi =

Fi−1 + {xi yi , yiw
(i)
1 }, Ui = Ui−1 + yiw

(i)
2 and consider the vertex yi to be scanned.

Furthemore put xi+1 = w
(i)
2 , go to step (i + 1) and consider the vertex xi+1 as the

current vertex for step (i + 1).
Now we will prove the correctness of the algorithm. At the beginning of step i

we have that xi is the current vertex, yi is an unscanned vertex adjacent to xi and
w

(i)
1 , w

(i)
2 are the two other vertices adjacent to yi . The following two properties are

evident.
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Property 1. The algorithm determines which edges incident with yi will be in Fi and
which edges will be in Ui . The vertex yi is then considered to be scanned and the
algorithm will never consider yi again.

Property 2. The current vertex xi+1 for step (i + 1) is selected among the vertices
w

(i)
1 and w

(i)
2 , except the case dFi (w

(i)
1 ) = dFi (w

(i)
2 ) = 2 when an arbitrary vertex

xi+1 ∈ X with dFi (xi+1) ≤ 1 is selected as the current vertex.

Properties 1 and 2 imply the next property:

Property 3. If x ∈ X , y ∈ Y and the edge xy neither belongs to Fi−1, nor to Ui−1,
then the vertex y is unscanned at the beginning of step i .

Property 4. If x ∈ X and dFi−1(x) ≤ 1 then dUi−1(x) ≤ 2.

Proof. The statement is evident if dUi−1(x) = 0. Suppose that dUi−1(x) ≥ 1 and j is
the minimum number such that j < i and an edge incident with x was included in
U j−1 at step ( j − 1). Then the statement of Property 4 is evident if j = i − 1.

Now we consider the case j < i − 1. Clearly, dFj−1(x) ≤ 1 because Fj−1 ⊂ Fi−1
and dFj−1(x) ≤ dFi−1(x) ≤ 1. Let xy j−1 be the edge included in U j−1 at step ( j −1).
Since dU j−1(x) = 1 and dFj−1(x) ≤ 1, there is an edge xy j with y j ∈ Y which neither
belongs to Fj−1 , nor to U j−1. Then, by Property 3, the vertex y j is an unscanned
vertex and therefore the subgraph Fj−1 + xy j does not contain a cycle. According
to the description of the algorithm, the edge xy j will be in any case included in Fj

at step j , that is, dFj (x) ≥ 1. Then dFk (x) = 1 for every k, j ≤ k ≤ i − 1, because
Fj ⊂ Fk ⊂ Fi−1 and 1 ≤ dFj (x) ≤ dFk (x) ≤ dFi−1(x) ≤ 1. Now we will show that
dUk−1(x) = 1 for each k, j ≤ k < i − 1. Suppose to the contrary that dUk−2(x) = 1
and dUk−1(x) = 2 for some k, j < k < i −1, that is, another edge incident with x was
included in Uk−1 at step (k −1). Then the conditions dUk−1(x) = 2 and dFk−1(x) = 1
imply that there is an edge e �= y j x incident with x which neither belongs to Fk−1,
nor to Uk−1. Using a similar argument as above we obtain that the edge e should
be included in Fk at step k. But then dFi−1(x) ≥ dFk (x) = 2, which contradicts our
assumption dFi−1(x) ≤ 1. Thus dUk−1(x) = 1 for each k, j ≤ k < i − 1. It is possible
that an edge incident with x will be included in Ui−1 at step (i − 1). Therefore
dUi−1(x) ≤ 2. �

The description of the algorithm and Properties 1-4 show that the algorithm will
stop at step i only when dFi (x) = 2 for every x ∈ X , that is, when Fi is a pseudo
path factor of G. The proof of Theorem 1 is complete. �

Now we will prove that every pseudo path factor of a (3, 4)-biregular bigraph
G can be transformed into a path factor of G, such that the endpoints of each path
have degree 3.

Lemma 2. Let G be a (3, 4)-biregular bigraph with bipartition (Y, X). Then |X | = 3k
and |Y | = 4k, for some positive integer k.
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This is evident because |E(G)| = 4|X | = 3|Y |.

Lemma 3. Let F be a pseudo path factor of a (3, 4)-biregular bigraph G with bipartition
(Y, X). Then F has a component which is a path of length at least four.

Proof. By Lemma 2 we have that |X | = 3k and |Y | = 4k for some integer k. We also
have that dF (x) = 2 for each vertex x ∈ X . If the length of all paths in F is two, then
|Y | ≥ 2|X | = 6k which contradicts |Y | = 4k. Therefore F has a component which
is a path of length at least four. �

Theorem 4. Let F be a pseudo path factor of a simple (3, 4)-biregular bigraph G with
bipartition (Y, X). If VF �= Y and y0 is a vertex with dF (y0) = 0, then there is a pseudo
path factor F ′ with VF ′ = VF ∪ {y0}, such that no path in F ′ is longer than the longest
path in F .

Proof. Let y0 ∈ Y and dF (y0) = 0. We will describe an algorithm which will
construct a special trail T with origin y0.

Step 1. Select an edge y0x1 /∈ E(F). Since dF (x1) = 2, there are two edges of F ,
x1 y1 and x1u1, which are incident with x1.
Case 1. dF (y1) = 2 or dF (u1) = 2.
Suppose, for example, that dF (y1) = 2. Then put T = y0 → x1 → y1 and Stop.
Case 2. dF (y1) = 1 = dF (u1).
Put T = y0 → x1 → y1 and go to Step 2.
Step i (i ≥ 1). Suppose that we have already constructed a trail T = y0 → x1 →
y1 → · · · → xi → yi which satisfies the following conditions:

(a) All edges in T are distinct and y j−1x j /∈ E(F), x j y j ∈ E(F) for j = 1, . . . , i .
(b) The vertices y1, . . . , yi are distinct.
(c) A component of F containing the vertex x j is a path of length 2, for j =

1, . . . , i .

Select an edge e ∈ E(G)\E(F) which is incident with yi . The existence of such
an edge follows from the conditions (a), (b) and (c). Moreover, the condition (b)
implies that e /∈ T . Let e = yi xi+1. Then dF (xi+1) = 2 because F is a pseudo path
factor of G. Since e /∈ E(T ), the conditions (a), (b) and (c) imply that at least one
of the edges of F incident with xi+1, does not belong to T .
Case 1. xi+1 lies on a component of F which is a path of length two.
Select a vertex yi+1 such that xi+1 yi+1 ∈ E(F) \ E(T ), add the edge xi+1 yi+1 and
the vertex yi+1 to T and go to step (i + 1). Now T = y0 → x1 → y1 → · · · →
xi+1 → yi+1.

Case 2. xi+1 lies on a component of F which is a path of length at least four.
There is a vertex yi+1 such that xi+1 yi+1 ∈ E(F) \ E(T ) and dF (yi+1) = 2. Add
the edge xi+1 yi+1 and the vertex yi+1 to T and Stop. We have now that T = y0 →
x1 → y1 → · · · → xi+1 → yi+1.

By Lemma 3, F has a component which is a path of length at least four. Therefore
the algorithm will stop after a finite number of steps. Let the trail T = y0 → x1 →
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y1 → · · · → xi+1 → yi+1, be the result of the algorithm, where i ≥ 0, the vertex x j

lies on a component of F which is a path of length two for each j ≤ i , the vertex
xi+1 lies on a component of F which is a path of length at least 4, and dF (yi+1) = 2.
We define a new pseudo path factor F ′ by setting V (F ′) = V (F) and

E(F ′) = (E(F)\{x j y j : j = 1, . . . , i, i + 1}) ∪ {y j−1x j : j = 1, . . . , i, i + 1}.
Clearly, VF ′ = VF ∪ {y0} and the proof of Theorem 4 is complete. �

Theorems 1 and 4 imply the following theorem:

Theorem 5. Every simple (3, 4)-biregular bigraph has a path factor such that the end-
points of each path have degree 3.
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Thesis, Linköping University (2005)

11. Giaro, K., Kubale, M.: Compact scheduling of zero-one time operations in multi-stage
systems. Discrete Appl. Math. 145, 95–103 (2004)

12. Giaro, K., Kubale, M.: Consecutive edge-colorings of complete and incomplete Cartesian
products of graphs. Congr. Numer. 128, 143–149 (1997)

13. Hansen, H.M.: Scheduling with minimum waiting periods (in Danish). Master Thesis,
Odense University (1992)

14. Hanson, D., Loten, C.O.M., Toft, B.: On interval colourings of bi-regular bipartite
graphs. Ars Combin. 50, 23–32 (1998)

15. Hanson, D., Loten, C.O.M.: A lower bound for interval colouring bi-regular bipartite
graphs. Bulletin of the ICA 18, 69–74 (1996)

16. Kamalian, R.R.: Interval edge-colorings of graphs, Doctoral thesis, Novosibirsk (1990)
17. Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every

component of which is a path of length at least 2. J. Comb.Theory B 88, 195–218 (2003)
18. Kawarabayashi, K., Matsuba, H., Oda, Y., Ota, K.: Path factors in cubic graphs. J. Graph

Theory 39, 188–193 (2002)



On Path Factors of (3, 4)-Biregular Bigraphs 411

19. Kostochka, A.V.: Unpublished manuscript (1995)
20. Plummer, M.D.: Graph factors and factorization: 1985-2003: A survey. Discrete

Mathematics 307, 791–821 (2007)
21. Pyatkin, A.V.: Interval coloring of (3,4)-biregular bigraphs having large cubic subgraphs.

J. Graph Theory 47, 122–128 (2004)
22. Sevastjanov, S.V.: Interval colorability of the edges of a bigraph (in Russian). Metody

Diskretnogo Analiza 50, 61–72 (1990)
23. Wang, H.: Path factors of bipartite graphs. J. Graph Theory 18, 161–167 (1994)

Received: June 5, 2007
Final version received: June 4, 2008


	Introduction
	The Result


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


