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Abstract. A (3, 4)-biregular bigraph G is a bipartite graph where all vertices in one part have
degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning
subgraph whose components are nontrivial paths. We prove that a simple (3, 4)-biregular
bigraph always has a path factor such that the endpoints of each path have degree three.
Moreover we suggest a polynomial algorithm for the construction of such a path factor.
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1. Introduction

We use [9] and [7] for terminology and notation not defined here and consider finite
loop-free graphs only. V(G) and E(G) denote the sets of vertices and edges of a
graph G, respectively. A proper edge coloring of a graph G with colors 1,2,3, ...
is a mapping f : E(G) — {1,2,3,...} such that f(e;) # f(er) for every pair
of adjacent edges e and e;. A bipartite graph with bipartition (Y, X) is called an
(a, b)-biregular bigraph if every vertex in Y has degree a and every vertex in X has
degree b. A path factor of a graph G is a spanning subgraph whose components
are nontrivial paths. Some results on different types of path factors can be found
in [1,2,17,18,20,23]. In particular, Ando et al. [2] showed that a claw-free graph
with minimum degree d has a path factor whose components are paths of length
at least d. Kaneko [17] showed that every cubic graph has a path factor such that
each component is a path of length 2, 3 or 4. It was shown in [18] that a 2-connected
cubic graph has a path factor whose components are paths of length 2 or 3.

In this paper we investigate the existence of path factors of (3, 4)-biregular
bigraphs such that the endpoints of each path have degree three. Our investiga-
tion is motivated by a problem on interval colorings. A proper edge coloring of
a graph G with colors 1,2, 3, ... is called an interval (or consecutive) coloring if
the colors received by the edges incident with each vertex of G form an interval of
integers. The notion of interval colorings was introduced in 1987 by Asratian and
Kamalian [5] (available in English as [6]). Generally, it is an A/P-complete problem
to determine whether a given bipartite graph has an interval coloring [22]. Never-
theless, trees, regular and complete bigraphs [13,16], doubly convex bigraphs [16],
grids [12] and all simple outerplanar bigraphs [8, 11] have interval colorings. Hansen
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[13] proved that every (2, 8)-biregular bigraph admits an interval coloring if 8 is an
even integer. A similar result for (2, 8)-biregular bigraphs for odd 8 was given in
[14,19]. Only a little is known about (3, g)-biregular bigraphs. It follows from the
result of Hanson and Loten [15] that no such a graph has an interval coloring with
fewer than 34 b — ged(3, b) colors, where ged denotes the greatest common divisor.
We showed in [3] that the problem to determine whether a (3, 8)-biregular bigraph
has an interval coloring is N'P-complete in the case when 3 divides 8.

It is unknown whether all (3, 4)-biregular bigraphs have interval colorings.
Pyatkin [21] showed that such a graph G has an interval coloring if G has a 3-
regular subgraph covering the vertices of degree four. Another sufficient condition
for the existence of an interval coloring of a (3, 4)-biregular bigraph G was obtained
in[4, 10]: G admits an interval coloring if it has a path factor where every component
is a path of length not exceeding 8 and the endpoints of each path have degree three.
It was conjectured in [4] that every simple (3, 4)-biregular bigraph has such a path
factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple (3, 4)-biregular
bigraph always has a path factor such that the endpoints of each path have degree
three. Moreover, we suggest a polynomial algorithm for the construction of such a
path factor.

Note that (3, 4)-biregular bigraphs with multiple edges need not have path fac-
tors with the required property. For example, consider the graph G formed from
three triple-edges by adding a claw; that is, the pairs x; y; have multiplicity three for
i € {1, 2,3}, and there is an additional vertex yy with neighborhood {xi, x2, x3}.
Clearly, there is no path factor of G such that the endpoints of each path have
degree 3.

2. The Result

A pseudo path factor of a (3, 4)-biregular bigraph G with bipartition (¥, X) is a
subgraph F of G, such that every component of F is a path of even length and
dp(x) =2foreveryx € X. Let Ve ={y € Y : dp(y) > O}

Theorem 1. Every simple (3, 4)-biregular bigraph has a pseudo path factor.

Proof. Let G be a simple (3, 4)-biregular bigraph with bipartition (Y, X). The
algorithm below constructs a sequence of subgraphs Fy, Fy,F;, ... of G, where
V(Fy) = V(G), 9 = E(Fyp) C E(F)) C E(F;) C ... and each component of
F; is a path, for every j > 0. At each step i > 1 the algorithm constructs F; by
adding to F;_; one or two edges until the condition dr, (x) = 2 holds for all x € X,
where j > 1. Then F = F; is a pseudo path factor of G. Parallelly the algorithm
constructs a sequence of subgraphs Uy, Uy, Us, ... of G, where V(Uy) = V(G),
¥ =EUy) C E(Uy)) C E(Up) C--- C E(Uj). The edges of each U; will not be in
the final pseudo path factor F. The algorithm is based on Properties 1-4. During
the algorithm the vertices in the set ¥ are considered to be unscanned or scanned.
Initially all vertices in Y are unscanned. At the beginning of each stepi > 1 we have
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a current vertex x;. The algorithm selects an unscanned vertex y;, adjacent to x;,
and determines which edges incident with y; will be in F; and which ones in U;. If
dr.(v) = 2 for each v € X, the algorithm stops. Otherwise the algorithm selects a
new current vertex and goes to the next step.
Algorithm

Initially Fy = (V(G), 0), Uy = (V(G), ¥) and all vertices in Y are unscanned.
Step 0. Select a vertex yg € Y. Let xg, x;, w be the vertices in X adjacent to yj in
G. Put F| = Fy + {wyg, yoxo} and U; = Uy + ygxi. Consider the vertex yg to be
scanned. Go to step 1 and consider the vertex x| as the current vertex for step 1.

Step i (i > 1). Suppose that a vertex x; with dr,_,(x;) < 1 was selected at step
(i — 1) as the current vertex. By Property 4 (see below), dy, ,(x;) < 2. Therefore
there is an edge x; y; with y; € Y which neither belongs to F; _1, nor to U;_;. Then,
by Property 3, the vertex y; is an unscanned vertex and therefore the subgraph

F;_1 + x;y; does not contain a cycle. Since dg(y;) = 3, the vertex y;, besides x;, is
(@) @)

adjacent to two other vertices, w;” and w,".
Case 1. l(U)l')) =2=df,_ 1(w(l))
Put F; = F1_1 +xjyiand U; = U;_| + {ym)1 , Vi wz)} Consider the vertex y; to

be scanned. If dr, (v) = 2 for every vertex v € X then Stop. Otherwise select an
arbitrary vertex x; 41 € X with df, (x;+1) < 1, go to step (i + 1) and consider x; 4
as the current vertex for step (i + 1).

Case 2. l(wl’)) =2and df,_ 1(w(l)) <1.
Put F; = Fl 1+ xiyi, Uy =U;_1 + {y,w1 , Vi wz)} and consider the vertex y; to be

scanned. Furthermore put x; ;1 = w2 , go to step (i + 1) and consider the vertex
x;+1 as the current vertex for step (i + 1).

Case3. dy, 1(w“)) <landdr (i) < 1.

11—

Subcase 3a. df, l(wl Dy =0or dr,_ 1(w(l)) =0.

We assume that df, 1(u)1 DY =0.Put F; = Fi_y + {xiy1, yiw, N U = U, 1+ viw (')
and consider the vertex y; to be scanned. Furthermore put x; 1| = w2 , go to step
(i + 1) and consider the vertex x;;1 as the current vertex for step (i + 1).

Subcase 3b. dr, 1(w1 N=1= dr,_ 1(w(l))

Since y; is an unscanned vertex and F;_| + x; y; does not contain a cycle, the vertex
y; is an endvertex of only one path in F;_; + x;y;. Then at least one of the graphs
Fi_1 + {xiyi, y,-wii)} and F;_1 + {x;yi, yiwg)} does not contain a cycle. Assume,
for example, that F;_| + {x;y;, y,-wi")} does not contain a cycle. Then put F; =
Fi_1 + {xiyi, yiwii)}, U =U;_1+yi wg) and consider the vertex y; to be scanned.
Furthemore put x; 1 = wg) , go to step (i + 1) and consider the vertex x; | as the
current vertex for step (i + 1).

Now we will prove the correctness of the algorithm. At the beginning of step i
we have that x; is the current vertex, y; is an unscanned vertex adjacent to x; and
wi’), wé’) are the two other vertices adjacent to y;. The following two properties are
evident.
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Property 1. The algorithm determines which edges incident with y; will be in F; and
which edges will be in U;. The vertex y; is then considered to be scanned and the
algorithm will never consider y; again.

Property 2. The current vertex x; ] for step (i 4+ 1) is selected among the vertices
wi’) and wg), except the case dF, (wf')) =dr. (w;')) = 2 when an arbitrary vertex
Xi+1 € X with df, (x;41) < 1 is selected as the current vertex.

Properties 1 and 2 imply the next property:

Property 3. If x € X, y € Y and the edge xy neither belongs to F;_1, nor to U;_1,
then the vertex y is unscanned at the beginning of step i.

Property 4. If x € X and df,_,(x) < 1 thendy, ,(x) <2.

Proof. The statement is evident if dy, , (x) = 0. Suppose that dy, ,(x) > 1and jis
the minimum number such that j < i and an edge incident with x was included in
Uj_ at step (j — 1). Then the statement of Property 4 is evident if j =i — 1.
Now we consider the case j < i — 1. Clearly, dr;_,(x) =1 because F;_| C Fi_
and dijl (x) <df,_,;(x) < 1.Letxy;_ be the edge included in U;_; atstep (j — 1).
Since dy;, (x) = 1 and dr;_ (x) < 1, thereis an edge xy; with y; € ¥ which neither
belongs to F;_; , nor to U;_;. Then, by Property 3, the vertex y; is an unscanned
vertex and therefore the subgraph F;_; 4+ xy; does not contain a cycle. According
to the description of the algorithm, the edge xy; will be in any case included in F;
at step j, that is, dr;(x) > 1. Then df, (x) = 1 forevery k, j < k <i — 1, because
F;i CFy C Fijand1 < dp;(x) <dp,(x) <dp,_(x) < 1. Now we will show that
dy, ,(x) = 1foreachk, j <k < i — 1. Suppose to the contrary that dy,_,(x) =1
anddy, ,(x) =2forsomek, j < k <i—1,thatis, another edge incident with x was
included in Uy_; at step (k — 1). Then the conditions dy, ,(x) =2anddfg,_,(x) =1
imply that there is an edge e # y;x incident with x which neither belongs to Fj_j,
nor to Uy_1. Using a similar argument as above we obtain that the edge ¢ should
be included in Fy at step k. But then df, ,(x) > dF, (x) = 2, which contradicts our
assumption dr, ,(x) < 1. Thusdy, ,(x) = lforeachk, j <k <i—1.Itispossible
that an edge incident with x will be included in U;_; at step (i — 1). Therefore
dy, ,(x) <2. a

The description of the algorithm and Properties 1-4 show that the algorithm will
stop at step i only when df, (x) = 2 for every x € X, that is, when F; is a pseudo
path factor of G. The proof of Theorem 1 is complete. O

Now we will prove that every pseudo path factor of a (3, 4)-biregular bigraph
G can be transformed into a path factor of G, such that the endpoints of each path
have degree 3.

Lemma 2. Let G be a (3, 4)-biregular bigraph with bipartition (Y, X). Then |X| = 3k
and |Y| = 4k, for some positive integer k.
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This is evident because |[E(G)| = 4|X| = 3|Y].

Lemma 3. Let F be apseudo path factor of a (3, 4)-biregular bigraph G with bipartition
(Y, X). Then F has a component which is a path of length at least four.

Proof: By Lemma 2 we have that | X| = 3k and |Y| = 4k for some integer k. We also
have that dp(x) = 2 for each vertex x € X. If the length of all paths in F is two, then
|Y| > 2|X| = 6k which contradicts |Y| = 4k. Therefore F has a component which
is a path of length at least four. |

Theorem 4. Let F be a pseudo path factor of a simple (3, 4)-biregular bigraph G with
bipartition (Y, X). If Vg # Y and y is a vertex with dp(yg) = 0, then there is a pseudo
path factor F' with Vg = Ve U {yo}, such that no path in F' is longer than the longest
pathin F.

Proof. Let yg € Y and dr(yg) = 0. We will describe an algorithm which will
construct a special trail 7 with origin yj.

Step 1. Select an edge ygx; ¢ E(F). Since dr(x1) = 2, there are two edges of F,
x1y1 and xjuq, which are incident with xj.

Casel. dp(y1) =2ordp(uy) =2.

Suppose, for example, that dp(y;) = 2. Then put T = yg — x; — y1 and Stop.
Case2. dr(y1) =1=druy).

Put T = yo — x; — y; and go to Step 2.

Step i (i > 1). Suppose that we have already constructed a trail 7 = yg — x; —
y1 — --- — x; — y; which satisfies the following conditions:

(a) Alledgesin T aredistinctand y;_1x; ¢ E(F),x;y; € E(F)forj=1,...,i.

(b) The vertices yq, ..., y; are distinct.

(c) A component of F containing the vertex x; is a path of length 2, for j =
1,...,0.

Select an edge e € E(G)\ E(F) which is incident with y;. The existence of such
an edge follows from the conditions (a), (b) and (c). Moreover, the condition (b)
implies that e ¢ T. Let e = yjx;+1. Then dr(x;+1) = 2 because F is a pseudo path
factor of G. Since e ¢ E(T), the conditions (a), (b) and (c) imply that at least one
of the edges of F incident with x;, does not belong to T'.
Case 1. x;11 lies on a component of F which is a path of length two.
Select a vertex y;41 such that x;11y;+1 € E(F) \ E(T), add the edge x;41y;+1 and
the vertex y;41 to T and gotostep (i +1). NowT =y —> x; - y; —» -+ —
Xi+1 = Yi+l-
Case 2. x;11 lies on a component of F which is a path of length at least four.
There is a vertex y;41 such that x;1y;41 € E(F) \ E(T) and dp(y;+1) = 2. Add
the edge x;+1y;+1 and the vertex y;; to 7 and Stop. We have now that T = yy —
X1 —=> Y1 = > Xi4+1 = Yi+l-

By Lemma 3, F has a component which is a path of length at least four. Therefore
the algorithm will stop after a finite number of steps. Let the trail T = yy — x; —
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Y1 = -+ = Xj+1 = Yi+1, be the result of the algorithm, where i > 0, the vertex x;
lies on a component of F which is a path of length two for each j < i, the vertex
x;+1 lies on a component of F which is a path of length at least 4, and dr (y;41) = 2.
We define a new pseudo path factor F’ by setting V(F’) = V(F) and

E(F)y=(E(F)\{xjyj:j=1,...,i,i+1DU{yj1xj:j=1,...,0i+1}.
Clearly, Vg = Vi U {yg} and the proof of Theorem 4 is complete. |

Theorems 1 and 4 imply the following theorem:

Theorem 5. Every simple (3, 4)-biregular bigraph has a path factor such that the end-
points of each path have degree 3.
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