Graphs and Combinatorics © Springer-Verlag 2008

On Path Factors of (3, 4)-Biregular Bigraphs

Armen S. Asratian¹, Carl Johan Casselgren²

¹ Linköping University, Linköping Sweden. e-mail: arasr@mai.liu.se $\frac{2}{\pi}$ Umeå University, Umeå, Sweden. e-mail: carl-johan.casselgren@math.umu.se

Abstract. A (3, 4)-biregular bigraph *G* is a bipartite graph where all vertices in one part have degree 3 and all vertices in the other part have degree 4. A path factor of *G* is a spanning subgraph whose components are nontrivial paths. We prove that a simple $(3, 4)$ -biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover we suggest a polynomial algorithm for the construction of such a path factor.

Key words. Path factor, Biregular bigraph, Interval edge coloring.

1. Introduction

We use [\[9](#page-5-0)] and [\[7\]](#page-5-1) for terminology and notation not defined here and consider finite loop-free graphs only. $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph *G*, respectively. A *proper edge coloring* of a graph *G* with colors 1, 2, 3,... is a mapping $f : E(G) \rightarrow \{1, 2, 3, ...\}$ such that $f(e_1) \neq f(e_2)$ for every pair of adjacent edges e_1 and e_2 . A bipartite graph with bipartition (Y, X) is called an (*a*, *b*)*-biregular* bigraph if every vertex in *Y* has degree *a* and every vertex in *X* has degree *b*. A *path factor* of a graph *G* is a spanning subgraph whose components are nontrivial paths. Some results on different types of path factors can be found in $[1, 2, 17, 18, 20, 23]$ $[1, 2, 17, 18, 20, 23]$ $[1, 2, 17, 18, 20, 23]$ $[1, 2, 17, 18, 20, 23]$ $[1, 2, 17, 18, 20, 23]$. In particular, Ando et al. $[2]$ showed that a claw-free graph with minimum degree *d* has a path factor whose components are paths of length at least *d*. Kaneko [\[17\]](#page-5-4) showed that every cubic graph has a path factor such that each component is a path of length 2, 3 or 4. It was shown in [\[18](#page-5-5)] that a 2-connected cubic graph has a path factor whose components are paths of length 2 or 3.

In this paper we investigate the existence of path factors of $(3, 4)$ -biregular bigraphs such that the endpoints of each path have degree three. Our investigation is motivated by a problem on interval colorings. A proper edge coloring of a graph *G* with colors 1, 2, 3,... is called an *interval* (or *consecutive*) coloring if the colors received by the edges incident with each vertex of *G* form an interval of integers. The notion of interval colorings was introduced in 1987 by Asratian and Kamalian [\[5](#page-5-6)] (available in English as [\[6\]](#page-5-7)). Generally, it is an *N P*-complete problem to determine whether a given bipartite graph has an interval coloring [\[22](#page-6-2)]. Nevertheless, trees, regular and complete bigraphs [\[13,](#page-5-8)[16](#page-5-9)], doubly convex bigraphs [\[16](#page-5-9)], grids [\[12\]](#page-5-10) and all simple outerplanar bigraphs [\[8](#page-5-11)[,11](#page-5-12)] have interval colorings. Hansen

[\[13\]](#page-5-8) proved that every (2, β)-biregular bigraph admits an interval coloring if β is an even integer. A similar result for $(2, \beta)$ -biregular bigraphs for odd β was given in [\[14,](#page-5-13)[19](#page-6-3)]. Only a little is known about $(3, \beta)$ -biregular bigraphs. It follows from the result of Hanson and Loten [\[15\]](#page-5-14) that no such a graph has an interval coloring with fewer than $3+b - \gcd(3, b)$ colors, where gcd denotes the greatest common divisor. We showed in [\[3](#page-5-15)] that the problem to determine whether a $(3, \beta)$ -biregular bigraph has an interval coloring is \mathcal{NP} -complete in the case when 3 divides β .

It is unknown whether all (3, 4)-biregular bigraphs have interval colorings. Pyatkin [\[21](#page-6-4)] showed that such a graph *G* has an interval coloring if *G* has a 3 regular subgraph covering the vertices of degree four. Another sufficient condition for the existence of an interval coloring of a (3, 4)-biregular bigraph *G* was obtained in [\[4](#page-5-16)[,10](#page-5-17)]: *G* admits an interval coloring if it has a path factor where every component is a path of length not exceeding 8 and the endpoints of each path have degree three. It was conjectured in [\[4\]](#page-5-16) that every simple (3, 4)-biregular bigraph has such a path factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple (3, 4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover, we suggest a polynomial algorithm for the construction of such a path factor.

Note that (3, 4)-biregular bigraphs with multiple edges need not have path factors with the required property. For example, consider the graph *G* formed from three triple-edges by adding a claw; that is, the pairs $x_i y_i$ have multiplicity three for $i \in \{1, 2, 3\}$, and there is an additional vertex y_0 with neighborhood $\{x_1, x_2, x_3\}$. Clearly, there is no path factor of *G* such that the endpoints of each path have degree 3.

2. The Result

A *pseudo path factor* of a (3, 4)-biregular bigraph *G* with bipartition (*Y*, *X*) is a subgraph F of G , such that every component of F is a path of even length and *d_F*(*x*) = 2 for every *x* ∈ *X*. Let $V_F = \{y \in Y : d_F(y) > 0\}.$

Theorem 1. *Every simple* (3, 4)*-biregular bigraph has a pseudo path factor.*

Proof. Let *G* be a simple (3, 4)-biregular bigraph with bipartition (*Y*, *X*). The algorithm below constructs a sequence of subgraphs F_0, F_1, F_2, \ldots of *G*, where *V*(*F*₀) = *V*(*G*), \emptyset = *E*(*F*₀) ⊂ *E*(*F*₁) ⊂ *E*(*F*₂) ⊂ ... and each component of *F_i* is a path, for every *j* \geq 0. At each step *i* \geq 1 the algorithm constructs *F_i* by adding to F_{i-1} one or two edges until the condition $d_{F_i}(x) = 2$ holds for all $x \in X$, where $j \ge 1$. Then $F = F_j$ is a pseudo path factor of *G*. Parallelly the algorithm constructs a sequence of subgraphs U_0, U_1, U_2, \ldots of *G*, where $V(U_0) = V(G)$, $\emptyset = E(U_0) \subset E(U_1) \subset E(U_2) \subset \cdots \subset E(U_i)$. The edges of each U_i will not be in the final pseudo path factor *F*. The algorithm is based on Properties 1-4. During the algorithm the vertices in the set *Y* are considered to be unscanned or scanned. Initially all vertices in *Y* are unscanned. At the beginning of each step $i \geq 1$ we have a current vertex x_i . The algorithm selects an unscanned vertex y_i , adjacent to x_i , and determines which edges incident with y_i will be in F_i and which ones in U_i . If $d_{F_i}(v) = 2$ for each $v \in X$, the algorithm stops. Otherwise the algorithm selects a new current vertex and goes to the next step.

Algorithm

Initially $F_0 = (V(G), \emptyset), U_0 = (V(G), \emptyset)$ and all vertices in *Y* are unscanned. **Step** 0. Select a vertex $y_0 \in Y$. Let x_0, x_1, w be the vertices in *X* adjacent to y_0 in *G*. Put $F_1 = F_0 + \{wy_0, y_0x_0\}$ and $U_1 = U_0 + y_0x_1$. Consider the vertex y_0 to be scanned. Go to step 1 and consider the vertex x_1 as the current vertex for step 1.

Step *i* (*i* ≥ 1)**.** Suppose that a vertex x_i with $d_{F_{i-1}}(x_i) \leq 1$ was selected at step $(i - 1)$ as the current vertex. By Property [4](#page-3-0) (see below), $d_{U_{i-1}}(x_i) \leq 2$. Therefore there is an edge $x_i y_i$ with $y_i \in Y$ which neither belongs to F_{i-1} , nor to U_{i-1} . Then, by Property 3 , the vertex y_i is an unscanned vertex and therefore the subgraph $F_{i-1} + x_i y_i$ does not contain a cycle. Since $d_G(y_i) = 3$, the vertex y_i , besides x_i , is adjacent to two other vertices, $w_1^{(i)}$ and $w_2^{(i)}$.

Case 1. $d_{F_{i-1}}(w_1^{(i)}) = 2 = d_{F_{i-1}}(w_2^{(i)})$.

Put $F_i = F_{i-1} + x_i y_i$ and $U_i = U_{i-1} + \{y_i w_1^{(i)}, y_i w_2^{(i)}\}$. Consider the vertex y_i to be scanned. If $d_{F_i}(v) = 2$ for every vertex $v \in X$ then Stop. Otherwise select an arbitrary vertex x_{i+1} ∈ *X* with $d_{F_i}(x_{i+1})$ ≤ 1, go to step $(i + 1)$ and consider x_{i+1} as the current vertex for step $(i + 1)$.

Case 2. $d_{F_{i-1}}(w_1^{(i)}) = 2$ and $d_{F_{i-1}}(w_2^{(i)}) \leq 1$. Put $F_i = F_{i-1} + x_i y_i$, $U_i = U_{i-1} + \{y_i w_1^{(i)}, y_i w_2^{(i)}\}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step $(i + 1)$ and consider the vertex x_{i+1} as the current vertex for step $(i + 1)$.

Case 3. $d_{F_{i-1}}(w_1^{(i)}) \leq 1$ and $d_{F_{i-1}}(w_2^{(i)}) \leq 1$. **Subcase 3a.** $d_{F_{i-1}}(w_1^{(i)}) = 0$ or $d_{F_{i-1}}(w_2^{(i)}) = 0$.

We assume that $d_{F_{i-1}}(w_1^{(i)}) = 0$. Put $F_i = F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$, $U_i = U_{i-1} + y_i w_2^{(i)}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step $(i + 1)$ and consider the vertex x_{i+1} as the current vertex for step $(i + 1)$. **Subcase 3b.** $d_{F_{i-1}}(w_1^{(i)}) = 1 = d_{F_{i-1}}(w_2^{(i)})$.

Since y_i is an unscanned vertex and $F_{i-1} + x_i y_i$ does not contain a cycle, the vertex *y_i* is an endvertex of only one path in $F_{i-1} + x_i y_i$. Then at least one of the graphs $F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$ and $F_{i-1} + \{x_i y_i, y_i w_2^{(i)}\}$ does not contain a cycle. Assume, for example, that $F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$ does not contain a cycle. Then put $F_i =$ $F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}, U_i = U_{i-1} + y_i w_2^{(i)}$ and consider the vertex y_i to be scanned. Furthemore put $x_{i+1} = w_2^{(i)}$, go to step $(i + 1)$ and consider the vertex x_{i+1} as the current vertex for step $(i + 1)$.

Now we will prove the correctness of the algorithm. At the beginning of step *i* we have that x_i is the current vertex, y_i is an unscanned vertex adjacent to x_i and $w_1^{(i)}$, $w_2^{(i)}$ are the two other vertices adjacent to y_i . The following two properties are evident.

Property 1. The algorithm determines which edges incident with y_i will be in F_i and which edges will be in U_i . The vertex y_i is then considered to be scanned and the algorithm will never consider *yi* again.

Property 2. The current vertex x_{i+1} for step $(i + 1)$ is selected among the vertices $w_1^{(i)}$ and $w_2^{(i)}$, except the case $d_{F_i}(w_1^{(i)}) = d_{F_i}(w_2^{(i)}) = 2$ when an arbitrary vertex x_{i+1} \in *X* with $d_{F_i}(x_{i+1})$ \leq 1 is selected as the current vertex.

Properties 1 and 2 imply the next property:

Property 3. If $x \in X$, $y \in Y$ and the edge *xy* neither belongs to F_{i-1} , nor to U_{i-1} , then the vertex *y* is unscanned at the beginning of step *i*.

Property 4. If *x* ∈ *X* and $d_{F_{i-1}}(x) \le 1$ then $d_{U_{i-1}}(x) \le 2$.

Proof. The statement is evident if $d_{U_{i-1}}(x) = 0$. Suppose that $d_{U_{i-1}}(x) \ge 1$ and *j* is the minimum number such that $j < i$ and an edge incident with x was included in *U*_{*j*−1} at step (*j* − 1). Then the statement of Property [4](#page-3-0) is evident if $j = i - 1$.

Now we consider the case $j < i - 1$. Clearly, $d_{F_{i-1}}(x) \leq 1$ because $F_{j-1} \subset F_{i-1}$ and $d_{F_{i-1}}(x) \leq d_{F_{i-1}}(x) \leq 1$. Let xy_{j-1} be the edge included in U_{j-1} at step $(j-1)$. Since $d_{U_{i-1}}(x) = 1$ and $d_{F_{i-1}}(x) \le 1$, there is an edge *xy_i* with *y_i* ∈ *Y* which neither belongs to F_{i-1} , nor to U_{i-1} . Then, by Property [3,](#page-3-1) the vertex y_i is an unscanned vertex and therefore the subgraph $F_{j-1} + xy_j$ does not contain a cycle. According to the description of the algorithm, the edge xy_j will be in any case included in F_j at step *j*, that is, $d_{F_i}(x) \geq 1$. Then $d_{F_k}(x) = 1$ for every $k, j \leq k \leq i - 1$, because *F_j* ⊂ *F_k* ⊂ *F_{i−1}* and $1 \le d_{F_i}(x) \le d_{F_k}(x) \le d_{F_{i-1}}(x) \le 1$. Now we will show that $d_{U_{k-1}}(x) = 1$ for each $k, j \leq k < i-1$. Suppose to the contrary that $d_{U_{k-2}}(x) = 1$ and $d_{U_{k-1}}(x) = 2$ for some $k, j < k < i-1$, that is, another edge incident with *x* was included in U_{k-1} at step ($k-1$). Then the conditions $d_{U_{k-1}}(x) = 2$ and $d_{F_{k-1}}(x) = 1$ imply that there is an edge $e \neq y_j x$ incident with *x* which neither belongs to F_{k-1} , nor to *Uk*−1. Using a similar argument as above we obtain that the edge *e* should be included in F_k at step *k*. But then $d_{F_{i-1}}(x) \geq d_{F_k}(x) = 2$, which contradicts our assumption $d_{F_{i-1}}(x) \leq 1$. Thus $d_{U_{k-1}}(x) = 1$ for each $k, j \leq k < i-1$. It is possible that an edge incident with *x* will be included in U_{i-1} at step $(i - 1)$. Therefore $d_{U_{i-1}}(x) \leq 2.$

The description of the algorithm and Properties 1-4 show that the algorithm will stop at step *i* only when $d_{F_i}(x) = 2$ for every $x \in X$, that is, when F_i is a pseudo path factor of *G*. The proof of Theorem [1](#page-1-0) is complete. \Box

Now we will prove that every pseudo path factor of a (3, 4)-biregular bigraph *G* can be transformed into a path factor of *G*, such that the endpoints of each path have degree 3.

Lemma 2. Let *G* be a (3, 4)-biregular bigraph with bipartition (Y, X) . Then $|X| = 3k$ *and* $|Y| = 4k$ *, for some positive integer k.*

On Path Factors of (3, 4)-Biregular Bigraphs 409

This is evident because $|E(G)| = 4|X| = 3|Y|$.

Lemma 3. *Let F be a pseudo path factor of a* (3, 4)*-biregular bigraph G with bipartition* (*Y*, *X*)*. Then F has a component which is a path of length at least four.*

Proof. By Lemma [2](#page-3-2) we have that $|X| = 3k$ and $|Y| = 4k$ for some integer k. We also have that $d_F(x) = 2$ for each vertex $x \in X$. If the length of all paths in *F* is two, then $|Y| > 2|X| = 6k$ which contradicts $|Y| = 4k$. Therefore *F* has a component which is a path of length at least four.

Theorem 4. *Let F be a pseudo path factor of a simple* (3, 4)*-biregular bigraph G with bipartition* (*Y*, *X*). If $V_F \neq Y$ and y_0 *is a vertex with* $d_F(y_0) = 0$, then there is a pseudo *path factor* F' *with* $V_{F'} = V_F \cup \{y_0\}$ *, such that no path in* F' *is longer than the longest path in F.*

Proof. Let $y_0 \in Y$ and $d_F(y_0) = 0$. We will describe an algorithm which will construct a special trail *T* with origin *y*0.

Step 1. Select an edge $y_0x_1 \notin E(F)$. Since $d_F(x_1) = 2$, there are two edges of *F*, $x_1 y_1$ and $x_1 u_1$, which are incident with x_1 .

Case 1. $d_F(y_1) = 2$ or $d_F(u_1) = 2$.

Suppose, for example, that $d_F(y_1) = 2$. Then put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and Stop. *Case 2.* $d_F(y_1) = 1 = d_F(u_1)$.

Put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and go to Step 2.

Step *i* (*i* \geq 1)**.** Suppose that we have already constructed a trail $T = y_0 \rightarrow x_1 \rightarrow$ $y_1 \rightarrow \cdots \rightarrow x_i \rightarrow y_i$ which satisfies the following conditions:

- (a) All edges in *T* are distinct and $y_{i-1}x_i \notin E(F)$, $x_i y_i \in E(F)$ for $j = 1, \ldots, i$.
- (b) The vertices y_1, \ldots, y_i are distinct.
- (c) A component of *F* containing the vertex x_i is a path of length 2, for $j =$ 1,...,*i*.

Select an edge $e \in E(G) \backslash E(F)$ which is incident with y_i . The existence of such an edge follows from the conditions (a), (b) and (c). Moreover, the condition (b) implies that $e \notin T$. Let $e = y_i x_{i+1}$. Then $d_F(x_{i+1}) = 2$ because *F* is a pseudo path factor of *G*. Since $e \notin E(T)$, the conditions (a), (b) and (c) imply that at least one of the edges of *F* incident with x_{i+1} , does not belong to *T*.

Case 1. x_{i+1} lies on a component of *F* which is a path of length two.

Select a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$, add the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to *T* and go to step $(i + 1)$. Now $T = y_0 \rightarrow x_1 \rightarrow y_1 \rightarrow \cdots \rightarrow$ $x_{i+1} \rightarrow y_{i+1}$.

Case 2. x_{i+1} lies on a component of *F* which is a path of length at least four. There is a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$ and $d_F(y_{i+1}) = 2$. Add

the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to *T* and Stop. We have now that $T = y_0 \rightarrow$ $x_1 \rightarrow y_1 \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}.$

By Lemma [3,](#page-4-0) *F* has a component which is a path of length at least four. Therefore the algorithm will stop after a finite number of steps. Let the trail $T = y_0 \rightarrow x_1 \rightarrow$

 $y_1 \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}$, be the result of the algorithm, where $i \geq 0$, the vertex x_i lies on a component of *F* which is a path of length two for each $j \le i$, the vertex x_{i+1} lies on a component of *F* which is a path of length at least 4, and $d_F(y_{i+1}) = 2$. We define a new pseudo path factor F' by setting $V(F') = V(F)$ and

$$
E(F') = (E(F) \setminus \{x_j y_j : j = 1, ..., i, i + 1\}) \cup \{y_{j-1} x_j : j = 1, ..., i, i + 1\}.
$$

Clearly, $V_{F'} = V_F \cup \{v_0\}$ and the proof of Theorem [4](#page-4-1) is complete.

Theorems [1](#page-1-0) and [4](#page-4-1) imply the following theorem:

Theorem 5. *Every simple* (3, 4)*-biregular bigraph has a path factor such that the endpoints of each path have degree 3.*

References

- 1. Akiyama, J., Kano, M.: Factors and factorizations of graphs– a survey. J. Graph Theory **9**, 1–42 (1985)
- 2. Ando, K., Egawa, Y., Kaneko, A., Kawarabayashi, K., Matsuba, H.: Path factors in claw-free graphs. Discrete Mathematics **243**, 195–2000 (2002)
- 3. Asratian, A.S., Casselgren, C.J.: On interval edge colorings of (α, β) -biregular bipartite graphs. Discrete Math. **307**, 1951–1956 (2006)
- 4. Asratian, A.S., Casselgren, C.J., Vandenbussche, J., West, D.B.: Proper path-factors and interval edge-colorings of (3, 4)-biregular bigraphs. J. Graph Theory (in press)
- 5. Asratian, A.S., Kamalian, R.R.: Interval coloring of the edges of a multigraph (in Russian). Applied mathematics **5**, 25–34 (1987), Erevan University
- 6. Asratian, A.S., Kamalian, R.R.: Investigation of interval edge-colorings of graphs. Journal of Combinatorial Theory. Series B **62**(1), 34–43 (1994)
- 7. Asratian, A.S., Denley, T.M.J., Häggkvist, R.: Bipartite graphs and their applications. Cambridge University Press, Cambridge (1998)
- 8. Axenovich, M.A.: On interval colorings of planar graphs. Proc. 33rd Southeastern Intl. Conf. Combin., Graph Theory and Computing (Boca Raton, FL, 2002). Congr. Numer. **159**, 77–94 (2002)
- 9. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. American Elsevier Publishing Co., Inc., New York (1976)
- 10. Casselgren, C.J.: Some results on interval edge colorings of bipartite graphs. Master's Thesis, Linköping University (2005)
- 11. Giaro, K., Kubale, M.: Compact scheduling of zero-one time operations in multi-stage systems. Discrete Appl. Math. **145**, 95–103 (2004)
- 12. Giaro, K., Kubale,M.: Consecutive edge-colorings of complete and incomplete Cartesian products of graphs. Congr. Numer. **128**, 143–149 (1997)
- 13. Hansen, H.M.: Scheduling with minimum waiting periods (in Danish). Master Thesis, Odense University (1992)
- 14. Hanson, D., Loten, C.O.M., Toft, B.: On interval colourings of bi-regular bipartite graphs. Ars Combin. **50**, 23–32 (1998)
- 15. Hanson, D., Loten, C.O.M.: A lower bound for interval colouring bi-regular bipartite graphs. Bulletin of the ICA **18**, 69–74 (1996)
- 16. Kamalian, R.R.: Interval edge-colorings of graphs, Doctoral thesis, Novosibirsk (1990)
- 17. Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least 2. J. Comb.Theory B **88**, 195–218 (2003)
- 18. Kawarabayashi, K.,Matsuba, H., Oda, Y., Ota, K.: Path factors in cubic graphs. J. Graph Theory **39**, 188–193 (2002)

On Path Factors of (3, 4)-Biregular Bigraphs 411

- 19. Kostochka, A.V.: Unpublished manuscript (1995)
- 20. Plummer, M.D.: Graph factors and factorization: 1985-2003: A survey. Discrete Mathematics **307**, 791–821 (2007)
- 21. Pyatkin, A.V.: Interval coloring of (3,4)-biregular bigraphs having large cubic subgraphs. J. Graph Theory **47**, 122–128 (2004)
- 22. Sevastjanov, S.V.: Interval colorability of the edges of a bigraph (in Russian). Metody Diskretnogo Analiza **50**, 61–72 (1990)
- 23. Wang, H.: Path factors of bipartite graphs. J. Graph Theory **18**, 161–167 (1994)

Received: June 5, 2007 Final version received: June 4, 2008