Graphs and Combinatorics

© Springer-Verlag 2008

On Path Factors of (3, 4)-Biregular Bigraphs

Armen S. Asratian¹, Carl Johan Casselgren²

¹ Linköping University, Linköping Sweden, e-mail: arasr@mai.liu.se

² Umeå University, Umeå, Sweden. e-mail: carl-johan.casselgren@math.umu.se

Abstract. A (3, 4)-biregular bigraph G is a bipartite graph where all vertices in one part have degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning subgraph whose components are nontrivial paths. We prove that a simple (3, 4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover we suggest a polynomial algorithm for the construction of such a path factor.

Key words. Path factor, Biregular bigraph, Interval edge coloring.

1. Introduction

In this paper we investigate the existence of path factors of (3,4)-biregular bigraphs such that the endpoints of each path have degree three. Our investigation is motivated by a problem on interval colorings. A proper edge coloring of a graph G with colors $1, 2, 3, \ldots$ is called an *interval* (or *consecutive*) coloring if the colors received by the edges incident with each vertex of G form an interval of integers. The notion of interval colorings was introduced in 1987 by Asratian and Kamalian [5] (available in English as [6]). Generally, it is an \mathcal{NP} -complete problem to determine whether a given bipartite graph has an interval coloring [22]. Nevertheless, trees, regular and complete bigraphs [13,16], doubly convex bigraphs [16], grids [12] and all simple outerplanar bigraphs [8,11] have interval colorings. Hansen

[13] proved that every $(2, \beta)$ -biregular bigraph admits an interval coloring if β is an even integer. A similar result for $(2, \beta)$ -biregular bigraphs for odd β was given in [14, 19]. Only a little is known about $(3, \beta)$ -biregular bigraphs. It follows from the result of Hanson and Loten [15] that no such a graph has an interval coloring with fewer than $3+b-\gcd(3, b)$ colors, where gcd denotes the greatest common divisor. We showed in [3] that the problem to determine whether a $(3, \beta)$ -biregular bigraph has an interval coloring is \mathcal{NP} -complete in the case when 3 divides β .

It is unknown whether all (3, 4)-biregular bigraphs have interval colorings. Pyatkin [21] showed that such a graph G has an interval coloring if G has a 3-regular subgraph covering the vertices of degree four. Another sufficient condition for the existence of an interval coloring of a (3, 4)-biregular bigraph G was obtained in [4, 10]: G admits an interval coloring if it has a path factor where every component is a path of length not exceeding 8 and the endpoints of each path have degree three. It was conjectured in [4] that every simple (3, 4)-biregular bigraph has such a path factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple (3, 4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover, we suggest a polynomial algorithm for the construction of such a path factor.

Note that (3, 4)-biregular bigraphs with multiple edges need not have path factors with the required property. For example, consider the graph G formed from three triple-edges by adding a claw; that is, the pairs $x_i y_i$ have multiplicity three for $i \in \{1, 2, 3\}$, and there is an additional vertex y_0 with neighborhood $\{x_1, x_2, x_3\}$. Clearly, there is no path factor of G such that the endpoints of each path have degree 3.

2. The Result

A pseudo path factor of a (3, 4)-biregular bigraph G with bipartition (Y, X) is a subgraph F of G, such that every component of F is a path of even length and $d_F(x) = 2$ for every $x \in X$. Let $V_F = \{y \in Y : d_F(y) > 0\}$.

Theorem 1. Every simple (3, 4)-biregular bigraph has a pseudo path factor.

Proof. Let G be a simple (3,4)-biregular bigraph with bipartition (Y,X). The algorithm below constructs a sequence of subgraphs F_0, F_1, F_2, \ldots of G, where $V(F_0) = V(G)$, $\emptyset = E(F_0) \subset E(F_1) \subset E(F_2) \subset \ldots$ and each component of F_j is a path, for every $j \geq 0$. At each step $i \geq 1$ the algorithm constructs F_i by adding to F_{i-1} one or two edges until the condition $d_{F_j}(x) = 2$ holds for all $x \in X$, where $j \geq 1$. Then $F = F_j$ is a pseudo path factor of G. Parallelly the algorithm constructs a sequence of subgraphs U_0, U_1, U_2, \ldots of G, where $V(U_0) = V(G)$, $\emptyset = E(U_0) \subset E(U_1) \subset E(U_2) \subset \cdots \subset E(U_j)$. The edges of each U_i will not be in the final pseudo path factor F. The algorithm is based on Properties 1-4. During the algorithm the vertices in the set Y are considered to be unscanned or scanned. Initially all vertices in Y are unscanned. At the beginning of each step $i \geq 1$ we have

a current vertex x_i . The algorithm selects an unscanned vertex y_i , adjacent to x_i , and determines which edges incident with y_i will be in F_i and which ones in U_i . If $d_{F_i}(v) = 2$ for each $v \in X$, the algorithm stops. Otherwise the algorithm selects a new current vertex and goes to the next step.

Algorithm

Initially $F_0 = (V(G), \emptyset)$, $U_0 = (V(G), \emptyset)$ and all vertices in Y are unscanned. **Step** 0. Select a vertex $y_0 \in Y$. Let x_0, x_1, w be the vertices in X adjacent to y_0 in G. Put $F_1 = F_0 + \{wy_0, y_0x_0\}$ and $U_1 = U_0 + y_0x_1$. Consider the vertex y_0 to be scanned. Go to step 1 and consider the vertex x_1 as the current vertex for step 1.

Step i ($i \ge 1$). Suppose that a vertex x_i with $d_{F_{i-1}}(x_i) \le 1$ was selected at step (i-1) as the current vertex. By Property 4 (see below), $d_{U_{i-1}}(x_i) \le 2$. Therefore there is an edge $x_i y_i$ with $y_i \in Y$ which neither belongs to F_{i-1} , nor to U_{i-1} . Then, by Property 3, the vertex y_i is an unscanned vertex and therefore the subgraph $F_{i-1} + x_i y_i$ does not contain a cycle. Since $d_G(y_i) = 3$, the vertex y_i , besides x_i , is adjacent to two other vertices, $w_1^{(i)}$ and $w_2^{(i)}$.

Case 1.
$$d_{F_{i-1}}(w_1^{(i)}) = 2 = d_{F_{i-1}}(w_2^{(i)}).$$

Put $F_i = F_{i-1} + x_i y_i$ and $U_i = U_{i-1} + \{y_i w_1^{(i)}, y_i w_2^{(i)}\}$. Consider the vertex y_i to be scanned. If $d_{F_i}(v) = 2$ for every vertex $v \in X$ then Stop. Otherwise select an arbitrary vertex $x_{i+1} \in X$ with $d_{F_i}(x_{i+1}) \le 1$, go to step (i+1) and consider x_{i+1} as the current vertex for step (i+1).

Case 2.
$$d_{F_{i-1}}(w_1^{(i)}) = 2$$
 and $d_{F_{i-1}}(w_2^{(i)}) \le 1$.

Put $F_i = F_{i-1} + x_i y_i$, $U_i = U_{i-1} + \{y_i w_1^{(i)}, y_i w_2^{(i)}\}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step (i+1) and consider the vertex x_{i+1} as the current vertex for step (i+1).

Case 3.
$$d_{F_{i-1}}(w_1^{(i)}) \le 1$$
 and $d_{F_{i-1}}(w_2^{(i)}) \le 1$.

Subcase 3a.
$$d_{F_{i-1}}(w_1^{(i)}) = 0$$
 or $d_{F_{i-1}}(w_2^{(i)}) = 0$.

We assume that $d_{F_{i-1}}(w_1^{(i)}) = 0$. Put $F_i = F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$, $U_i = U_{i-1} + y_i w_2^{(i)}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step (i+1) and consider the vertex x_{i+1} as the current vertex for step (i+1).

Subcase 3b.
$$d_{F_{i-1}}(w_1^{(i)}) = 1 = d_{F_{i-1}}(w_2^{(i)}).$$

Since y_i is an unscanned vertex and $F_{i-1}^2 + x_i y_i$ does not contain a cycle, the vertex y_i is an endvertex of only one path in $F_{i-1} + x_i y_i$. Then at least one of the graphs $F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$ and $F_{i-1} + \{x_i y_i, y_i w_2^{(i)}\}$ does not contain a cycle. Assume, for example, that $F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$ does not contain a cycle. Then put $F_i = F_{i-1} + \{x_i y_i, y_i w_1^{(i)}\}$, $U_i = U_{i-1} + y_i w_2^{(i)}$ and consider the vertex y_i to be scanned. Furthemore put $x_{i+1} = w_2^{(i)}$, go to step (i+1) and consider the vertex x_{i+1} as the current vertex for step (i+1).

Now we will prove the correctness of the algorithm. At the beginning of step i we have that x_i is the current vertex, y_i is an unscanned vertex adjacent to x_i and $w_1^{(i)}$, $w_2^{(i)}$ are the two other vertices adjacent to y_i . The following two properties are evident.

Property 1. The algorithm determines which edges incident with y_i will be in F_i and which edges will be in U_i . The vertex y_i is then considered to be scanned and the algorithm will never consider y_i again.

Property 2. The current vertex x_{i+1} for step (i+1) is selected among the vertices $w_1^{(i)}$ and $w_2^{(i)}$, except the case $d_{F_i}(w_1^{(i)}) = d_{F_i}(w_2^{(i)}) = 2$ when an arbitrary vertex $x_{i+1} \in X$ with $d_{F_i}(x_{i+1}) \le 1$ is selected as the current vertex.

Properties 1 and 2 imply the next property:

Property 3. If $x \in X$, $y \in Y$ and the edge xy neither belongs to F_{i-1} , nor to U_{i-1} , then the vertex y is unscanned at the beginning of step i.

Property 4. If $x \in X$ and $d_{F_{i-1}}(x) \le 1$ then $d_{U_{i-1}}(x) \le 2$.

Proof. The statement is evident if $d_{U_{i-1}}(x) = 0$. Suppose that $d_{U_{i-1}}(x) \ge 1$ and j is the minimum number such that j < i and an edge incident with x was included in U_{i-1} at step (j-1). Then the statement of Property 4 is evident if j = i - 1.

Now we consider the case j < i - 1. Clearly, $d_{F_{i-1}}(x) \le 1$ because $F_{j-1} \subset F_{i-1}$ and $d_{F_{i-1}}(x) \le d_{F_{i-1}}(x) \le 1$. Let xy_{j-1} be the edge included in U_{j-1} at step (j-1). Since $d_{U_{i-1}}(x) = 1$ and $d_{F_{i-1}}(x) \le 1$, there is an edge xy_j with $y_j \in Y$ which neither belongs to F_{i-1} , nor to U_{i-1} . Then, by Property 3, the vertex y_i is an unscanned vertex and therefore the subgraph $F_{j-1} + xy_j$ does not contain a cycle. According to the description of the algorithm, the edge xy_i will be in any case included in F_i at step j, that is, $d_{F_i}(x) \ge 1$. Then $d_{F_k}(x) = 1$ for every $k, j \le k \le i - 1$, because $F_j \subset F_k \subset F_{i-1}$ and $1 \le d_{F_i}(x) \le d_{F_k}(x) \le d_{F_{i-1}}(x) \le 1$. Now we will show that $d_{U_{k-1}}(x) = 1$ for each $k, j \le k < i - 1$. Suppose to the contrary that $d_{U_{k-2}}(x) = 1$ and $d_{U_{k-1}}(x) = 2$ for some k, j < k < i-1, that is, another edge incident with x was included in U_{k-1} at step (k-1). Then the conditions $d_{U_{k-1}}(x) = 2$ and $d_{F_{k-1}}(x) = 1$ imply that there is an edge $e \neq y_i x$ incident with x which neither belongs to F_{k-1} , nor to U_{k-1} . Using a similar argument as above we obtain that the edge e should be included in F_k at step k. But then $d_{F_{i-1}}(x) \ge d_{F_k}(x) = 2$, which contradicts our assumption $d_{F_{i-1}}(x) \le 1$. Thus $d_{U_{k-1}}(x) = 1$ for each $k, j \le k < i-1$. It is possible that an edge incident with x will be included in U_{i-1} at step (i-1). Therefore $d_{U_{i-1}}(x) \leq 2.$

The description of the algorithm and Properties 1-4 show that the algorithm will stop at step i only when $d_{F_i}(x) = 2$ for every $x \in X$, that is, when F_i is a pseudo path factor of G. The proof of Theorem 1 is complete.

Now we will prove that every pseudo path factor of a (3, 4)-biregular bigraph G can be transformed into a path factor of G, such that the endpoints of each path have degree 3.

Lemma 2. Let G be a (3, 4)-biregular bigraph with bipartition (Y, X). Then |X| = 3k and |Y| = 4k, for some positive integer k.

This is evident because |E(G)| = 4|X| = 3|Y|.

Lemma 3. Let F be a pseudo path factor of a (3, 4)-biregular bigraph G with bipartition (Y, X). Then F has a component which is a path of length at least four.

Proof. By Lemma 2 we have that |X| = 3k and |Y| = 4k for some integer k. We also have that $d_F(x) = 2$ for each vertex $x \in X$. If the length of all paths in F is two, then $|Y| \ge 2|X| = 6k$ which contradicts |Y| = 4k. Therefore F has a component which is a path of length at least four.

Theorem 4. Let F be a pseudo path factor of a simple (3, 4)-biregular bigraph G with bipartition (Y, X). If $V_F \neq Y$ and y_0 is a vertex with $d_F(y_0) = 0$, then there is a pseudo path factor F' with $V_{F'} = V_F \cup \{y_0\}$, such that no path in F' is longer than the longest path in F.

Proof. Let $y_0 \in Y$ and $d_F(y_0) = 0$. We will describe an algorithm which will construct a special trail T with origin y_0 .

Step 1. Select an edge $y_0x_1 \notin E(F)$. Since $d_F(x_1) = 2$, there are two edges of F, x_1y_1 and x_1u_1 , which are incident with x_1 .

Case 1. $d_F(y_1) = 2$ or $d_F(u_1) = 2$.

Suppose, for example, that $d_F(y_1) = 2$. Then put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and Stop.

Case 2. $d_F(y_1) = 1 = d_F(u_1)$.

Put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and go to Step 2.

Step i ($i \ge 1$). Suppose that we have already constructed a trail $T = y_0 \to x_1 \to y_1 \to \cdots \to x_i \to y_i$ which satisfies the following conditions:

- (a) All edges in T are distinct and $y_{j-1}x_j \notin E(F)$, $x_jy_j \in E(F)$ for j = 1, ..., i.
- (b) The vertices y_1, \ldots, y_i are distinct.
- (c) A component of F containing the vertex x_j is a path of length 2, for j = 1, ..., i.

Select an edge $e \in E(G) \setminus E(F)$ which is incident with y_i . The existence of such an edge follows from the conditions (a), (b) and (c). Moreover, the condition (b) implies that $e \notin T$. Let $e = y_i x_{i+1}$. Then $d_F(x_{i+1}) = 2$ because F is a pseudo path factor of G. Since $e \notin E(T)$, the conditions (a), (b) and (c) imply that at least one of the edges of F incident with x_{i+1} , does not belong to T.

Case 1. x_{i+1} lies on a component of F which is a path of length two.

Select a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$, add the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to T and go to step (i+1). Now $T = y_0 \to x_1 \to y_1 \to \cdots \to x_{i+1} \to y_{i+1}$.

Case 2. x_{i+1} lies on a component of F which is a path of length at least four. There is a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$ and $d_F(y_{i+1}) = 2$. Add the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to T and Stop. We have now that $T = y_0 \rightarrow x_1 \rightarrow y_1 \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}$.

By Lemma 3, F has a component which is a path of length at least four. Therefore the algorithm will stop after a finite number of steps. Let the trail $T = y_0 \rightarrow x_1 \rightarrow x_1$

 $y_1 \to \cdots \to x_{i+1} \to y_{i+1}$, be the result of the algorithm, where $i \ge 0$, the vertex x_j lies on a component of F which is a path of length two for each $j \le i$, the vertex x_{i+1} lies on a component of F which is a path of length at least 4, and $d_F(y_{i+1}) = 2$. We define a new pseudo path factor F' by setting V(F') = V(F) and

$$E(F') = (E(F) \setminus \{x_i y_i : j = 1, \dots, i, i + 1\}) \cup \{y_{i-1} x_i : j = 1, \dots, i, i + 1\}.$$

Clearly, $V_{F'} = V_F \cup \{y_0\}$ and the proof of Theorem 4 is complete.

Theorems 1 and 4 imply the following theorem:

Theorem 5. Every simple (3, 4)-biregular bigraph has a path factor such that the endpoints of each path have degree 3.

References

- 1. Akiyama, J., Kano, M.: Factors and factorizations of graphs—a survey. J. Graph Theory 9, 1–42 (1985)
- 2. Ando, K., Egawa, Y., Kaneko, A., Kawarabayashi, K., Matsuba, H.: Path factors in claw-free graphs. Discrete Mathematics 243, 195–2000 (2002)
- 3. Asratian, A.S., Casselgren, C.J.: On interval edge colorings of (α, β) -biregular bipartite graphs. Discrete Math. 307, 1951–1956 (2006)
- 4. Asratian, A.S., Casselgren, C.J., Vandenbussche, J., West, D.B.: Proper path-factors and interval edge-colorings of (3, 4)-biregular bigraphs. J. Graph Theory (in press)
- 5. Asratian, A.S., Kamalian, R.R.: Interval coloring of the edges of a multigraph (in Russian). Applied mathematics **5**, 25–34 (1987), Erevan University
- 6. Asratian, A.S., Kamalian, R.R.: Investigation of interval edge-colorings of graphs. Journal of Combinatorial Theory. Series B **62**(1), 34–43 (1994)
- 7. Asratian, A.S., Denley, T.M.J., Häggkvist, R.: Bipartite graphs and their applications. Cambridge University Press, Cambridge (1998)
- 8. Axenovich, M.A.: On interval colorings of planar graphs. Proc. 33rd Southeastern Intl. Conf. Combin., Graph Theory and Computing (Boca Raton, FL, 2002). Congr. Numer. **159**, 77–94 (2002)
- 9. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. American Elsevier Publishing Co., Inc., New York (1976)
- Casselgren, C.J.: Some results on interval edge colorings of bipartite graphs. Master's Thesis, Linköping University (2005)
- 11. Giaro, K., Kubale, M.: Compact scheduling of zero-one time operations in multi-stage systems. Discrete Appl. Math. **145**, 95–103 (2004)
- 12. Giaro, K., Kubale, M.: Consecutive edge-colorings of complete and incomplete Cartesian products of graphs. Congr. Numer. 128, 143–149 (1997)
- Hansen, H.M.: Scheduling with minimum waiting periods (in Danish). Master Thesis, Odense University (1992)
- 14. Hanson, D., Loten, C.O.M., Toft, B.: On interval colourings of bi-regular bipartite graphs. Ars Combin. **50**, 23–32 (1998)
- 15. Hanson, D., Loten, C.O.M.: A lower bound for interval colouring bi-regular bipartite graphs. Bulletin of the ICA 18, 69–74 (1996)
- 16. Kamalian, R.R.: Interval edge-colorings of graphs, Doctoral thesis, Novosibirsk (1990)
- 17. Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least 2. J. Comb. Theory B 88, 195–218 (2003)
- 18. Kawarabayashi, K., Matsuba, H., Oda, Y., Ota, K.: Path factors in cubic graphs. J. Graph Theory 39, 188–193 (2002)

- 19. Kostochka, A.V.: Unpublished manuscript (1995)
- Plummer, M.D.: Graph factors and factorization: 1985-2003: A survey. Discrete Mathematics 307, 791–821 (2007)
- 21. Pyatkin, A.V.: Interval coloring of (3,4)-biregular bigraphs having large cubic subgraphs. J. Graph Theory 47, 122–128 (2004)
- 22. Sevastjanov, S.V.: Interval colorability of the edges of a bigraph (in Russian). Metody Diskretnogo Analiza **50**, 61–72 (1990)
- 23. Wang, H.: Path factors of bipartite graphs. J. Graph Theory 18, 161–167 (1994)

Received: June 5, 2007

Final version received: June 4, 2008