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Abstract. We continue the study of specialized block-colourings of Steiner triple systems
initiated in [2] in which the triples through any element are coloured according to a given
partition π of the replication number. Such colourings are equitable if π is an equitable par-
tition (i.e., the difference between any two parts of π is at most one). Our main results deal
with colourings according to equitable partitions into two, and three parts, respectively.
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1. Introduction

A Steiner triple system of order v (STS(v)) is a pair (V,B) where V is v-set of ele-
ments and B is a family of 3-subsets of V called triples such that every 2-subset of V
is contained in exactly one triple of B. It is well known that an STS(v) exists if and
only if v ≡ 1 or 3 (mod 6) [1]. Every element of an STS(V ) is contained in r = v−1

2
triples; r is called the replication number.

An STS(v) (V,B) is cyclic if it admits an automorphism α consisting of a single
cycle of length v which preserves B.

A block-colouring of an STS(v) (V,B) is a mapping φ : B → C where C is a set
of colours. A k-block-colouring (or simply a k-colouring) is a block-colouring using
k colours; each of the k colours must be used. For each i = 1, . . . , k, the subset Bi

of B containing the blocks coloured with colour i is a colour class.
For a partition π = {π1, π2, . . . , πs} of the replication number r , a k-colouring

of type π is a colouring of triples such that for each element v ∈ V , the triples con-
taining v are partitioned according to π , that is, there are π1 triples of one colour,
π2 triples of a different colour, and so on.

For an STS(v) S = (V,B) and a partition π of r , we define the colour spectrum
�π(S) = {k: there exists a k-block-colouring of type π of S}, and also define
�π(v) = ∪�π(S) where π is a partition of r into s parts, s > 1, and where the union
is taken over the set of all STS(v).

From now on, we will simply write k-colouring instead of k-block-colouring
since only block-colourings will be considered.
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The upper π -chromatic index χ̄ ′
π (S) and the lower π -chromatic index χ ′

π (S) of S
is defined as

χ ′
π (S) = min �π(S), χ̄ ′

π (S) = max �π(S), and similarly,
χ ′

π (v) = min �π(v), χ̄ ′
π (v) = max �π(v).

A partitionπ = (π1, . . . , πs)of r is equitable if |πi−π j | ≤ 1 for all i, j = 1, . . . , s,
i �= j . A colouring of type π is equitable if π is an equitable partition.

The organization of this paper is as follows. In Section 2 we prove some general
results concerning equitable colourings when all parts of the partition π are equal.
Section 3 deals with equitable colourings when π consists of two parts. In particular,
it is shown that in this case a colouring, if it exists, must use exactly two colours.
Section 4 treats the case when π has three parts.

2. Some Uniform Colourings

In this section we consider equitable colourings of type π = (t, t, . . . , t) where π is
a partition of r into s parts, s > 1, thus s.t = v−1

2 , so if v = 6n + 1 then s must
divide 3n while if v = 6n +3 then s must divide 3n +1. The following theorem gives
an upper bound on the upper π -chromatic index.

Theorem 1. If an STS(v) S = (V,B) admits a π -colouring with π as above, then any
colour class contains at least (v+s−1)(v−1)

6s2 triples, and

χ̄ ′
π (S) ≤ s2 − 1.

Proof. Let c ∈ C be a colour, and let x ∈ V be an element incident with triples of
colour c. There are v−1

2s triples of colour c incident with x ; thus there are at least
1+2 v−1

2s = v+s−1
s elements in V incident with triples of colour c, i.e. |V (c)| ≥ v+s−1

s ,
where V (c) = {x : x ∈ V, c ∈ C(x)} where c is a colour and C(x) is the set of colours
used on triples incident with x . It follows that there are at least 1

3
v+s−1

s
v−1
2s triples

of colour c. The first part of the statement follows. Clearly,

Σc∈C |V (c)| = sv (1)

In an h-colouring of type π , we get from (1) that h v+s−1
s ≤ sv which yields

h ≤ 	 s2v
v+s−1
. Assuming h is the maximum number of colours in a colouring of type

π , we get

χ̄ ′
π (S) ≤ 	 s2v

v + s − 1

 (2)

Thus for any value of v, we have χ̄ ′
π (S) ≤ s2 − 1. �
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3. Equitable Bicolourings

An equitable bicolouring is a colouring of type π = (s, t) where |t−s| ≤ 1; the prefix
“bi” refers to the fact that the partition π has exactly two parts. There are only two
partitions that satisfy this condition, namely π1 = ( v−1

4 , v−1
4 ), and π2 = ( v−3

4 , v+1
4 ).

If an STS(v) has an equitable bicolouring of type π1 then necessarily v ≡ 1 or
9 (mod 12). Similarly, if an STS(v) has an equitable bicolouring of type π2, then
v ≡ 3 or 7 (mod 12).

Lemma 1. If S = (V,B) is an STS with a colouring of type π2 then χ̄ ′
π2

(S) ≤ 3.

Proof. Assume that there exists a 4-colouring of type π2. For each colour c we have
|V (c)| ≥ 1+2 v−3

4 = v−1
2 . Moreover, if c is a colour such that there is x ∈ V incident

with v+1
4 triples of colour c then we can improve the bound to |V (c)| ≥ 1 + 2 v+1

4 =
v+3

2 . Let us call such a colour rich. Clearly, there has to be a rich colour as each
element x is incident with v+1

4 triples of the same colour. Suppose by contradiction
that there is only one rich colour, say, c′. Then by (1)

2v = Σc∈C |V (c)| = |V (c′)| + Σc∈C,c �=c′ |V (c)| ≥ v + 3
v − 1

2
= 5v − 3

2
,

a contradiction for v > 3. Thus there are at least two rich colours, say, c′, c′′. By (1),

2v = Σc∈C |V (c)| = |V (c′)| + |V (c′′)| + Σc∈C,c �=c′,c′′ |V (c)|
≥ 2

v + 3
2

+ 2
v − 1

2
= 2v + 2

a contradiction. The proof of the lemma is complete. �

Theorem 2. Let S = (V,B), v > 7, be an STS which is πi -colourable, i ∈ {1, 2}. Then
χ ′

πi
(S) = 3 if and only if i = 2, and S contains a sub-STS of order v−1

2 . Otherwise,
χ ′

πi
(S) = χ̄ ′

πi
(S) = 2.

Proof. Let S = (V,B)be an STS with a subsystem S′ on D where D ⊂ V , |D| = v−1
2 ,

D = A ∪ B, with |A| = v−3
4 and |B| = v+1

4 . Let K = V \ D. Clearly, all other triples
of S have two elements in K and one element in D. Colour all triples of S′ with
colour 1. Consider a 1-factorization F of the complete graph on the elements of K ;
F consists of v−1

2 1-factors. Assign to each element u of D one of those 1-factors;
a triple {u, x, y} will be in S if and only if {x, y} is an edge of this 1-factor. The
triple {u, x, y} will be coloured with colour 2 if u ∈ A and with colour 3 if u ∈ B.
It is easy to check that this 3-colouring is of type π2. By Theorem 1 and Lemma 1,
χ̄ ′

πi
(S) ≤ 3. Hence we only need to show that there is no 3-colouring of S of type

πi where i = 1 or 2, except when S contains a sub-STS( v−1
2 ). Our proof will be by

contradiction. Assume that S has a 3-colouring of type πi . Each element of V is
incident with triples of two colours. Let P be a partition of V into three sets A, B
and C such that each element of A is incident with triples of colour 1 and 2, each
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element of B is incident with triples of colour 1 and 3, and each element of C is
incident with triples of colour 2 and 3. Let |A| = a, |B| = b, |C | = c. We may
assume w.l.o.g. that a ≤ b ≤ c.

Now we state a series of rather straightforward claims which will be frequently
used.

Claim 1. There is no triple T ∈ B such that A ∩ T �= ∅, B ∩ T �= ∅, and C ∩ T �= ∅.
Furthermore, if A ∩ T �= ∅ and B ∩ T �= ∅ then T is of colour 1; if A ∩ T �= ∅ and
C ∩ T �= ∅ then T is of colour 2; and if B ∩ T �= ∅ and C ∩ T �= ∅ then T is of
colour 3.

Proof. The statement follows easily from this simple observation: Assume T ∩D �= ∅
where D ∈ {A, B, C}. Each element of D is incident with triples coloured by the
same two colours. Therefore T has to be coloured by one of two colours. �

Claim 2. Exactly one of the numbers a, b, c is odd.

Proof. As v = a + b + c, at least one of the three numbers has to be odd. Assume
by contradiction that a and b are odd. Then there is an odd number of pairs {x, y}
where x ∈ A, y ∈ B. Each of those pairs is contained in a triple T ∈ B where
A ∩ T �= ∅ and B ∩ T �= ∅. If , in addition, C ∩ T = ∅ then T covers exactly two of
those pairs. Therefore there has to be a triple T in B such that A∩T �= ∅, B ∩T �= ∅,
C ∩ T �= ∅. However, this contradicts Claim 1. �

Claim 3. For the partition π1, a + b ≥ v+1
2 , while for the partition π2, a + b ≥ v−1

2 .

Proof. Let x ∈ V be an element incident with a triple of colour 1. Then, for the
partition π1, x is incident with v−1

4 triples of colour 1, while for the partition π2,
x is incident with at least v−3

4 triples of color 1. Those triples of colour 1 incident
with x contain exactly v+1

2 elements (at least v−1
2 elements, respectively), and the

statement follows. �

Claim 4.
(
v
2

) ≥ 3
2 (ab + ac + bc).

Proof. There are ab + ac + bc pairs Q = {x, y} of elements of V such that x and
y belong to different parts of the partition P . Each pair Q is covered by a triple T
containing two elements from the same part of P ; moreover, such a triple contains
two such pairs Q. Therefore, the number

(a
2

) + (b
2

) + (c
2

)
of pairs {z, v} where z and

v are from the same part of P , has to be at least 1
2 (ab + ac + bc). The claim now

follows by a simple rearrangement of this inequality. �

We are now ready to prove Theorem 2. Let d be the number of pairs {x, y} where
either both x, y ∈ B or both x, y ∈ C , and {x, y} is contained in a triple of colour
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3. By Claim 1, all pairs {x, y}, x ∈ B, y ∈ C are contained in triples of colour 3.
Therefore

d ≥ bc

2
(3)

To derive an upper bound on d, we will count the number of pairs Q = {x, y} so
that either Q ⊂ B or Q ⊂ C , and Q is contained in a triple of colour 1 or 2. There
are in total e = 1

3 .
(v+a)(v−1)

4 = 1
3 .( 1

2

(
v
2

) + 1
4 .a(v − 1)) triples of colour 1 or 2 for the

partition π1. Indeed, each element in A is incident with v−1
2 of those triples while

each element in B ∪ C is incident with v−1
4 of them. By a similar reasoning we get

that there are e ≥ 1
3 (a v−1

2 + (b + c) v−3
4 ) = 1

3 ( 1
2

(
v
2

) + 1
4 a(v − 1) − b+c

2 ) triples of
colour 1 or 2 for the partition π2. Further, ab+ac

2 of those e triples of colour 1 or
2 contain elements in two parts of P (either they contain elements in A and B or
elements in A and C). Let t be the number of triples T which are of colour 1 or 2
and T ⊂ A. Then there are

(a
2

) − 3t triples of colour 1 or 2 of type AAB or AAC
which in turn implies that there are e − (

(a
2

) − 3t) triples T of colour 1 or 2 of type
AB B or ACC . Further, there are e − ab+ac

2 − t triples T of colour 1 or 2 such that
T ⊂ B or T ⊂ C . They cover additional 3(e − ab+ac

2 − t) pairs of elements. Thus,
in aggregate,

d =
(

b

2

)
+

(
c

2

)
−

(
ab + ac

2
−

(
a

2

)
+ 3t

)
− 3

(
e − ab + ac

2
− t

)
(4)

Combining (3) and (4) and rearranging leads to
(

a

2

)
+

(
b

2

)
+

(
c

2

)
+ ab + ac + bc − 3e ≥ 3

2
bc

that is,
(

v

2

)
− 3e ≥ 3

2
bc (5)

Substituting for e we get, for the partition π1,
(

v

2

)
− 1

2
a(v − 1) ≥ 3bc,

that is,

(v − 1)(v − a) ≥ 6bc (6)

and, for the partition π2,
(

v

2

)
− 1

2
a(v − 1) + b + c ≥ 3bc

that is,

(v + 1)(v − a) ≥ 6bc (7)



318 M. Gionfriddo et al.

To show that (6) is not satisfied for any v ≥ 9, v ≡ 1 or 9 (mod 12), we prove
that (v − 1)(v − a) < 6bc. Let a be a fixed number. Consider two cases.

Assume first that a ≥ v+3
4 . Since v − a = b + c is a fixed number as well, we get

that min 6bc is attained at b = a and c = v − 2a (recall that by our assumption,
a ≤ b ≤ c). Therefore it suffices to verify that (v −1)(v −a) < 6a(v −2a), that is, to
show that f (a) = 6a(v − 2a) − (v − 1)(v − a) > 0 for all a, v+3

4 ≤ a ≤ v
3 . We have

f ( v
3 ) = 2v. v3 − (v − 1) 2

3v = 2
3v > 0, and f ( v+3

4 ) = 3
2 (v + 3) v−3

2 − (v − 1) 3v−3
4 =

3
4 (2v − 10) > 0 which completes the proof in this case because f (a) is a parabola
opening down.

Let now 1 ≤ a ≤ v−1
4 . Then, by Claim 3, b ≥ v+1

2 − a, and min 6bc is attained
at b = v+1

2 − a, c = v − (a + b) = v−1
2 .Thus, we need to prove that in this case

(v − 1)(v − a) < 6( v+1
2 − a) v−1

2 . It is easy to check that the inequality is satisfied
for all a ≤ v+3

4 . This completes the proof of Theorem 2 for the partition π1.
In order to prove that (7) is not satisfied for any v > 7, v ≡ 3 or 7 (mod 12), we

show that (v + 1)(v − a) < 6bc. Let a be a fixed number. Consider two cases.
I. 1 ≤ a ≤ v−3

4 . Then, by Claim 3, b ≥ v−1
2 − a, and min 6bc is attained

at b = v−1
2 − a, c = v − (a + b) = v+1

2 .Therefore, it needs to be shown that
(v + 1)(v − a) < 6( v−1

2 − a) v+1
2 . This inequality is true for all 1 ≤ a < v−3

4 .
So, assume now a = v−3

4 . It is easy to see that (v + 1)(v − a) < 6bc is satisfied
for a = v−3

4 , b = v−1
2 − a + 1, c = v − (a + b) = v−1

2 , hence it is satisfied for all
b ≥ v−1

2 −a+1. Therefore we are left with the case a = v−3
4 , b = v−1

2 −a = v+1
4 , c =

v − (a + b) = v+1
2 . We show that in this case S has to contain a sub-STS( v−1

2 ).
Each of these a+b = v−1

2 elements is incident with at least v−3
4 triples of color 1;

therefore there are at least α = 1
3

v−1
2

v−3
4 triples of colour 1. Further, there are at least

β = ac
2 = (v−3)(v+1)

16 triples of colour 2 (cf. Claim 1), and at least γ = bc
2 = (v+1)2

16
triples of colour 3. Since α + β + γ = 1

3

(
v
2

) = |B|, the number of triples of colour
1, 2 and 3 is α, β and γ , respectively. Thus there is no triple T ⊂ C , and triples of
colour 1 form a sub-STS on A ∪ B, as given in the statement of the theorem. We are
now done with the proof for the case 1 ≤ a ≤ v−3

4 . We point out that in this case
we proved the statement for all v ≡ 3 or 7 (mod 12).

II. v+1
4 ≤ a ≤ v

3 . Then min 6bc is attained at b = a and c = v − 2a. Thus, to
prove the nonexistence of a 3-colouring in this case, we need to show that

(v + 1)(v − a) < 6a(v − 2a) (8)

Similarly as in the case of the partition π1, set f (a) = 6a(v−2a)−(v+1)(v−a).
We have to consider two subcases.

IIa. v+5
4 < a ≤ v

3 − 1 and v > 39; a = v+5
4 and v = 39. We have f ( v

3 − 1) =
6( v

3 − 1)( v
3 + 2) − (v + 1)( 2v

3 + 1) = v
3 − 13 > 0 for v > 39. On the other hand,

f ( v+5
4 ) = 6. v+5

4
v−5

2 − (v + 1) 3v−5
4 = 2v−70

4 > 0 for v > 35. As f (a) is a parabola
opening down, f ( v

3 − 1) > 0 and f ( v+5
4 ) > 0 implies that (8) is satisfied for all

a, v+5
4 < a ≤ v

3 − 1, and v > 39, and for a = v+5
4 , v ≥ 39.

IIb. So we are left with two cases. Assume first that a > v
3 − 1. If v ≡ 3 (mod 12)

then a = b = c = v
3 . However, then a, b, and c are all odd which contradicts Claim
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2. For v ≡ 7 (mod 12) we have a = b = v−1
3 , and c = v+2

3 which contradicts
Claim 4.

Now let a = v+1
4 . Then for b ≥ v+5

4 , the minimum min 6bc is attained for b = v+5
4 ,

and, consequently, c = v−(a+b) = v−3
2 . If we substitute into (7), we obtain that the

inequality is satisfied only for v ≤ 11. Finally, consider the last case when a = b =
v+1

4 , and c = v−(a+b) = v−1
2 . By Claim 1, there are at least α = ac

2 triples of colour
2. Further, each element in A∪B is incident with at least v−3

4 triples of colour 1, hence
the number of triples of colour 1 is at least β = 1

3
v+1

2
v−3

4 . Thus the total number e of

triples of colour 1 or colour 2 is e ≥ α+β ≥ (v+1)(v−1)
16 + 1

3
(v+1)(v−3)

8 . Substitute into

(5) to obtain
(
v
2

) − (
3(v+1)(v−1)

16 + (v+1)(v−3)
8 ) ≥ 3

2
(v+1)(v−1)

8 , which in turn implies

v(v − 1) ≥ (v + 1)
3v−3+3v−3+2(v−3)

8 , that is, v(v − 1) ≥ (v + 1) 8v−8
8 − 4

8 (v + 1), and
finally, v+1

2 ≥ v − 1. Clearly, this holds only for v ≤ 3. Thus we have proved that
for all v ≥ 11, the inequality (8) is satisfied for a = v+1

4 and for a > v
3 − 1.

By combining now the results of I, IIa and IIb we get that the theorem is proved
for all v > 39, v ≡ 3 or 7 (mod 12).

To finish the proof, the nonexistence of a 3-colouring of B of type π2 needs to
be proved for

v + 5
4

≤ a ≤ v

3
− 1, v < 39; v + 5

4
< a ≤ v

3
− 1, v = 39. (9)

We have to consider orders v = 15, 19, 27, 31, and 39. It is easy to check that
for v = 15, 19 there is no value of a satisfying (9). For v = 27, 31 and 39, the only
value of a that satisfies (9) is a = 	 v

3 − 1
. Set a = b, and c = v − (a + b). By a

routine calculation, we obtain in those three cases
(27

2

)
< 3

2 (8×8+8×11+8×11),
(31

2

)
< 3

2 (9 × 9 + 9 × 13 + 9 × 13), and
(39

2

)
< 3

2 (12 × 12 + 12 × 15 + 12 × 15),
contradicting Claim 4. To see that Claim 4 is not satisfied for other values of b as
well it is sufficient to note that for the function f (x, y, z) = xy + xz + yz we have
f (x, y, z) > f (x ′, y′, z′) for x = x ′, y + z = y′ + z′, and |z − y| < |z′ − y′|. The
proof of Theorem 2 is now complete. �

The following theorem contains a complete characterization of the spectra for
equitable bicolourings of all admissible orders.

Theorem 3. �π2(7) = {3}. For v > 7, v ≡ 1 or 3 (mod 6), �π = {2} where π = π1
when v ≡ 1 or 9 (mod 12), and π = π2 when v ≡ 3 or 7 (mod 12).

Proof. According to [2], the unique STS(7) has a k-colouring of type (1, 2) if and
only if k = 3. For v > 7, in view of Theorem 1 we only have to show that there
exists an STS(v) admitting an equitable bicolouring with 2 colours. When v ≡ 3 or
9 (mod 12), this is an easy consequence of the existence of Kirkman triple systems
(cf. [1]): when v ≡ 9 (mod 12), colour the triples of v−1

4 parallel classes with colour 1,
and those of the remaining v−1

4 parallel classes with colour 2 (when v ≡ 3 (mod 12),
the corresponding numbers of parallel classes are v−3

4 and v+1
4 , respectively).



320 M. Gionfriddo et al.

When v ≡ 1 (mod 12), we obtain an STS(v) with an equitable bicolouring by
using cyclic STS(v). The triples of any cyclic STS(v) in this case are partitioned into
v−1

6 orbits under the induced action of the cyclic group (which acts on elements),
and each orbit of triples consists of v triples; the collection of triples of any such
orbit may be viewed as a 3-configuration (cf. [1]). Choosing any v−1

12 orbits and
colouring its triples with colour 1, and the triples of the remaining v−1

12 orbits with
colour 2 yields an equitable bicolouring.

Finally, we deal with the case when v ≡ 7 (mod 12). The number of orbits of
a cyclic STS(v) in this case is odd. If we can show that one orbit Q of a cyclic
STS(v) can be partitioned into two {1, 2}-configurations (cf. [2]), say C1 and C2,
then colouring the triples of v−7

12 orbits (other than Q) together with the triples
of C1 with colour 1, and the triples of the remaining v−7

12 orbits together with the
triples of C2 with colour 2 will have produced an equitable bicolouring of our
STS(v). Thus it remains to be shown that such a partitionable orbit can always be
found. First we observe that if an orbit of triples is determined by a base triple
{0, 1, 2t} (mod v), t < v

2 , such a partition is possible: e.g., let C1 consist of the v+1
2

triples {2i, 2i + 1, 2i + 2t}, i = 0, 1, . . . , v−1
2 , and let C2 consist of the remaining

triples of this orbit. Both C1 and C2 are easily seen to be {1, 2}-configurations. By
[3], for every v ≥ 91 there exists a cyclic STS(v) containing an orbit of triples deter-
mined by the base triple {0, 1, 4}(mod v). Such cyclic STS(v) can also be shown to
exist for v = 31, 43, 55, 67, and 79. There is no such cyclic STS(19), however, there
is a cyclic STS(19) with an orbit determined by the base triple {0, 1, 8}, and so our
proof is complete. �

A particular STS may admit several partitions into two v−1
4 -configurations, and

thus several colourings of type π1. As an illustration, consider the two nonisomor-
phic STS(13). The cyclic STS(13) admits 14 partitions into two 3-configurations.
One of these partitions is the one described in the proof of Theorem 3, and is pre-
served by the full automorphism group of this STS (of order 39). The other 13
partitions are permuted under the automorphism group of the STS, and have only
the identity as an automorphism. Thus there are two inequivalent colourings of
type π1 of the cyclic STS(13).

The noncyclic STS(13) also admits 14 partitions into two 3-configurations, how-
ever, these fall into 5 classes under the (full) automorphism group of the noncyclic
STS(13) (which is of order 6). The five classes contain 6, 3, 3, 1, and 1 partitions,
respectively (with automorphism groups of orders 1, 2, 2, 6, and 6, respectively).
Thus there are five inequivalent colourings of type π1 of the noncyclic STS(13).

Whether there exist STSs without any colouring of type π1 (or of type π2, for
that matter) remains an open question.

4. Equitable Tricolourings

In this section we deal with colourings of type σ where σ is a partition having
exactly three parts, with the difference between any two parts not exceeding one.
We call such colourings equitable tricolourings. Only two types of equitable tricol-
ourings of STSs may exist: those of type σ1 = ( v−1

6 , v−1
6 , v−1

6 ), and those of type
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σ2 = ( v−3
6 , v−3

6 , v+3
6 ). Moreover, equitable tricolourings of type σ1 may exist only

if v ≡ 1 (mod 6), and those of type σ2 may exist only if v ≡ 3 (mod 6).
First we deal with equitable tricolourings for STSs of small order.

Lemma 2.

(i) �σ1(7) = {7}
(ii) �σ2(9) = {3, 4, 5, 6, 7}

(iii) �σ1(13) = {4, 5}.

Proof. For (i) and (iii), see [2] ((i) is trivial). For (ii), if R = {R1, R2, R3, R4} are the
four parallel classes of the (unique) STS(9), colour the triples of R1 and R2 with
colour 1, those of R3 with colour 2, and those of R4 with colour 3; this yields a
3-colouring of type σ2 = (1, 1, 2). Then recolour consecutively the triples of R3
and R4 until all 6 of their triples have an individual colour, to obtain a 4−, 5−, 6−,

and 7−-colouring of type σ2, respectively. Assuming the existence of an 8-colouring
of type σ2 implies that there can be no colour class with more than 5 triples, but
then there must be an element whose all four triples incident with it have mutually
different colours. �

Lemma 3. If an STS(v) S = (V,B) has a colouring of type σ2 then χ̄ ′
σ2

(S) ≤ 8.

Proof. Assume that S has a 9-colouring of type σ2. Similarly as in the proof of
Lemma 1, for each colour we have |V (c)| ≥ 1 + 2 v−3

6 = v
3 , and for any rich colour

c, we have |V (c)| ≥ 1 + 2 v+3
6 = v

3 + 2. Let c′ be a rich colour, then, from (1) (cf.
Section 3), we get

3v = Σc∈C |V (c)| = |V (c′)| + Σc∈C,c �=c′ |V (c)| ≥ v

3
+ 2 + 8

v

3
= 3v + 2,

a contradiction. �

Theorem 4. If an STS(v) S = (V,B) has a colouring of type σi , i ∈ {1, 2} then

3 ≤ χ ′
σi

(S) ≤ χ̄ ′
σi

(S) ≤ 7.

Proof. The lower bound is trivial. By Theorem 1 and Lemma 3, χ̄ ′
σi

(S) ≤ 8. Sup-
pose, by contradiction, that there is an 8-colouring φ of an STS(v) of type σi . Let
C = {1, 2, . . . , 8} be the set of colours used in σi , and for x ∈ V , let C(x) ⊂ C be the
set of colours used on triples incident with x . As σi is a partition into three parts,
|C(x)| = 3 for each x ∈ V . Now we define a family A of subsets of C . A set A, A ⊂ C ,
belongs to A if there is an element x ∈ V such that A = C(x). Finally, for A ∈ A
put V (A) = {x : x ∈ V, C(x) = A}, and for c ∈ C , put V (c) = {x : c ∈ C(x)}. We
start with a series of more or less trivial observations on A, V (A), and V (c).

Obviously,

Claim 1. The family {V (A) : A ∈ A} forms a partition of V .
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Further,

Claim 2. (i) |A| = 3 for each A ∈ A; (ii) if A, A′ ∈ A then A ∩ A′ �= ∅; (iii) for each
colour c ∈ C , |V (c)| ≥ v+2

3 for the partition σ1, and |V (c)| ≥ v
3 for the partition σ2;

(iv) for each c ∈ C there is A ∈ A such that c /∈ A.

Proof. The first part of the statement is trivial. Let x ∈ V (A), x ′ ∈ V (A′), and
let B ∈ B be a triple containing the pair {x, x ′}. Then the colour of B ∈ A ∩ A′.
This proves part (ii). As to (iii), consider an element x ∈ V that is incident with
a triple coloured with colour c. Then, for the partition σ1, x is incident with v−1

6
triples of colour c, and for the partition σ2, x is incident with at least v−3

6 tri-
ples of colour c. This in turn implies that there are, for the partition σ1, at least
2 v−1

6 + 1 = v+2
3 elements in V incident with triples of colour c, and for the parti-

tion σ2, at least 2 v−3
6 + 1 = v

3 elements in V incident with triples of colour c. To
prove (iv), suppose that there is a colour c′ ∈ C such that c′ ∈ A for all A ∈ A, that
is, for each element x ∈ V , x is incident with a triple of colour c′. As each element
in V is incident with triples of three colours, we get, applying part (iii) and (1):
3v = Σc∈C |V (c)| = |V (C ′)| + Σc∈C,c �=c′ |V (c)| ≥ v + 7 v

3 = 10
3 v, a contradiction.

This completes the proof. �

Claim 3. For any three colours c1, c2, c3, there is a pair i, j ∈ {1, 2, 3} such that
V (ci ) ∩ V (c j ) �= ∅.

Proof. Suppose by contradiction that there are three colours such that the sets
V (c1), V (c2), V (c3) are mutually disjoint. Then we have |V (c1) ∪ V (c2) ∪ V (c3)| =
Σ1≤i≤3|V (ci )|, and, for the partition σ1, by Claim 2,(iii), Σ1≤i≤3|V (ci )| ≥ 3 v+2

3 , a
contradiction. Consider now the partition σ2. By Claim 2,(iii), |V (c)| ≥ v

3 for each
colour c ∈ C , therefore |V (ci )| = v

3 for each i = 1, 2, 3. Further, by (iii), there are

at least 1
3

v
3

v−3
6 = 1

3

( v
3
2

)
triples of each colour ci , 1 ≤ i ≤ 3. Therefore if elements

x, y belong to V (ci ) for some i, 1 ≤ i ≤ 3, then the pair {x, y} belongs to a triple B
of colour ci . Consequently, B ⊂ V (ci ), that is B induces on V (ci ) a sub-STS. This
in turn implies that for each triple B = {x, y, z} ∈ B, either B ⊂ V (ci ) for some
i, 1 ≤ i ≤ 3, or B ∩ V (ci ) �= ∅ for each i, 1 ≤ i ≤ 3. Now we show that if c is a
colour such that c /∈ {c1, c2, c3} then V (c) ≥ v−3

2 . Indeed, if c ∈ C(x) where x is an
element of (say) V (c1), then x is incident with at least v−3

6 triples of colour c; hence
there are at least v−3

6 elements in both V (c2) and V (c3) contained in those triples
of colour c that are incident with x . By the same token we get that there are at least
v−3

6 elements in V (c1) contained in triples of colour c. Therefore |V (c)| ≥ 3 v−3
6 . By

(1) we get

3v = Σc∈C |V (c)| = Σ1≤i≤3|V (ci )| + Σc/∈{c1,c2,c3}|V (c)| ≥
3
v

3
+ 5

v − 3
2

= 7
2
v − 15

2
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which implies v ≤ 15. However, there is no STS of order v = 15
3 = 5. Thus, as

v ≡ 3 (mod 6), we are left just with v = 9. However, there is no 8-colouring of type
σ2 = (1, 1, 2) by Lemma 2. �

Let us introduce some more notation. For each colour c, let A(c) = {A : A ∈
A, c ∈ A}.

Claim 4. For each c ∈ C , |⋃A∈A(c) A| ≥ 7. In particular, |A(c)| ≥ 4 for all c ∈ C .

Proof. Assume first that there is a colour c such that |A(c)| = 1, say, |A(1)| = 1, and
that A′ = {1, 2, 3} ∈ A. By Claim 2,(ii), for each A ∈ A, we have A ∩ A′ �= ∅, that is,
A∩{2, 3} �= ∅. Further, for each i �= j, 4 ≤ i, j ≤ 8, there is A ∈ A such that {i, j} ⊂
A; otherwise, the colours 1, i, j would contradict Claim 3. Assume, w.l.o.g., that
{2, 4, 5} in A. Then in order not to contradict Claim 2,(ii), {2, 6, 7}, {2, 6, 8}, {2, 7, 8}
have to be in A as well, and, for the same reason, {2, i, j} ∈ A for all 4 ≤ i �= j ≤ 8.
With this in hand, and by Claim 2,(ii), it is easy to see that for each A ∈ A, one
has 2 ∈ A, contradicting Claim 2,(iv). Thus |A(c)| > 1. Assume now that there is a
colour c ∈ C such that |A∗| = | ⋃A∈A(c) A| < 7. In order not to contradict Claim
3, for each two colours i, j /∈ A∗, i �= j , there is A′ ∈ A such that i, j ∈ A′. As A′
has to intersect each set in A(c) and |A(c)| > 1, there has to be a colour c′ �= c
such that |A(c)| ≤ |A(c′)|, and c′ is the only colour with this property. It is now
easy to check that in order not to contradict Claim 2,(ii), it must be that c′ ∈ A for
each A ∈ A. However, this again contradicts Claim 2,(iv). Thus for each colour c,
| ⋃A∈A(c) A| ≥ 7. This in turn implies |A(c)| ≥ 3. Suppose that there is a colour c
such that |A(c)| = 3. Then, since |⋃A∈A(c) A| ≥ 7, we get that if A, A′ ∈ A(c) then
A ∩ A′ = {c}. Let c′ be the colour such that c′ /∈ A∗. Then for any B ∈ A, c′ ∈ B,
there would have to be A ∈ A(c) so that B ∩ A = ∅, a contradiction. This completes
the proof of the claim. �

Now we are ready to prove the theorem. We use graph theory language to prove
this part. Consider a graph G = (V, E) where V = C −{1}, and {i, j} ∈ E if there is
A ∈ A(1) such that A = {1, i, j}. This graph will be called the graph corresponding
to A(1) (and in general, the graph corresponding to A(c) for colour c). We need
to distinguish three cases with respect to the size of a maximum matching in G.
Assume first that a maximum matching in G is of size 1. As |A(1)| ≥ 4 (cf. Claim 4),
we have |E | ≥ 4. Hence there is a vertex u in G such that all edges of G are incident
with u. In other words, there is a colour c′ �= 1 such that A(1) ⊂ A(c′), or, in other
words yet, if A ∈ A(1), then A = {1, c′, x}. However, together with Claim 2(ii), this
implies that for each A ∈ A, we have c′ ∈ A which contradicts Claim 2(iv).

Further, suppose that the size of a maximum matching in G equals 2. This means
that there are two independent edges in G, say, {2, 3} and {4, 5} (i.e., {1, 2, 3} and
{1, 4, 5} are in A). As |⋃A∈A(1) A| ≥ 7 (cf. Claim 4), there are vertices u, w in G,
u, w /∈ {2, 3, 4, 5} such that both u, w are incident with at least one edge of G. Let,
say, {u, w} = {6, 7}. Let A = {6, a, b} ∈ A. Then {a, b} ⊂ {1, 2, 3, 4, 5}. Indeed, if
{7, 8}∩{a, b} �= ∅ then either A would not intersect one of the sets {1, 2, 3}, {1, 4, 5}or
there would be a matching of size 3 in G. By the same argument, if A = {7, a, b} then
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{a, b} ⊂ {1, 2, 3, 4, 5}. In addition, there are at most four sets A ∈ A such that |A ∩
{1, 6, 7}| = 2. To see this, it suffices to note that, e.g., if {1, 2, 6} ∈ A then {1, 3, 7} /∈ A
since otherwise there would be a matching of size 3 in G. By Claim 4, |A(6)| ≥ 4
and |A(7)| ≥ 4. Therefore there is an A′ ∈ A such that 1 /∈ A′, and A′ ∩ {6, 7} �= ∅.
Assume w.l.o.g. that A′ = {2, 4, 6} (A′ has to intersect both {1, 2, 3} and {1, 4, 5}).
Then, to satisfy Claim 2(ii), A(7) ⊂ {{1, 2, 7}, {1, 4, 7}, {2, 4, 7}, {2, 5, 7}, {3, 4, 7}}.
However, if both {2, 5, 7}, {3, 4, 7} were in A(7) then to satisfy the Claim 2(ii), we
would have to have A(6) ⊂ {{2, 4, 6}, {3, 5, 6}} which contradicts |A(6)| ≥ 4. Hence
we may assume w.l.o.g. that A(7) = {{1, 2, 7}, {1, 4, 7}, {2, 4, 7}, {2, 5, 7}}. Then,
again to satisfy Claim2(ii), we would have to have A(6) ⊂ {{2, 4, 6}, {1, 2, 6}}, a
contradiction.

Thus if there is a colour c such that the graph corresponding to the A(c) graph
has a maximum matching of size < 3, we are done. Finally, suppose that for each
colour c ∈ C the corresponding graph G contains a matching of size 3. Let c′ be
the (unique) colour that is not covered by a maximum matching M of size 3 in the
graph corresponding to A(1). Let M ′ be a maximum matching of size 3 in the graph
G ′ corresponding to A(c′). Then M ′ contains an edge e which does not cover the
colour 1. However, then the set A ∈ A(c′) that corresponds to the edge e does not
intersect at least one of the three sets in A(1) forming the maximum matching M
which violates Claim 2(ii). The proof is now complete. �

Lemma 4. An STS(v) with a 3-colouring of type σ1 exists for all v ≡ 1 (mod 18).

Proof. If v = 18t + 1, the number of orbits of triples in any cyclic STS(v) is divis-
ible by 3 and, in fact, equals 3t . It suffices to colour the triples of any t orbits with
colour 1, the triples of next t orbits with colour 2, and of the remaining t orbits with
colour 3. �

Lemma 5. An STS(v) with a 3-colouring of type σ2 exists for all v ≡ 3 (mod 6).

Proof. This is an easy consequence of the existence of Kirkman triple systems: col-
our the triples of any v−3

6 parallel classes with colour 1, those of the next v−3
6 parallel

classes with colour 2, and those of the remaining v+3
6 parallel classes with colour 3.

�

Whenv ≡ 7 or 13 (mod 18), one can improve the lower bound given in Theorem 4.

Lemma 6. Let v ≡ 7 or 13 (mod 18), then there exists no 3-colouring of type σ1 for
any STS(v).

Proof. If an STS(v) S = (V,B) has a 3-colouring of type σ1, then each of the three
colour classes must contain the same number of triples. Indeed, if σ is an equitable
partition of r = v−1

2 into s equal parts and we consider an s-colouring of S then
s has to divide v(v−1)

6 , as each colour class contains the same number of triples.
However, this is not satisfied when s = 3 and v ≡ 7 or 13 (mod 18). �
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Lemma 7. For all v ≡ 3 or 9 (mod 18), {3, 4, 5} ⊂ �σ2(v).

Proof. We use a special case of the well known generalized direct product (cf. [1]).Let
(V,B) be an STS(v), let X = V × {1, 2, 3}, and let (X,G, C) be a resolvable trans-
versal design TD(3, v) with G = {V × {i}, i = 1, 2, 3}. Such a resolvable TD is well
known to exist for all v ≥ 7 (cf. [1]). Construct an STS(3v) by putting on each group
V ×{i} an STS(v) (V ×{i},Bi ), and adjoining the set of triples C of the TD. Colour
now any v−1

2 parallel classes of C with colour 1, the remaining v+1
2 parallel classes

of C with colour 2, and then colour the triples of B1,B2,B3 with colour 3, or colour
the triples of B1,B2 with colour 3 and those of B3 with colour 4, or colour the triples
of B1,B2,B3 with colours 3, 4, and 5, respectively. In either case, a colouring of type
σ2 is obtained. �

Lemma 8. For all v ≡ 1 or 7 (mod 18) there exists a 7-colouring of type σ1.

Proof. We use a variant of Wilson’s fundamental construction (cf. [1]). Let (V,B)

be the following STS(7): V = {0, ai , bi , ci : i = 1, 2}, B = {{0, a1, a2}, {0, b1, b2},
{0, c1, c2}, {a1, b1, c1}, {a1, b2, c2}, {a2, b1, c2}, {a2, b2,c1}}; the last four triples form
a Pasch configuration. Give now every element, except the element 0, weight 3k
or 3k + 1 according as v = 18k + 1 or v = 18k + 7. This replaces the elements
a1, a2, b1, b2, c1, c2 with sets of elements A1, A2, B1, B2, C1, C2, each of cardinality
3k (or 3k + 1). Put now on the sets W1 = {0} ∪ A1 ∪ A2, W2 = {0} ∪ B1 ∪ B2, W3 =
{0}∪C1 ∪C2 an STS(6k +1) (or STS(6k +3), respectively), say, (Wi ,Di ), i = 1, 2, 3.
Put on each of the sets A1 ∪ B1 ∪ C1, A1 ∪ B2 ∪ C2, A2 ∪ B1 ∪ C2, A2 ∪ B2 ∪ C1
a transversal design TD(3, 3k) (or TD(3, 3k + 1), respectively) - the latter is just
equivalent to a latin square of order 3k or 3k + 1. Let E j , j = 1, 2, 3, 4 be the sets
of triples of these respective four transversal designs. Then (

⋃3
i=1 Wi ,

⋃4
j=1 E j ) is

an STS(18k + 1) (or STS(18k + 7), respectively). Colour now the triples of the four
transversal designs above with colours 1, 2, 3, 4, respectively; colour the triples of
D1,D2,D3 with colours 5, 6, and 7, respectively. It is straightforward to verify that
this yields a 7-colouring of our STS. �

We summarize the results in this section as follows.

Theorem 5.

(i) An STS(v) with an equitable tricolouring with 3 colours exists if and only if
v ≡ 3 (mod 6) or v ≡ 1 (mod 18).

(ii) An STS(v) with an equitable tricolouring with 4 colours (5 colours, respectively)

exists if v ≡ 3 or 9 (mod 18).
(iii) An STS(v) with an equitable tricolouring with 7 colours exists if v ≡ 1 or

7 (mod 18).

Proof. Combine Lemmas 4 to 8. �
Several questions concerning the existence of STSs with equitable tricolourings

remain open. In particular, does there exist, for all v ≡ 13 (mod 18), v > 13, an
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STS(v) with an equitable tricolouring? Does there exist an STS(v) with an equita-
ble tricolouring with 6 colours? Does there exist an STS(v) without an equitable
tricolouring?
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