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Abstract. For any two 2-regular spanning subgraphs G and H of the complete multipartite
graph K, necessary and sufficient conditions are found for the existence of a 2-factorization
of K in which

1. the first and second 2-factors are isomorphic to G and H respectively, and
2. each other 2-factor is a hamilton cycle

in the case where K has an odd number of vertices.

1. Introduction

One of the challenging problems over the past 30 years has been the Oberwolfach
problem and its natural generalizations. The original problem requires one to find
a 2-factorization of Kn in which all the cycles have the same length; this problem
was solved over a decade ago [2, 8]. A much studied generalization of this problem
is to simply require that each of the 2-factors be isomorphic to each other. To solve
this would be an amazing feat, as so many possible 2-factors exist. Some progress
has been made, including a complete solution when n ≤ 17 [1], and in many cases
where each 2-factor contains just two cycle lengths (see [5] for a survey of results).

Another direction in which research has developed is to allow a small number
of the 2-factors to be anything, but then stipulate that the remaining 2-factors be
hamilton cycles. Extending a result of Buchanan [6], in 2004 Bryant [4] found nec-
essary and sufficient conditions for the existence of 2-factorizations of Kn and of
Kn − I , where Kn − I is the complete graph on n vertices with a 1-factor I removed,
in which the cycle lengths in up to three of the 2-factors are freely specified, and all
remaining 2-factors are hamilton cycles. Independently, Rodger [10] used a similar
observation to settle the existence of 2-factorizations of all complete multipartite
graphs, and of all complete multipartite graphs with a 1-factor removed, in which
one 2-factor is freely specified and the rest of the 2-factors are hamilton cycles. One
can think of this as the existence of a hamilton decomposition of the graph formed
from K(m, p) (the complete multipartite graph with m vertices in each of p parts)
or from K(m, p)−I by removing any 2-factor. Thought of in this way, the result has
a relative in the world of matchings, where Plantholt [9] showed that the removal of
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any set of x edges from K2x+1 results in a graph whose edges can be partioned into
2x matchings (2x + 1 matchings are needed if fewer edges are removed).

In this paper, we extend the result of Rodger, finding necessary and sufficient
conditions for the existence of a hamilton decomposition of the graph K(m, p) by
removing the edges of any two 2-factors. More formally, for any two 2-regular graphs
G and H of order mp, when m is odd we find necessary and sufficient conditions for
the existence of a 2-factorization, {F1, F2, . . . , F�m(p−1)�/2}, of K(m, p) such that
G ∼= F1, H ∼= F2, and Fi is a hamilton cycle for 3 ≤ i ≤ �m(p − 1)�/2.

2. Preliminaries

Before we can get to the results, some notation, lemmas, and theorems must be
introduced. In this paper we use Zn to denote the vertex set of a graph on n ver-
tices. This allows us to define the difference of the edge {i, j} is to be d(i, j) =
min{j − i, n − (j − i)} where i < j ; thus d(i, j) > 0. Let 〈d1, d2, . . . , dx〉n be the
subgraph induced by the edges with differences in {d1, d2, . . . , dx}. Bermond et al
proved the following useful result that shows when the edges of two differences can
be used to form two edge-disjoint hamilton cycles. If A is a set of positive integers,
let gcd(A) denote the greatest common divisor of the elements of A.

Theorem 1 [3]. Let s, t , n be positive integers with s < t < n/2. If gcd({s, t, n}) = 1
then the graph 〈s, t〉n has a hamilton cycle decomposition.

The next lemma was proven separately by both Bryant and Rodger. It provides
a key method used to prove our results.

Lemma 1 [4, 10]. Let n ≥ 5 and let F ′ be any 2-regular graph of order n. If
gcd({x, n}) = 1 then the subgraph 〈x, 2x〉n of Kn has a 2-factorization {F, H } such
that H is a hamilton cycle and F ′ ∼= F .

Now, we will introduce some specific results that will be used to clear up some
of the cases we will encounter. Presented first is the result from Bryant’s paper
previously alluded to; one might also see the related results in [1, 7].

Theorem 2 [3]. Let n ≥ 7 be odd and let F ′
1, F

′
2, and F ′

3 be any three 2-regular graphs
of order n. Then there exists a 2-factorization {F1, F2, . . . , F(n−1)/2} of Kn in which
F1 ∼= F ′

1, F2 ∼= F ′
2, F3 ∼= F ′

3, and Fi is a hamilton cycle for 4 ≤ i ≤ (n − 1)/2, except
that when (n, F ′

1, F
′
2, F

′
3) ∈ {(7, C3 ∪ C4, C3 ∪ C4, C7), (9, C3 ∪ C3 ∪ C3, C3 ∪ C3 ∪

C3, C3 ∪ C3 ∪ C3), (9, C3 ∪ C3 ∪ C3, C3 ∪ C3 ∪ C3, C3 ∪ C6), (9, C3 ∪ C3 ∪ C3, C3 ∪
C3 ∪ C3, C4 ∪ C5)} no such two factorization exists.

Next we present Rodger’s result.
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Theorem 3 [10]. Let p ≥ 3 and m ≥ 1. Let H be any 2-factor in K(m, p). There exists
a partition of the edge set of K(m, p), one set in which induces a graph isomorphic
to H , if m(p − 1) is odd then one set induces a 1-factor, and each other set induces a
hamilton cycle.

3. Results

Theorem 4. Let m be odd, and suppose that G and H are any two 2-factors of K(m, p)

(so necessarily m(p − 1) ≥ 4). There exists a 2-factorization
{F1, F2, . . . , F�m(p−1)�/2} of K(m, p) such that F1 ∼= G, F2 ∼= H , and Fi is a hamilton
cycle for 3 ≤ i ≤ �m(p − 1)�/2, if and only if

1. p is odd, and
2. (m, p, G, H) /∈ {(1, 7, C3 ∪ C4, C3 ∪ C4), (3, 3, C3 ∪ C3 ∪ C3, C3 ∪ C3 ∪ C3),

(3, 3, C3 ∪ C3 ∪ C3, C3 ∪ C6), (3, 3, C3 ∪ C3 ∪ C3, C4 ∪ C5)}.

Proof. If K(m, p) is to have a 2-factorization, all vertices must have even degree, so
m(p−1) must be even, so the first condition is necessary since we are assuming that
m is odd. Once one observes that the edges removed from K9 to form K(3, 3) can
be thought of as the edges in C3 ∪ C3 ∪ C3, Theorem 2 clearly proves the four cases
described in the second condition cannot be obtained. So we now turn to a proof
of the sufficiency.

Since K(m, p) is an m(p − 1)-regular graph, and since it is assumed to contain
at least two 2-factors, we know that m(p − 1) ≥ 4. So, since we also know that p is
odd, clearly p ≥ 3.

Notice that if we let the j th part of K(m, p) be {ip + j | i ∈ Zm} for j ∈ Zp then
the edges of K(m, p) are the same as the edges of Kmp with edges of difference ip, 1 ≤
i ≤ �m/2� removed. Therefore we will partition the edges of K(m, p) by their differ-
ences, namely by the differences in the difference set D = {1, 2, . . . , �(mp)/2�}\{ip |
1 ≤ i ≤ �m/2�}. We now consider several cases in turn.

Case 1. Suppose mp ≥ 21. Then {1, 2, 4, 8} ⊂ D. By Lemma 1, 〈1, 2〉mp and 〈4, 8〉mp

each have a 2-factorization consisting of any 2-factor and a hamilton cycle; so we
can choose the two 2-factors to be isomorphic to G and H respectively. It remains
to partition the remaining edges into sets that induce hamilton cycles. We consider
4 subcases in turn.

Case 1a. Suppose that p ≥ 9. By pairing all except possibly the last of the differences
in D\{1, 2, 4, 8} = D′ in increasing order (that is, form pairs {3, 5}, {6, 7}, . . .) we
produce pairs of the form either {d, d + 1} or {d, d + 2}, for some d ∈ D′. Since
gcd({mp, (d +1)−d}) = gcd({mp, 1}) = 1, it follows that gcd({d, d +1, mp}) = 1.
Also, since mp is odd, gcd({mp, (d + 2) − d}) = gcd({mp, 2}) = 1 means that
gcd({mp, d + 2, d}) = 1. Also, if |D| = m(p − 1)/2 is odd, then the last difference,
(mp − 1)/2, is not paired, but since gcd({mp, (mp − 1)/2}) = 1, the edges with
difference (mp − 1)/2 form a hamilton cycle. Therefore, by Theorem 1, there exists
a hamilton cycle decomposition of the subgraph induced by the remaining edges.
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Case 1b. Suppose that p = 7. If m = 3 then the result follows from Theorem 2, since
we can choose each component in F ′

3 to be a 3-cycle, then remove these edges to form
the independent vertices in the parts of K(3, 7). In all other cases (so mp > 21), first
apply Theorem 1 to each of the pairs {3, 5}, {6, 10}, and {9, 11} in turn (these exist
since mp > 21). Then pair the remaining differences in increasing order as before
to obtain the required hamilton cycles.

Case 1c. Suppose that p = 5. If mp ≥ 35 then apply Theorem 1 to each of the pairs
{3, 7}, {6, 14}, {12, 13}, and {9, 11} in turn. Pair the remaining differences in order
and proceed as in Case 1a.

If mp = 25, apply Theorem 1 to each of the pairs {3, 6}, {7, 9}, and {11, 12} in
turn.

Case 1d. Suppose that p = 3. Pair the remaining differences in order and proceed
as in Case 1a.

Case 2. Suppose mp ≤ 20 and (m, p) �= (5, 3). If m = 1 then K(1, p) is just the
complete graph Kp, so the result follows from Theorem 2. If m = 3 then p ∈ {3, 5}
so the result follows from Theorem 2, since when m = 3, the edges one removes
from Kmp to form K(m, p) induce the 2-factor consisting of p 3-cycles; consider
this to be the third specified 2-factor.

Case 3. Suppose (m, p) = (5, 3). This case takes substantial effort. It is too small to
be able to apply Lemma 1 twice and be left with a difference that induces a hamilton
cycle. The set of available differences is {1, 2, 4, 5, 7}, and Lemma 1 could be applied
to the graphs 〈1, 2〉15 and 〈4, 8〉15 (since difference 7 is the same as difference 8),
but that leaves difference 5 that induces five 3-cycles. So we do apply Lemma 1 to
〈4, 8〉15 to obtain F1, then obtain F2 from 〈1, 2, 5〉15 in such a way that the edges
left over form two hamilton cycles. We consider the various possible cycle lengths,
c1, c2, . . . , cx of the x components of F2 in turn, written as l = (c1, c2, . . . , cx).

We begin with the cases in which all the cycle lengths in F2 are divisible by 3.
To construct the required cycles, we always include the hamilton cycle 〈2〉15, then
swap edges in 〈1〉15 with edges in 〈5〉15 to fuse components in 〈5〉15. In each case, we
begin with l, then describe how to form F2.

(3, 3, 3, 3, 3) : 〈1〉15 and 〈2〉15 are hamilton cycles, and difference 5 induces F2.

(3, 3, 3, 6): Swap edges {0, 1} and {5, 6} in 〈1〉15 with edges {0, 5} and {1, 6} in 〈5〉15
to produce the hamilton cycle (0, 5, 4, 3, 2, 1, 6, 7, . . . , 14) and the graph consisting
of the cycles (0, 1, 11, 6, 5, 10), (2, 7, 12), (3, 8, 13), and (4, 9, 14) respectively. The
next few cases proceed similarly, so we simply present the edges to be swapped.

(3, 3, 9): Swap edges {0, 1}, {5, 6}, {6, 7}, and {11, 12} in 〈1〉15 with edges
{0, 5}, {1, 6}, {6, 11}, and {7, 12} in 〈5〉15 (so just switch two more edges from the
(3, 3, 3, 6) case).

(3, 12): Swap edges {0, 1}, {2, 3}, {5, 6}, {6, 7}, {7, 8}, and {11, 12} in 〈1〉15 with
edges {0, 5}, {1, 6}, {2, 7}, {3, 8}, {6, 11}, and {7, 12} in 〈5〉15 (so just switch two
more edges from the (3, 3, 9) case).
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(3, 6, 6): Swap edges {0, 1}, {5, 6}, {7, 8}, and {12, 13} in 〈1〉15 with edges
{0, 5}, {1, 6}, {7, 12}, and {8, 13} in 〈5〉15 (so just switch two more edges from the
(3, 3, 3, 6) case).

(6, 9): Swap edges {0, 1}, {3, 4}, {5, 6}, {6, 7}, {8, 9}, and {11, 12} in 〈1〉15 with edges
{0, 5}, {1, 6}, {3, 8}, {4, 9}, {6, 11}, and {7, 12} in 〈5〉15 (so just switch two more
edges from the (3, 3, 9) case).

All but one of the remaining cases are obtained by producing F2 using Lemma 1,
then switching edges between the resulting hamilton cycle and 〈5〉15 to obtain 2 ham-
ilton cycles. Since it is more complicated to describe, we simply provide the resulting
decompositions of 〈1, 2, 5〉15.

(3, 4, 4, 4): (0, 1, 14, 13), (2, 3, 5, 4), (6, 7, 8), (9, 10, 12, 11),

(0, 5, 10, 8, 3, 13, 12, 7, 2, 1, 11, 6, 4, 9, 14),

(0, 2, 12, 14, 4, 3, 1, 6, 5, 7, 9, 8, 13, 11, 10).

(3, 3, 4, 5) : (4, 5, 6)(11, 12, 13), (7, 8, 10, 9), (0, 2, 3, 1, 14),
(0, 10, 12, 2, 7, 5, 3, 8, 6, 1, 11, 9, 4, 14, 13),

(0, 5, 10, 11, 6, 7, 12, 14, 9, 8, 13, 3, 4, 2, 1).

(5, 5, 5): (0, 2, 3, 1, 14), (4, 6, 8, 7, 5), (9, 10, 12, 13, 11),

(0, 5, 10, 11, 6, 1, 2, 12, 7, 9, 14, 4, 3, 8, 13),

(0, 10, 8, 9, 4, 2, 7, 6, 5, 3, 13, 14, 12, 11, 1).

(4, 5, 6): (10, 11, 13, 12), (5, 6, 8, 9, 7), (0, 2, 4, 3, 1, 14),

(0, 1, 11, 9, 4, 6, 7, 2, 12, 14, 13, 3, 8, 10, 5),

(0, 10, 9, 14, 4, 5, 3, 2, 1, 6, 11, 12, 7, 8, 13).

(4, 4, 7): (6, 8, 9, 7), (10, 12, 13, 11), (0, 2, 4, 5, 3, 1, 14)

(0, 5, 7, 2, 12, 14, 4, 6, 1, 11, 9, 10, 8, 3, 13),

(0, 10, 5, 6, 11, 12, 7, 8, 13, 14, 9, 4, 3, 2, 1).

(3, 5, 7): (11, 12, 13), (6, 7, 9, 10, 8), (0, 2, 4, 5, 3, 1, 14),

(0, 5, 7, 2, 1, 6, 11, 10, 12, 14, 4, 9, 8, 3, 13),

(0, 10, 5, 6, 4, 3, 2, 12, 7, 8, 13, 14, 9, 11, 1).

(3, 4, 8): (0, 5, 10), (1, 2, 7, 6), (3, 4, 14, 9, 11, 12, 13, 8),

(0, 1, 3, 2, 4, 5, 6, 11, 10, 9, 8, 7, 12, 14, 13),

(0, 2, 12, 10, 8, 6, 4, 9, 7, 5, 3, 13, 11, 1, 14).

(5, 10): (0, 2, 4, 6, 8, 7, 5, 3, 1, 14), (9, 11, 13, 12, 10),

(0, 5, 4, 14, 9, 8, 13, 3, 2, 12, 7, 6, 1, 11, 10),

(0, 1, 2, 7, 9, 4, 3, 8, 10, 5, 6, 11, 12, 14, 13).

(4, 11): (0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 14), (10, 12, 13, 11),

(0, 5, 4, 14, 12, 2, 7, 6, 1, 11, 9, 10, 8, 3, 13),

(0, 1, 2, 3, 4, 9, 14, 13, 8, 7, 12, 11, 6, 5, 10). �
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