© Springer 2007

A Sharp Upper Bound for the Number of Spanning Trees of a Graph

Kinkar Ch. Das-

Université Paris-XI, Orsay, LRI, Bâtiment 490, 91405 Orsay Cedex, France. e-mail: kinkar@mailcity.com

Abstract. Let $G = (V, E)$ be a simple graph with *n* vertices, *e* edges and d_1 be the highest degree. Further let λ_i , $i = 1, 2, \ldots, n$ be the non-increasing eigenvalues of the Laplacian matrix of the graph G. In this paper, we obtain the following result: For connected graph $G, \lambda_2 = \lambda_3 = \ldots = \lambda_{n-1}$ if and only if G is a complete graph or a star graph or a (d_1, d_1) complete bipartite graph.

Also we establish the following upper bound for the number of spanning trees of G on n, e and d_1 only:

$$
t(G) \le \left(\frac{2e-d_1-1}{n-2}\right)^{n-2}.
$$

The equality holds if and only if G is a star graph or a complete graph. Earlier bounds by Grimmett [5], Grone and Merris [6], Nosal [11], and Kelmans [2] were sharp for complete graphs only. Also our bound depends on n , e and d_1 only.

Key words. Graph, spanning trees, Laplacian matrix.

1. Introduction

Let $G = (V, E)$ be a simple graph with the vertex set $V = \{v_1, v_2, \dots, v_n\}$ and the cardinality of edge set e. Assume that the vertices are ordered such that $d_1 \geq d_2 \geq$ $\ldots \geq d_n$, where d_i is the degree of v_i for $i = 1, 2, \ldots, n$. The number of spanning trees of G is denoted by $t(G)$. Let $A(G)$ be the $(0, 1)$ -adjacency matrix of G and $D(G)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of G is $L(G) = D(G) - A(G)$. Clearly, $L(G)$ is a real symmetric matrix. From this fact and Geršgorin's theorem, it follows that its eigenvalues are non-negative real numbers. Moreover since its rows sum is equal to 0, 0 is the smallest eigenvalue of $L(G)$. It is known that the multiplicity of 0 as the eigenvalue of $L(G)$ is equal to the number of connected components of G . So a graph G is connected if and only if the second smallest Laplacian eigenvalue is strictly greater than 0. Throughout this paper let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{n-1} \geq \lambda_n = 0$ be the eigenvalues of $L(G)$. When more than

 $*$ This work was done while the author was doing postdoctoral research in LRI, Université Paris-XI, Orsay, France.

one graph is under discussion, we may write $\lambda_i(G)$ instead of λ_i . The number of spanning trees of G is given by the following formula:

$$
t(G) = \frac{1}{n} \prod_{i=1}^{n-1} \lambda_i.
$$
 (1)

Now we give some known upper bounds on $t(G)$:

(1) Grimmett [5].

$$
t(G) \le \frac{1}{n} \left(\frac{2e}{n-1}\right)^{n-1}.\tag{2}
$$

(2) Grone and Merris [6].

$$
t(G) \le \left(\frac{n}{n-1}\right)^{n-1} \left(\frac{\prod_{i=1}^{n} d_i}{2e}\right).
$$
 (3)

(3) Nosal [11].

$$
t(G) \le n^{n-2} \left(\frac{r}{n-1}\right)^{n-1}.\tag{4}
$$

(4) Kelmans ([2], p. 222).

$$
t(G) \le n^{n-2} \left(1 - \frac{2}{n}\right)^e. \tag{5}
$$

The third bound only applies to regular graphs of degree r . The first three bounds are sharp for complete graphs only. In Section 2 we characterize the graphs. In Section 3 we obtain an upper bound on the product of the degrees of a graph. In Section 4 we establish the upper bound on the number of spanning trees applying the results in Section 2 and Section 3. One of the upper bound is as follows:

$$
t(G) \le \left(\frac{2e - d_1 - 1}{n - 2}\right)^{n-2},
$$

which is sharp for a star graph or a complete graph.

2. Characterization on Graphs

In this section we characterize the graphs. Already we have seen that graph characterization from Laplacian eigenvalues in [3, 4]. It is well known that the largest Laplacian eigenvalue is less than or equal to n . Grone and Zimmermann [8] found the following lower bound for the multiplicity of the eigenvalue n .

Lemma 2.1 [8]. *Let* $G = (V, E)$ *be a simple graph with n vertices. Then the multiplicity of* n *as an eigenvalue of* L(G) *is at least* s − 1 *if and only if* G *contains a complete* s*-partite graph on* V *as a subgraph.*

Merris [7] proved that $\lambda_1 \geq d_1 + 1$ if G has at least one edge. For a connected graph G on $n > 1$ vertices, $\lambda_1 = d_1 + 1$ holds if and only if $d_1 = n - 1$. Now we define a graph S_n of order *n* as follows: there is at least one vertex of degree $n - 1$ or in other words it is a super-graph of $K_{1,n-1}$. We rewrite the above statement in the following Lemma 2.2.

Lemma 2.2. Let G be a simple connected graph with at least one edge and d_1 be the *highest degree. If* λ_1 *is the largest eigenvalue of* $L(G)$ *, then* $\lambda_1 \geq d_1 + 1$ *and the equality holds if and only if* G *is an* S_n *graph.*

Lemma 2.3 [10]. Let G be a simple graph with n vertices. If λ_i , $i = 1, 2, \ldots, n$ are *the non-increasing Laplacian eigenvalues of* L(G)*, then the non-increasing Laplacian eigenvalues of* $L(G^c)$ *are* $n - \lambda_{n-i}$, $i = 1, 2, \ldots, n - 1$ *and* 0.

Lemma 2.4 [1]. *Let* G *be a simple connected graph. Then*

$$
\lambda_1 \leq \max_i \{d_i + d_j\},\
$$

with equality holds if and only if G *is a regular bipartite graph or a semiregular bipartite graph.*

Lemma 2.5 [10]. *Let* G *be a simple graph and* $G \neq K_n$ *. If* λ_{n-1} *is the second smallest eigenvalue of* $L(G)$ *, then* $\lambda_{n-1} \leq d_n$ *, where* d_n *is the smallest degree of* G.

Theorem 2.6. Let G be a simple graph of order n with at least one edge. Then $\lambda_1 =$ $\lambda_2 = \ldots = \lambda_{n-1}$ *if and only if* G *is a complete graph.*

Proof. If G is a complete graph then $\lambda_1 = \lambda_2 = \ldots = \lambda_{n-1}$ holds.

Conversely, let $\lambda_1 = \lambda_2 = \ldots = \lambda_{n-1}$. If G is not a complete graph then $\lambda_{n-1} \leq d_n < d_1 + 1 \leq \lambda_1$ (by Lemma 2.5 and Lemma 2.2), a contradiction. ⊔

Lemma 2.7 [9]. *Let* G *be a connected graph with* $n \geq 3$ *vertices. Then* $\lambda_2 \geq d_2$ *with equality if* G *is a* $r \times s$ *complete bipartite graph* $K_{r,s}$ *or a tree* T_n *with degree sequence* $\pi(T_n) = (\frac{n}{2}, \frac{n}{2}, 1, \ldots, 1)$ *, where* $n \geq 4$ *is even.*

Theorem 2.8. Let G be a simple connected graph with $n > 3$ vertices. Then $\lambda_2 = \lambda_3 =$ $\ldots = \lambda_{n-1}$ *if and only if G is a complete graph or a star graph or a* (d₁, d₁) *complete bipartite graph.*

Proof. If G is a complete graph or a star graph or a (d_1, d_1) complete bipartite graph, then $\lambda_2 = \lambda_3 = \ldots = \lambda_{n-1}$ holds.

Conversely, let $\lambda_2 = \lambda_3 = \ldots = \lambda_{n-1}$. We have to prove that G is a complete graph or a star graph or a (d_1, d_1) complete bipartite graph. Two cases arise (i) $\lambda_1 = \lambda_2 = \ldots = \lambda_{n-1}$, (ii) $\lambda_1 \neq \lambda_2 = \lambda_3 = \ldots = \lambda_{n-1}$.

Case (i) : $\lambda_1 = \lambda_2 = \ldots = \lambda_{n-1}$. By Theorem 2.6, we get that G is a complete graph.

Case (ii) : $\lambda_1 \neq \lambda_2 = \lambda_3 = \ldots = \lambda_{n-1}$. In this case G is not a complete graph. Using this result and Lemma 2.5, we get $\lambda_2 = \lambda_3 = \ldots = \lambda_{n-1} \leq d_n$. From Lemma 2.7 we get $\lambda_2 \geq d_2$. Therefore $d_2 \leq \lambda_2 = \lambda_3 = \ldots = \lambda_{n-1} \leq d_n$. $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} d_i$, that is, $\lambda_1 = d_1 + d_2$. By Lemma 2.4, G is a regular bipartite Since $d_2 \geq d_n$, we get that $\lambda_2 = \lambda_3 = \ldots = \lambda_{n-1} = d_2 = d_3 = \ldots = d_n$. Now, graph or a semiregular bipartite graph.

When G is a regular bipartite graph, $d_1 = d_2 = \ldots = d_n$. Now we consider the complement graph G^c of G. In the complement graph G^c , there are all the vertices of degree $n - d_1 - 1$. Let $\lambda'_1 \ge \lambda'_2 \ge \ldots \ge \lambda'_n = 0$ be the eigenvalues of $L(G^c)$. Therefore

$$
\lambda'_1 = \lambda'_2 = \ldots = \lambda'_{n-2} = n - d_1, \lambda'_{n-1} = n - 2d_1, \lambda'_{n} = 0.
$$

If possible, let G^c be a connected graph. By Lemma 2.2 we conclude that G^c is an S_{n-d_1} graph because there is at least one edge and $\lambda'_1 = (n - d_1 - 1) + 1$, where $n - d_1 - 1$ is the highest degree of G^c . Since G^c is a graph of order n and S_{n-d} , is a graph of order $n - d_2$, there is a contradiction. Therefore G^c is a disconnected graph. Hence $\lambda'_{n-1} = n - 2d_1 = 0$, that is, $n = 2d_1$. Hence G is a (d_1, d_1) complete bipartite graph.

When G is a semiregular bipartite graph, $d_1 \neq d_2 = d_3 = \ldots = d_n$. Since G is connected and (d_1, d_2) semiregular bipartite graph, G must be a star graph. \Box

Theorem 2.9. Let G be a simple connected graph with $n \geq 3$ vertices. Then $\lambda_1 = \lambda_2 =$... = λ_{n-2} *if and only if* G *is a complete graph or a graph* $K_n - e$ *, where e is any edge.*

Proof. If G is a complete graph or a graph $K_n - e$, then $\lambda_1 = \lambda_2 = \ldots = \lambda_{n-2}$ holds.

Conversely, let $\lambda_1 = \lambda_2 = \ldots = \lambda_{n-2}$. We have to prove that G is a complete graph or a $K_n - e$ graph.

Let us consider the complement graph G^c of a graph G. Also, let $\lambda'_1 \geq \lambda'_2 \geq$ $\ldots \ge \lambda'_n = 0$ be the eigenvalues of $L(G^c)$. Therefore $\lambda'_2 = \lambda'_3 = \ldots = \lambda'_{n-1}$.

If possible, let G^c be a connected graph. Using Theorem 2.8 we conclude that G^c is a complete graph or a star graph or a $(d₁, d₁)$ complete bipartite graph, where d_1 is the highest degree of G^c . So G is a disconnected graph, a contradiction. Hence G^c is a disconnected graph, that is, $\lambda'_{n-1} = 0 = \lambda'_{n-2} = \ldots = \lambda'_{2}$. Two cases arise (i) $\lambda'_1 = 0$, (ii) $\lambda'_1 \neq 0$.

Case (*i*) : $\lambda_1^7 = 0$. In this case all the eigenvalues of $L(G^c)$ are 0, that is, G is a complete graph.

Case (ii) : $\lambda'_1 \neq 0$. In this case G^c has exactly one edge because there is only one non-zero eigenvalue. Therefore G is a graph $K_n - e$.

3. Maximizing the Product of the Degrees of a Graph

In this section we find the upper bounds on the product of the degrees of a connected graph in terms of only *n* and *e*. First we find the upper bound on $\prod_{i=1}^{n} d_i$ by A.M. \ge G.M. and this bound is in the following Theorem 3.1.

Theorem 3.1. *Let* G *be a simple connected graph with* n *vertices and* e *edges. Then*

$$
\prod_{i=1}^{n} d_i \le \left(\frac{2e}{n}\right)^n.
$$
\n(6)

Moreover, the equality holds in (6) if and only if $d_1 = d_2 = ... = d_n = \frac{2e}{n}$.

Theorem 3.2. *Let* G *be a simple connected graph with* n *vertices and* e *edges. Then*

$$
\prod_{s=1}^{n} d_s \le k^{(k+1)n - 2e} (k+1)^{2e - kn}, \quad \text{where } k = \left[\frac{2e}{n}\right]. \tag{7}
$$

Moreover, the equality holds in (7) if and only if the difference between any two vertex degrees of graph G *is at most one.*

Proof. Let us consider two vertices v_i of degree d_i and v_j of degree d_j , where $d_i \geq d_j$. Also let $\prod_{i=1}^{n} d_i$ be maximum.

If possible, let $d_i - d_j \geq 2$. Therefore there exists a vertex v_k , which is adjacent to v_i , but not v_j . If we remove edge v_kv_i and add edge between the vertices v_k and v_j , then the new degree sequence of the new graph is $d_1^*, d_2^*, \ldots, d_n^*$; where $d_i^* = d_i - 1, d_i^* = d_j + 1, d_i^* = d_i, t = 1, 2, ..., n; t \neq i, j.$

Therefore

$$
\prod_{s=1}^{n} d_s^* = \prod_{s=1}^{n} d_s \frac{(d_i - 1)(d_j + 1)}{d_i d_j} \n= \prod_{s=1}^{n} d_s \left(1 - \frac{1}{d_i} \right) \left(1 + \frac{1}{d_j} \right) \n= \prod_{s=1}^{n} d_s \left(1 - \frac{1}{d_i} + \frac{1}{d_j} - \frac{1}{d_i d_j} \right).
$$
\n(8)

Now,

$$
\frac{1}{d_j} - \frac{1}{d_i} - \frac{1}{d_i d_j} = \frac{1}{d_j} - \frac{1}{d_i} \left(\frac{d_j + 1}{d_j} \right) \ge \frac{1}{d_j} - \frac{1}{(d_j + 2)} \left(\frac{d_j + 1}{d_j} \right) = \frac{1}{d_j(d_j + 2)} > 0.
$$

Using this result in (8), we get $\prod_{s=1}^{n} d_s^* > \prod_{s=1}^{n} d_s$, a contradiction as $\prod_{s=1}^{n} d_s$ is maximum. Since v_i and v_j are arbitrary, therefore the difference of any two vertex degrees of graph G is at most one. So, some of the vertices have degree k and the remaining vertices (if any exists) have degree $k+1$, where $k = \left\lceil \frac{2e}{n} \right\rceil$. Therefore $2e - kn$ number of vertices have degree $k + 1$. Hence

$$
\prod_{s=1}^{n} d_s \le k^{(k+1)n-2e} (k+1)^{2e-kn}, \quad \text{where } k = \left[\frac{2e}{n}\right].
$$

Now suppose that the equality holds in (7). Therefore some of the vertices have degree k and the remaining vertices (if any exists) have degree $k+1$, where $k = \left\lceil \frac{2e}{n} \right\rceil$. Hence the difference between any two vertex degrees of graph G is at most one.

Conversely, let the difference between any two vertex degrees of graph G be at most one. Then we can easily see that the equality holds in (7).

4. Upper Bound on the Number of Spanning Trees

We use the results of Sections 2 and 3 to derive two upper bounds on the number of spanning trees of a connected graph in terms of n , e , and d_1 only. Also using the Theorem 3.1 we conclude that the bound given by (3) reduces to the bound (2).

Theorem 4.1. Let G be a simple connected graph with n vertices, e edges and d_1 be the *highest degree. Then the number* $t(G)$ *of spanning trees of* G *satisfies*

$$
t(G) \le \left(\frac{2e - d_1 - 1}{n - 2}\right)^{n - 2}.\tag{9}
$$

Equality holds if and only if G *is a star graph or a complete graph.*

Proof. We have

$$
t(G) = \frac{1}{n} \prod_{i=1}^{n-1} \lambda_i
$$

= $\frac{1}{n} \lambda_1 \prod_{i=2}^{n-1} \lambda_i$
 $\leq \prod_{i=2}^{n-1} \lambda_i$, as $\lambda_1 \leq n$
 $\leq \left(\frac{\sum_{i=2}^{n-1} \lambda_i}{n-2}\right)^{n-2}$
 $\leq \left(\frac{2e - d_1 - 1}{n-2}\right)^{n-2}$, as $\sum_{i=2}^{n-1} \lambda_i = 2e - \lambda_1 \leq 2e - d_1 - 1$.

Now suppose that equality holds in (9). Then all inequalities in the above argument must be equalities. Therefore

$$
\lambda_1 = n, \lambda_2 = \lambda_3 = \ldots = \lambda_{n-1}
$$
, and $\lambda_1 = d_1 + 1$.

By Lemma 2.1 and $\lambda_1 = n$, we conclude that G is a super graph of a complete bipartite graph.

By Theorem 2.8 and $\lambda_2 = \lambda_3 = \ldots = \lambda_{n-1}$, we get that G is a complete graph or a star graph or a (d_1, d_1) complete bipartite graph.

By Lemma 2.2 and $\lambda_1 = d_1 + 1$, G is only an S_n graph.

Hence G is a complete graph or a star graph.

Conversely, it is easy to verify that equality in (9) holds for a complete graph or a star graph. \Box

Remark. Our result (9) is sharp for a star graph or a complete graph, but (2), (3) and (4) are sharp for complete graph only. Another thing is that (9) is perhaps a bit more useful than (3), since it depends only on n , e and d_1 rather than the full-degree sequence.

Theorem 4.2. *Let* G *be a simple connected graph with* n *vertices and* e *edges. Then the number* $t(G)$ *of spanning trees of* G *is given by*

$$
t(G) \le \left(\frac{n}{n-1}\right)^{n-1} \frac{\left(k^{(k+1)n-2e}(k+1)^{2e-kn}\right)}{2e},\tag{10}
$$

and the equality holds in (10) if and only if G *is a complete graph.*

Proof. Using Theorem 3.2 and from (3), we get

$$
t(G) \le \left(\frac{n}{n-1}\right)^{n-1} \frac{\left(k^{(k+1)n-2e}(k+1)^{2e-kn}\right)}{2e},
$$

where $k = \left[\frac{2e}{n}\right]$.

Now suppose that equality holds in (10). Therefore equality holds in (3) and (7). If equality holds in (3) then G is a complete graph.

By Theorem 3.2, if the equality holds in (7) then the difference between any two vertex degrees of graph G is at most one. Hence G is a complete graph.

Conversely, it is easy to verify that equality in (10) holds for a complete graph.

 \Box

Acknowledgements. Thanks are due to two anonymous referees for several helpful suggestions.

References

- 1. Anderson, W.N., Morley, T.D.: Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra **18**, 141–145 (1985)
- 2. Cvetkovic , D.M., Doob, M., Sachs, H.: Spectra of graphs, Mathematics **87**, Academic press, 1980
- 3. Das, K.C.: The Laplacian Spectrum of a Graph, Computers and Mathematics with Appl. **48**, 715–724 (2004)
- 4. Das, K.C.: A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. **376**, 173–186 (2004)
- 5. Grimmett, G.R.: An upper bound for the number of spanning trees of a graph, Discrete Math. **16**, 323–324 (1976)
- 6. Grone, R., Merris, R.: A bound for the complexity of a simple graph, Discrete Math. **69**, 97–99 (1988)
- 7. Grone, R., Merris, R.: The Laplacian Spectrum of a Graph II[∗], SIAM J. Discrete Math. **7 (2)**, 221–229 (1994)
- 8. Grone, R., Zimmermann, G.: Large eigenvalues of the Laplacian, Linear and Multilinear Algebra **28**, 45–47 (1990)
- 9. Li, J.-S., Pan, Y.-L.: A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear and Multilinear Algebra **48**, 117–121 (2000)
- 10. Merris, R.: Laplacian matrices of graphs: A survey, Linear Algebra Appl. **197, 198**, 143–176 (1994)
- 11. Nosal, E.: Eigenvalues of Graphs, Master Thesis, University of Calgary, 1970

Received: June 23, 2006 Final version received: July 11, 2007