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Abstract. Let G = (V, E) be a simple graph with n vertices, e edges and d; be the highest

degree. Further let A;, i = 1,2, ..., n be the non-increasing eigenvalues of the Laplacian
matrix of the graph G. In this paper, we obtain the following result: For connected graph
G, Ay = A3 = ... = X, if and only if G is a complete graph or a star graph or a (d;, d;)

complete bipartite graph.
Also we establish the following upper bound for the number of spanning trees of G on
n, e and d, only:

2e —dp —1\"?
— .

t(G)§< —

The equality holds if and only if G is a star graph or a complete graph. Earlier bounds by
Grimmett [5], Grone and Merris [6], Nosal [11], and Kelmans [2] were sharp for complete
graphs only. Also our bound depends on n, e and d; only.
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1. Introduction

Let G=(V,E) be a simple graph with the vertex set V = {vy, v, ..., v,} and the
cardinality of edge set e. Assume that the vertices are ordered such that dy > d» >

. > d,, where d; is the degree of v; fori = 1,2,...,n. The number of span-
ning trees of G is denoted by 7(G). Let A(G) be the (0, 1)-adjacency matrix of G
and D(G) be the diagonal matrix of vertex degrees. The Laplacian matrix of G is
L(G) = D(G) — A(G). Clearly, L(G) is a real symmetric matrix. From this fact and
Gersgorin’s theorem, it follows that its eigenvalues are non-negative real numbers.
Moreover since its rows sum is equal to 0, 0 is the smallest eigenvalue of L(G). It is
known that the multiplicity of 0 as the eigenvalue of L(G) is equal to the number
of connected components of G. So a graph G is connected if and only if the second
smallest Laplacian eigenvalue is strictly greater than 0. Throughout this paper let
Al = Ay > ... > Ayt > Ay = 0 be the eigenvalues of L(G). When more than
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one graph is under discussion, we may write A;(G) instead of A;. The number of
spanning trees of G is given by the following formula:

n—1

1
t(G):;EAi. (1)

Now we give some known upper bounds on 7(G):

(1) Grimmett [5].

n—1
(G) < & (nze ) . 2)

(2) Grone and Merris [6].

n n—1 H;lzldi
o= () (M, 5

(3) Nosal [11].

n—1
1(G) < n"2 <n11> . (4)
(4) Kelmans ([2], p. 222).
1(G) <n"? (1 - %)e . 5)

The third bound only applies to regular graphs of degree r. The first three bounds
are sharp for complete graphs only. In Section 2 we characterize the graphs. In
Section 3 we obtain an upper bound on the product of the degrees of a graph. In
Section 4 we establish the upper bound on the number of spanning trees applying
the results in Section 2 and Section 3. One of the upper bound is as follows:

26—d1—1>"_2

t(G)S( p—

which is sharp for a star graph or a complete graph.

2. Characterization on Graphs

In this section we characterize the graphs. Already we have seen that graph char-
acterization from Laplacian eigenvalues in [3, 4]. It is well known that the largest
Laplacian eigenvalue is less than or equal to n. Grone and Zimmermann [8] found
the following lower bound for the multiplicity of the eigenvalue n.
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Lemma 2.1 [8]. Let G = (V, E) be a simple graph with n vertices. Then the multiplic-
ity of n as an eigenvalue of L(G) is at least s — 1 if and only if G contains a complete
s-partite graph on 'V as a subgraph.

Merris [7] proved that A > d; + 1 if G has at least one edge. For a connected
graph G on n > 1 vertices, .1 = d; + 1 holds if and only if d; = n — 1. Now we
define a graph S, of order n as follows: there is at least one vertex of degree n — 1
or in other words it is a super-graph of Ky ,_1. We rewrite the above statement in
the following Lemma 2.2.

Lemma 2.2. Let G be a simple connected graph with at least one edge and dy be the
highest degree. If 11 is the largest eigenvalue of L(G), then .1 > di+ 1 and the equality
holds if and only if G is an S, graph.

Lemma 2.3 [10]. Let G be a simple graph with n vertices. If Aj, i = 1,2,... ,n are
the non-increasing Laplacian eigenvalues of L(G), then the non-increasing Laplacian
eigenvalues of L(G°) aren — Ay—;, i =1,2,... ,n— 1 andO.

Lemma 2.4 [1]. Let G be a simple connected graph. Then
A1 < max{d; +d;},
1

with equality holds if and only if G is a regular bipartite graph or a semiregular bipartite
graph.

Lemma 2.5 [10]. Let G be a simple graph and G # K,,. If L,,_1 is the second smallest
eigenvalue of L(G), then A,_1 < d,,, where d, is the smallest degree of G.

Theorem 2.6. Let G be a simple graph of order n with at least one edge. Then A| =

Ay =...= An—1 if and only if G is a complete graph.
Proof. 1f G is a complete graph then A; = A» = ... = A,_1 holds.

Conversely, let Ay = Ay = ... = A,_1. If G is not a complete graph then
An—1 <d, <d;+1 <X (by Lemma 2.5 and Lemma 2.2), a contradiction. ]

Lemma 2.7 [9]. Let G be a connected graph with n > 3 vertices. Then Ay > dy with
equality if G is ar x s complete bipartite graph K, s or a tree T, with degree sequence
7(Ty) = (5.%.1,..., 1), where n > 4 is even.

Theorem 2.8. Let G be a simple connected graph withn > 3 vertices. Then Ay = A3 =
.. = Ap_1 if and only if G is a complete graph or a star graph or a (dy, di) complete
bipartite graph.
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Proof. 1f G is a complete graph or a star graph or a (d, d;) complete bipartite
graph, then A» = A3 = ... = A,,_1 holds.

Conversely, let A» = A3 = ... = A,,_1. We have to prove that G is a complete
graph or a star graph or a (di, d;) complete bipartite graph. Two cases arise (i)
M=rm=...=x 1, (A # A =A3=...=Xy_1.

Case (i) : A1 = Ay = ... = A,_1. By Theorem 2.6, we get that G is a complete
graph.

Case (ii) : A1 # Ay = A3 = ... = A,_1. In this case G is not a complete
graph. Using this result and Lemma 2.5, we get Ay = A3 = ... = Ay < d.
From Lemma 2.7 we get Ay > d». Therefore dy < Ay = A3 = ... = A1 < d.
Since dy > dy, wegetthat iy = A3 = ... = A, =dy) =d3 = ... = d,. Now,
Y Ai =y i ,di,thatis, A} = d| + dr. By Lemma 2.4, G is a regular bipartite
graph or a semiregular bipartite graph.

When G is a regular bipartite graph, dy = d) = ... = d,,. Now we consider the
complement graph G¢ of G. In the complement graph G¢, there are all the vertices
of degree n — d; — 1. Let )L/l > )‘,2 > .. > )‘;1 = 0 be the eigenvalues of L(G°).
Therefore

’

M=A=..=A_,=n—d, h,_,=n—2d, i, =0.
If possible, let G¢ be a connected graph. By Lemma 2.2 we conclude that G€ is an
Sn—a, graph because there is at least one edge and )»’1 = (n —d; — 1) + 1, where
n —d; — 1 is the highest degree of G°. Since G° is a graph of order n and S,_g4, i3
a graph of order n — dj, there is a contradiction. Therefore G¢ is a disconnected
graph. Hence )L;l_l =n —2d; =0, that is, n = 2d;. Hence G is a (d;, di) complete
bipartite graph.

When G is a semiregular bipartite graph, dy # dy = d3 = ... = d,. Since G is
connected and (d;, d») semiregular bipartite graph, G must be a star graph. ]

Theorem 2.9. Let G be a simple connected graph withn > 3 vertices. Then A\] = Ay =
.. = M2 ifand only if G is a complete graph or a graph K,, — e, where e is any edge.

Proof. 1f G is a complete graph or a graph K, —e, then A = A» = ... = 1,2
holds.
Conversely, let A; = Ay = ... = A,,_»>. We have to prove that G is a complete

graph or a K,, — e graph. / /

Let us consider the complement graph G¢ of a graph G. Also, let A} > A, >

. > A = 0 be the eigenvalues of L(G¢). Therefore A = A = = A .

If poss1b1e let G¢ be a connected graph. Usmg Theorem 2. 8 we conclude that
G¢ is a complete graph or a star graph or a (dl, d, 1) complete bipartite graph, where
d; is the highest degree of G°. So G is a disconnected graph, a contradiction. Hence
G¢ is a disconnected graph, that is, /\;71 =0= )»;172 =...= )»/2. Two cases arise
() A, =0, (i) & #0.

Case (i) : /\’1 = 0. In this case all the eigenvalues of L(G¢) are 0, that is, G is a
complete graph.
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Case (ii) : )\,1 # 0. In this case G¢ has exactly one edge because there is only
one non-zero eigenvalue. Therefore G is a graph K, — e. O

3. Maximizing the Product of the Degrees of a Graph

In this section we find the upper bounds on the product of the degrees of a connected
graph in terms of only n and e. First we find the upper bound on []7_, d; by A.M.>
G.M. and this bound is in the following Theorem 3.1.

Theorem 3.1. Let G be a simple connected graph with n vertices and e edges. Then
n n
2
[Ta < <—e> . (6)
i=1 "

Moreover, the equality holds in (6) if and only if dy = dr = ... = d,, = 2.

n

Theorem 3.2. Let G be a simple connected graph with n vertices and e edges. Then

n
l—[d“‘ < k(k+1)n—2€(k + 1)2€—kn’ where k = I:%] (7)

s=1

Moreover, the equality holds in (7) if and only if the difference between any two vertex
degrees of graph G is at most one.

Proof. Letusconsider two vertices v; of degree d; and v; of degree d;, whered; > d;.
Also let []'_; d; be maximum.

If possible, let d; — d; > 2. Therefore there exists a vertex v, which is adja-
cent to v;, but not v;. If we remove edge viv; and add edge between the vertices

v and v, then the new degree sequence of the new graph is df, d3, ... , d;; where
dif=di—1, di=dj+1,df =d;, 1t =1,2,... ,n; 1 #1i, .
Therefore

n n
(di — D+ 1
d¥ = di——+  °
1_[ s l_[ S didj
s=1 s=1

Ra(-3)0+3)

s=1
1

" 1 1
=[la(1-—+—-—]. 8

s=1

<dj+1>> 1 1 <dj+1> 1 0
_ = = > V.
i dj _dj (dj+2) dj dj(dj+2)
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Using this result in (8), we get [[i_, dF > [],_; d, a contradiction as []|_, d; is
maximum. Since v; and v; are arbitrary, therefore the difference of any two vertex
degrees of graph G is at most one. So, some of the vertices have degree k and the

remaining vertices (if any exists) have degree k+ 1, where k = [%] . Therefore 2e —kn
number of vertices have degree k + 1. Hence

n
l_[ ds < k(k+1)n—2€(k + l)Ze—kn’ where k = I:Zn_e] .
s=1
Now suppose that the equality holds in (7). Therefore some of the vertices have
degree k and the remaining vertices (if any exists) have degree k + 1, where k = [%] .

Hence the difference between any two vertex degrees of graph G is at most one.
Conversely, let the difference between any two vertex degrees of graph G be at
most one. Then we can easily see that the equality holds in (7). |

4. Upper Bound on the Number of Spanning Trees
We use the results of Sections 2 and 3 to derive two upper bounds on the number

of spanning trees of a connected graph in terms of n, ¢, and d; only. Also using the
Theorem 3.1 we conclude that the bound given by (3) reduces to the bound (2).

Theorem 4.1. Let G be a simple connected graph with n vertices, e edges and dy be the
highest degree. Then the number t(G) of spanning trees of G satisfies

n—2
26—d1—1> | o)

t(G)s( —

Equality holds if and only if G is a star graph or a complete graph.

Proof. We have
1n—l
HG) =~ H Ai
i=

1 n—1
=~ _]"!Ai
1=

IA

n—1
Hk,-, asiA1 <n
i=2

1 n—2
- Yoo ki
- n—2

2e —dy —1\" 2
S<e—12) , asZ?:_ZIAi=Ze—)»1§26—d1—l.
P



A Sharp Upper Bound for the Number of Spanning Trees of a Graph 631

Now suppose that equality holds in (9). Then all inequalities in the above argument
must be equalities. Therefore

AM=n, A=A3=...=A,_1, and Ai;=d;+1.

By Lemma 2.1 and A1 = n, we conclude that G is a super graph of a complete
bipartite graph.

By Theorem 2.8 and A = A3 = ... = XA,—, we get that G is a complete graph
or a star graph or a (dj, d1) complete bipartite graph.

By Lemma 2.2 and A} = dj + 1, G is only an S, graph.

Hence G is a complete graph or a star graph.

Conversely, it is easy to verify that equality in (9) holds for a complete graph or
a star graph. O

Remark. Our result (9) is sharp for a star graph or a complete graph, but (2), (3)
and (4) are sharp for complete graph only. Another thing is that (9) is perhaps a bit
more useful than (3), since it depends only on n, e and d; rather than the full-degree
sequence.

Theorem 4.2. Let G be a simple connected graph with n vertices and e edges. Then the
number t(G) of spanning trees of G is given by

n—1 (k+1)n—2e 2e—kn
‘G < < n 1) (k ;k+1) )’ (10)
n — e

and the equality holds in (10) if and only if G is a complete graph.

Proof. Using Theorem 3.2 and from (3), we get

n >n—l (k(k+1)n—2e(k+ 1)2e—kn)

1(G) = < e ,

n—1

where k = [2,!—6]
Now suppose that equality holds in (10). Therefore equality holds in (3) and (7).
If equality holds in (3) then G is a complete graph.
By Theorem 3.2, if the equality holds in (7) then the difference between any two
vertex degrees of graph G is at most one. Hence G is a complete graph.
Conversely, it is easy to verify that equality in (10) holds for a complete graph.
O
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