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Abstract. Let G = (V , E) be a simple graph with n vertices, e edges and d1 be the highest
degree. Further let λi, i = 1, 2, . . . , n be the non-increasing eigenvalues of the Laplacian
matrix of the graph G. In this paper, we obtain the following result: For connected graph
G, λ2 = λ3 = . . . = λn−1 if and only if G is a complete graph or a star graph or a (d1, d1)
complete bipartite graph.

Also we establish the following upper bound for the number of spanning trees of G on
n, e and d1 only:

t (G) ≤
(

2e − d1 − 1
n − 2

)n−2

.

The equality holds if and only if G is a star graph or a complete graph. Earlier bounds by
Grimmett [5], Grone and Merris [6], Nosal [11], and Kelmans [2] were sharp for complete
graphs only. Also our bound depends on n, e and d1 only.
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1. Introduction

Let G = (V,E) be a simple graph with the vertex set V = {v1, v2, . . . , vn} and the
cardinality of edge set e. Assume that the vertices are ordered such that d1 ≥ d2 ≥
. . . ≥ dn, where di is the degree of vi for i = 1, 2, . . . , n. The number of span-
ning trees of G is denoted by t (G). Let A(G) be the (0, 1)-adjacency matrix of G

and D(G) be the diagonal matrix of vertex degrees. The Laplacian matrix of G is
L(G) = D(G)−A(G). Clearly, L(G) is a real symmetric matrix. From this fact and
Geršgorin’s theorem, it follows that its eigenvalues are non-negative real numbers.
Moreover since its rows sum is equal to 0, 0 is the smallest eigenvalue of L(G). It is
known that the multiplicity of 0 as the eigenvalue of L(G) is equal to the number
of connected components of G. So a graph G is connected if and only if the second
smallest Laplacian eigenvalue is strictly greater than 0. Throughout this paper let
λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn = 0 be the eigenvalues of L(G). When more than
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one graph is under discussion, we may write λi(G) instead of λi . The number of
spanning trees of G is given by the following formula:

t (G) = 1
n

n−1∏
i=1

λi. (1)

Now we give some known upper bounds on t (G):

(1) Grimmett [5].

t (G) ≤ 1
n

(
2e

n − 1

)n−1

. (2)

(2) Grone and Merris [6].

t (G) ≤
(

n

n − 1

)n−1 (∏n
i=1 di

2e

)
. (3)

(3) Nosal [11].

t (G) ≤ nn−2
(

r

n − 1

)n−1

. (4)

(4) Kelmans ([2], p. 222).

t (G) ≤ nn−2
(

1 − 2
n

)e

. (5)

The third bound only applies to regular graphs of degree r. The first three bounds
are sharp for complete graphs only. In Section 2 we characterize the graphs. In
Section 3 we obtain an upper bound on the product of the degrees of a graph. In
Section 4 we establish the upper bound on the number of spanning trees applying
the results in Section 2 and Section 3. One of the upper bound is as follows:

t (G) ≤
(

2e − d1 − 1
n − 2

)n−2

,

which is sharp for a star graph or a complete graph.

2. Characterization on Graphs

In this section we characterize the graphs. Already we have seen that graph char-
acterization from Laplacian eigenvalues in [3, 4]. It is well known that the largest
Laplacian eigenvalue is less than or equal to n. Grone and Zimmermann [8] found
the following lower bound for the multiplicity of the eigenvalue n.
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Lemma 2.1 [8]. Let G = (V , E) be a simple graph with n vertices. Then the multiplic-
ity of n as an eigenvalue of L(G) is at least s − 1 if and only if G contains a complete
s-partite graph on V as a subgraph.

Merris [7] proved that λ1 ≥ d1 + 1 if G has at least one edge. For a connected
graph G on n > 1 vertices, λ1 = d1 + 1 holds if and only if d1 = n − 1. Now we
define a graph Sn of order n as follows: there is at least one vertex of degree n − 1
or in other words it is a super-graph of K1,n−1. We rewrite the above statement in
the following Lemma 2.2.

Lemma 2.2. Let G be a simple connected graph with at least one edge and d1 be the
highest degree. If λ1 is the largest eigenvalue of L(G), then λ1 ≥ d1+1 and the equality
holds if and only if G is an Sn graph.

Lemma 2.3 [10]. Let G be a simple graph with n vertices. If λi, i = 1, 2, . . . , n are
the non-increasing Laplacian eigenvalues of L(G), then the non-increasing Laplacian
eigenvalues of L(Gc) are n − λn−i , i = 1, 2, . . . , n − 1 and 0.

Lemma 2.4 [1]. Let G be a simple connected graph. Then

λ1 ≤ max
i

{di + dj },

with equality holds if and only if G is a regular bipartite graph or a semiregular bipartite
graph.

Lemma 2.5 [10]. Let G be a simple graph and G �= Kn. If λn−1 is the second smallest
eigenvalue of L(G), then λn−1 ≤ dn, where dn is the smallest degree of G.

Theorem 2.6. Let G be a simple graph of order n with at least one edge. Then λ1 =
λ2 = . . . = λn−1 if and only if G is a complete graph.

Proof. If G is a complete graph then λ1 = λ2 = . . . = λn−1 holds.
Conversely, let λ1 = λ2 = . . . = λn−1. If G is not a complete graph then

λn−1 ≤ dn < d1 + 1 ≤ λ1 (by Lemma 2.5 and Lemma 2.2), a contradiction. �

Lemma 2.7 [9]. Let G be a connected graph with n ≥ 3 vertices. Then λ2 ≥ d2 with
equality if G is a r × s complete bipartite graph Kr,s or a tree Tn with degree sequence
π(Tn) = ( n

2 , n
2 , 1, . . . , 1), where n ≥ 4 is even.

Theorem 2.8. Let G be a simple connected graph with n ≥ 3 vertices. Then λ2 = λ3 =
. . . = λn−1 if and only if G is a complete graph or a star graph or a (d1, d1) complete
bipartite graph.



628 Kinkar Ch. Das

Proof. If G is a complete graph or a star graph or a (d1, d1) complete bipartite
graph, then λ2 = λ3 = . . . = λn−1 holds.

Conversely, let λ2 = λ3 = . . . = λn−1. We have to prove that G is a complete
graph or a star graph or a (d1, d1) complete bipartite graph. Two cases arise (i)
λ1 = λ2 = . . . = λn−1, (ii) λ1 �= λ2 = λ3 = . . . = λn−1.

Case (i) : λ1 = λ2 = . . . = λn−1. By Theorem 2.6, we get that G is a complete
graph.

Case (ii) : λ1 �= λ2 = λ3 = . . . = λn−1. In this case G is not a complete
graph. Using this result and Lemma 2.5, we get λ2 = λ3 = . . . = λn−1 ≤ dn.
From Lemma 2.7 we get λ2 ≥ d2. Therefore d2 ≤ λ2 = λ3 = . . . = λn−1 ≤ dn.
Since d2 ≥ dn, we get that λ2 = λ3 = . . . = λn−1 = d2 = d3 = . . . = dn. Now,∑n

i=1 λi = ∑n
i=1 di , that is, λ1 = d1 + d2. By Lemma 2.4, G is a regular bipartite

graph or a semiregular bipartite graph.
When G is a regular bipartite graph, d1 = d2 = . . . = dn. Now we consider the

complement graph Gc of G. In the complement graph Gc, there are all the vertices
of degree n − d1 − 1. Let λ

′
1 ≥ λ

′
2 ≥ . . . ≥ λ

′
n = 0 be the eigenvalues of L(Gc).

Therefore

λ
′
1 = λ

′
2 = . . . = λ

′
n−2 = n − d1, λ

′
n−1 = n − 2d1, λ

′
n = 0.

If possible, let Gc be a connected graph. By Lemma 2.2 we conclude that Gc is an
Sn−d1 graph because there is at least one edge and λ

′
1 = (n − d1 − 1) + 1, where

n − d1 − 1 is the highest degree of Gc. Since Gc is a graph of order n and Sn−d2 is
a graph of order n − d2, there is a contradiction. Therefore Gc is a disconnected
graph. Hence λ

′
n−1 = n − 2d1 = 0, that is, n = 2d1. Hence G is a (d1, d1) complete

bipartite graph.
When G is a semiregular bipartite graph, d1 �= d2 = d3 = . . . = dn. Since G is

connected and (d1, d2) semiregular bipartite graph, G must be a star graph. �

Theorem 2.9. Let G be a simple connected graph with n ≥ 3 vertices. Then λ1 = λ2 =
. . . = λn−2 if and only if G is a complete graph or a graph Kn − e, where e is any edge.

Proof. If G is a complete graph or a graph Kn − e, then λ1 = λ2 = . . . = λn−2
holds.

Conversely, let λ1 = λ2 = . . . = λn−2. We have to prove that G is a complete
graph or a Kn − e graph.

Let us consider the complement graph Gc of a graph G. Also, let λ
′
1 ≥ λ

′
2 ≥

. . . ≥ λ
′
n = 0 be the eigenvalues of L(Gc). Therefore λ

′
2 = λ

′
3 = . . . = λ

′
n−1.

If possible, let Gc be a connected graph. Using Theorem 2.8 we conclude that
Gc is a complete graph or a star graph or a (d

′
1, d

′
1) complete bipartite graph, where

d
′
1 is the highest degree of Gc. So G is a disconnected graph, a contradiction. Hence

Gc is a disconnected graph, that is, λ
′
n−1 = 0 = λ

′
n−2 = . . . = λ

′
2. Two cases arise

(i) λ
′
1 = 0, (ii) λ

′
1 �= 0.

Case (i) : λ
′
1 = 0. In this case all the eigenvalues of L(Gc) are 0, that is, G is a

complete graph.
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Case (ii) : λ
′
1 �= 0. In this case Gc has exactly one edge because there is only

one non-zero eigenvalue. Therefore G is a graph Kn − e. �

3. Maximizing the Product of the Degrees of a Graph

In this section we find the upper bounds on the product of the degrees of a connected
graph in terms of only n and e. First we find the upper bound on

∏n
i=1 di by A.M.≥

G.M. and this bound is in the following Theorem 3.1.

Theorem 3.1. Let G be a simple connected graph with n vertices and e edges. Then

n∏
i=1

di ≤
(

2e

n

)n

. (6)

Moreover, the equality holds in (6) if and only if d1 = d2 = . . . = dn = 2e
n

.

Theorem 3.2. Let G be a simple connected graph with n vertices and e edges. Then

n∏
s=1

ds ≤ k(k+1)n−2e(k + 1)2e−kn, where k =
[

2e
n

]
. (7)

Moreover, the equality holds in (7) if and only if the difference between any two vertex
degrees of graph G is at most one.

Proof. Let us consider two vertices vi of degree di and vj of degree dj , where di ≥ dj .
Also let

∏n
i=1 di be maximum.

If possible, let di − dj ≥ 2. Therefore there exists a vertex vk, which is adja-
cent to vi , but not vj . If we remove edge vkvi and add edge between the vertices
vk and vj , then the new degree sequence of the new graph is d∗

1 , d∗
2 , . . . , d∗

n ; where
d∗
i = di − 1, d∗

j = dj + 1, d∗
t = dt , t = 1, 2, . . . , n; t �= i, j.

Therefore

n∏
s=1

d∗
s =

n∏
s=1

ds

(di − 1)(dj + 1)

didj

=
n∏

s=1

ds

(
1 − 1

di

)(
1 + 1

dj

)

=
n∏

s=1

ds

(
1 − 1

di

+ 1
dj

− 1
didj

)
. (8)

Now,

1
dj

− 1
di

− 1
didj

= 1
dj

− 1
di

(
dj + 1

dj

)
≥ 1

dj

− 1
(dj + 2)

(
dj + 1

dj

)
= 1

dj (dj + 2)
> 0.
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Using this result in (8), we get
∏n

s=1 d∗
s >

∏n
s=1 ds , a contradiction as

∏n
s=1 ds is

maximum. Since vi and vj are arbitrary, therefore the difference of any two vertex
degrees of graph G is at most one. So, some of the vertices have degree k and the

remaining vertices (if any exists) have degree k+1, where k =
[

2e
n

]
. Therefore 2e−kn

number of vertices have degree k + 1. Hence

n∏
s=1

ds ≤ k(k+1)n−2e(k + 1)2e−kn, where k =
[

2e
n

]
.

Now suppose that the equality holds in (7). Therefore some of the vertices have

degree k and the remaining vertices (if any exists) have degree k+1, where k =
[

2e
n

]
.

Hence the difference between any two vertex degrees of graph G is at most one.
Conversely, let the difference between any two vertex degrees of graph G be at

most one. Then we can easily see that the equality holds in (7). �

4. Upper Bound on the Number of Spanning Trees

We use the results of Sections 2 and 3 to derive two upper bounds on the number
of spanning trees of a connected graph in terms of n, e, and d1 only. Also using the
Theorem 3.1 we conclude that the bound given by (3) reduces to the bound (2).

Theorem 4.1. Let G be a simple connected graph with n vertices, e edges and d1 be the
highest degree. Then the number t (G) of spanning trees of G satisfies

t (G) ≤
(

2e − d1 − 1
n − 2

)n−2

. (9)

Equality holds if and only if G is a star graph or a complete graph.

Proof. We have

t (G) = 1
n

n−1∏
i=1

λi

= 1
n
λ1

n−1∏
i=2

λi

≤
n−1∏
i=2

λi, as λ1 ≤ n

≤
(∑n−1

i=2 λi

n − 2

)n−2

≤
(

2e − d1 − 1
n − 2

)n−2

, as
∑n−1

i=2 λi = 2e − λ1 ≤ 2e − d1 − 1.
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Now suppose that equality holds in (9). Then all inequalities in the above argument
must be equalities. Therefore

λ1 = n, λ2 = λ3 = . . . = λn−1, and λ1 = d1 + 1.

By Lemma 2.1 and λ1 = n, we conclude that G is a super graph of a complete
bipartite graph.

By Theorem 2.8 and λ2 = λ3 = . . . = λn−1, we get that G is a complete graph
or a star graph or a (d1, d1) complete bipartite graph.

By Lemma 2.2 and λ1 = d1 + 1, G is only an Sn graph.
Hence G is a complete graph or a star graph.
Conversely, it is easy to verify that equality in (9) holds for a complete graph or

a star graph. �

Remark. Our result (9) is sharp for a star graph or a complete graph, but (2), (3)
and (4) are sharp for complete graph only. Another thing is that (9) is perhaps a bit
more useful than (3), since it depends only on n, e and d1 rather than the full-degree
sequence.

Theorem 4.2. Let G be a simple connected graph with n vertices and e edges. Then the
number t (G) of spanning trees of G is given by

t (G) ≤
(

n

n − 1

)n−1 (k(k+1)n−2e(k + 1)2e−kn
)

2e
, (10)

and the equality holds in (10) if and only if G is a complete graph.

Proof. Using Theorem 3.2 and from (3), we get

t (G) ≤
(

n

n − 1

)n−1 (k(k+1)n−2e(k + 1)2e−kn
)

2e
,

where k =
[

2e
n

]
.

Now suppose that equality holds in (10). Therefore equality holds in (3) and (7).
If equality holds in (3) then G is a complete graph.
By Theorem 3.2, if the equality holds in (7) then the difference between any two

vertex degrees of graph G is at most one. Hence G is a complete graph.
Conversely, it is easy to verify that equality in (10) holds for a complete graph.

�
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