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Abstract. In this paper we study tight lower bounds on the size of a maximum matching
in a regular graph. For k ≥ 3, let G be a connected k-regular graph of order n and let
α′(G) be the size of a maximum matching in G. We show that if k is even, then α′(G) ≥
min

{(
k2+4

k2+k+2

)
× n

2 , n−1
2

}
, while if k is odd, then α′(G) ≥ (k3−k2−2) n−2k+2

2(k3−3k)
. We show that both

bounds are tight.
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1. Introduction

Two edges in a graph G are independent if they are not adjacent in G. A set of pair-
wise independent edges of G is called a matching in G, while a matching of maximum
cardinality is a maximum matching. The number of edges in a maximum matching
of G is called the matching number of G which we denote by α′(G). In this paper
we study tight lower bounds on the size of a maximum matching in a connected
regular graph, that is, in a graph in which every vertex has the same degree. Match-
ings in graphs are extensively studied in the literature (see, for example, the survey
articles by Plummer [5] and Pulleyblank [6]). For a graph G and a set S ⊆ V (G),
the subgraph induced by S is denoted by G[S].

For k ≥ 2, let G be a connected k-regular graph of order n. If k = 2, then G is a
cycle Cn and α′(G) ≥ (n − 1)/2 with this bound achieved when G is an odd cycle.
Hence in what follows, we assume that k ≥ 3. When k = 3, Biedl et al. [2] proved
that α′(G) ≥ (4n − 1)/9. When k = 4 and n ≥ 6, Lichiardopol [4] has shown that
α′(G) ≥ 7n/17, and if k ≥ 5, then α′(G) ≥ ((3k − 6)n)/(7k − 13). In this paper, we
generalize the result of Biedl et al. [2] when k = 3 to all values k ≥ 3. Our results
improve those of Lichiardopol [4].

� Research supported in part by the South African National Research Foundation and the
University of KwaZulu-Natal.
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2. Preliminary Results

We need the following result of Berge [1] about the matching number of a graph,
which is sometimes referred to as the Tutte-Berge formulation for the matching
number.

Theorem 1 (Berge [1]). For every graph G,

α′(G) = min
X⊆V (G)

1
2

(|V (G)| + |X| − oc(G − X)) ,

where oc(G − X) denotes the number of odd components of G − X.

We shall also need the following two observations.

Observation 1. Every graph has an even number of vertices of odd degree.

Observation 2. Let k > 1 and let G be a graph with �(G) ≤ k. If

∑
x∈V (G)

(k − d(x)) < k,

then |V (G)| ≥ k + 1.

Proof. Let G be defined as in the observation and let p = ∑
x∈V (G)(k − d(x))

and n = |V (G)|. As the maximum degree in G is at most n − 1 we note that
p ≥ n(k − (n − 1)), which implies that n(k + 1 − n) < k. As this is equivalent to
0 < (n − 1)(n − k) we note that n > k, which implies the observation. �

3. Main Results

We shall show that:

Theorem 2. For k ≥ 2 even, if G is a connected k-regular graph of order n, then

α′(G) ≥ min

{(
k2 + 4

k2 + k + 2

)
× n

2
,
n − 1

2

}
,

and this bound is tight.

Theorem 3. For k ≥ 3 odd, if G is a connected k-regular graph of order n, then

α′(G) ≥ (k3 − k2 − 2) n − 2k + 2
2(k3 − 3k)

,

and this bound is tight.
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4. Proof of Theorem 2

First we present a proof of the lower bound of Theorem 2. If k = 2, then α′(G) =
α′(Cn) ≥ (n−1)/2, and the theorem holds. Hence we may assume that k ≥ 4. Let X

be a set of vertices in G such that (n+|X|−oc(G−X))/2 is minimum and let M be a
maximum matching in G. By Theorem 1 we note that |M| = (n+|X|−oc(G−X))/2.
If X = ∅, then |M| ≥ (n − 1)/2, and we are done, so assume that X �= ∅.

By Observation 1, we note that there is no odd component in G−X with exactly
one edge into X in G, as it would have only one vertex of odd degree in G − X.
Therefore every odd component has at least two edges into X in G. Let yk denote
the number of odd components in G − X that have at least k edges into X in G and
let y2 denote the number of odd components in G − X that have less than k edge
into X in G. If there are d(X, V − X) edges between X and V (G) − X, then we
obtain the following, by the above,

k|X| ≥ d(X, V − X) ≥ 2y2 + kyk.

Hence, |X| ≥ yk + 2y2/k ≥ 2y2/k. By Observation 2, we note that any odd compo-
nent in G−X with less than k edges into X in G must contain at least k + 1 vertices.
This implies that n ≥ |X| + y2(k + 1). We therefore obtain the following.

|M| = 1
2
(n + |X| − oc(G − X))

=
(

k2 + 4
k2 + k + 2

× n

2

)
+
(

k − 2
k2 + k + 2

× n

2

)
+
( |X| − (y2 + yk)

2

)

≥
(

k2 + 4
k2 + k + 2

× n

2

)
+
(

k − 2
k2 + k + 2

× |X| + y2(k + 1)

2

)
+
(

2y2
k

− y2

2

)

≥
(

k2 + 4
k2 + k + 2

× n

2

)
+
(

k − 2
k2 + k + 2

×
2y2
k

+ y2(k + 1)

2

)
− y2

(
k − 2

2k

)

=
(

k2 + 4
k2 + k + 2

× n

2

)
+
(

y2(k − 2)

2k(k2 + k + 2)
×
(
k2 + k + 2 − (k2 + k + 2)

))

= k2 + 4
k2 + k + 2

× n

2
.

This establishes the lower bound of Theorem 2. The following proposition shows
that the lower bound of Theorem 2 is tight.

Proposition 4. For every integer p ≥ 2 and every even integer k ≥ 4, there exists a
connected k-regular graph Gk

p of order p(k2 + k + 2)/2 satisfying

α′(Gk
p) =

(
k2 + 4

k2 + k + 2

)
× |V (Gk

p)|
2

.
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Proof. Let Gk
p be the connected k-regular graph of order p(k2 + k + 2)/2 defined

as follows. Let Xp be any k-regular connected multigraph of order p (i.e., we allow
multiple edges). Note that |E(Xp)| = kp/2. For every edge uv ∈ E(Xp), add
a complete graph, Cuv, on k + 1 new vertices, delete the edge uv and any edge
xy ∈ E(Cuv), and then add the edges ux and vy. Once we have done this for all
edges in Xp, we note that the resulting graph, Gk

p, is a connected k-regular graph of
order |V (Gk

p)| = |V (Xp)|+(k+1)kp/2 = p(1+k(k+1)/2) = p(k2 +k+2)/2. Fur-
thermore by deleting the vertices V (Xp) from Gk

p we obtain kp/2 odd components
(namely all the Cuv’s). Therefore, by Theorem 1,

α′(Gk
p) ≤ 1

2

(
|V (Gk

p)| + |V (Xp)| − oc(Gk
p − V (Xp))

)

= 1
2

(
1
2
p(k2 + k + 2) + p − 1

2
kp

)

= p

4

(
(k2 + k + 2) + 2 − k

)

=
(

k2 + 4
k2 + k + 2

)
× p

4

(
k2 + k + 2

)

=
(

k2 + 4
k2 + k + 2

)
× |V (Gk

p)|
2

.

However the lower bound of Theorem 2 shows thatα′(Gk
p) ≥

(
k2+4

k2+k+2

)
×|V (Gk

p)|
2 ,

and so the desired result of the proposition follows. �
We remark that the (n − 1)/2 bound in the statement of Theorem 2 is only

included as it is necessary when n is very small or k = 2. As an immediate conse-
quence of Theorem 2, we have the following slightly weaker result.

Corollary 1. For k ≥ 4 even, if G is a connected k-regular graph of order n, then

α′(G) ≥
⌊(

k2 + 4
k2 + k + 2

)
× n

2

⌋
,

and this bound is tight.

Proof. Observe that if n ≥ k + 3 + 8
k − 2

, then

k2 + 4
k2 + k + 2

× n

2
≤ n − 1

2
,

while if n < k + 3 + 8
k − 2

, then
k2 + 4

k2 + k + 2
× n

2
− n − 1

2
∈
(

0,
1
2

)
, whence

⌊
k2 + 4

k2 + k + 2
× n

2

⌋
=
⌊

n − 1
2

⌋
.
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Hence for all k ≥ 4 and n ≥ k + 1, we have that
⌊

k2 + 4
k2 + k + 2

× n

2

⌋
≤
⌊

n − 1
2

⌋
.

The desired result now follows from Theorem 2. �

5. Proof of Theorem 3

In order to prove Theorem 3, we shall need the following definition.

Definition 5.1. Let k ≥ 3 be an odd integer and let Hk+2 be the graph with vertex set
V (Hk+2) = {w1, w2, . . . , wk+2} and containing all possible edges except the follow-
ing:

⎛
⎝

(k−3)/2⋃
i=0

{w2i+1w2i+2}
⎞
⎠ ∪ {wkwk+2, wk+1wk+2}.

Note that the degree of every vertex in Hk+2 is k, except for wk+2 which has degree k−1.

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let

φ(k, n) = (k3 − k2 − 2) n − 2k + 2
2(k3 − 3k)

.

We wish to show that α′(G) ≥ φ(k, n). For a subset X ⊂ V (G), we define

MX = 1
2

(n + |X| − oc(G − X)) .

We proceed further with the following claim.

Claim. If X is an independent set of vertices in G such that every component H in
G − X has odd order and the number of edges between X and V (H) is either one
or k, then MX ≥ φ(k, n).

Proof. Let yk denote the number of components in G − X that have k edges into
X in G and let Vk denote the set of all vertices that lie in such components. Let y1
denote the number of components in G − X that have one edge into X in G and let
V1 denote the set of all vertices that lie in such components. Note that the following
holds.

(1) |X| = yk + y1/k. This is the case as if there are d(X, V − X) edges between X

and V (G) − X, then we note that k|X| = d(X, V − X) = kyk + y1.
(2) n ≥ |X| + yk + (k + 2)y1. This follows from |Vk| ≥ yk and from Observations 1

and 2, which imply that |V1| ≥ (k + 2)y1.
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(3) yk ≥ y1−k
k(k−2)

. Note that G − Vk has exactly |X| distinct components. By adding
to G − Vk a component from G[Vk] and the resulting k edges from that com-
ponent into X, we decrease the number of components by at most k − 1. As
G is connected we must therefore have yk(k − 1) ≥ |X| − 1. Using (1), we get
yk(k − 1) ≥ yk + y1/k − 1, and so solving for yk implies (3).

By (1) we note that if y1 = 0, then MX = n/2 which implies that the claim holds
in this case. Hence we may assume that y1 ≥ 1. By (1), we can bound MX as follows:

MX = 1
2

(n + |X| − oc(G − X))

≥ 1
2

(
n + y1

k
+ yk − y1 − yk

)

= 1
2

(
n + y1(1 − k)

k

)
.

Now,

1
2

(
n + y1(1 − k)

k

)
≥ (k3 − k2 − 2) n − 2k + 2

2(k3 − 3k)

�
y1(1 − k)

k
+ 2(k − 1)

k(k2 − 3)
≥
(

(k3 − k2 − 2) − (k3 − 3k)

k(k2 − 3)

)
n

�
y1(1 − k)(k2 − 3) + 2(k − 1)

k(k2 − 3)
≥
(

−k2 + 3k − 2
k(k2 − 3)

)
n

�
−y1(k − 1)(k2 − 3) + 2(k − 1) ≥ −(k − 1)(k − 2)n

�
n(k − 2) ≥ y1(k

2 − 3) − 2
�

n ≥ y1(k
2 − 3)

k − 2
− 2

k − 2
.

However, by (1), (2) and (3) we get the following bound on n.

n ≥ |X| + yk + (k + 2)y1

≥
(
yk + y1

k

)
+ yk + (k + 2)y1

≥ 2(y1 − k)

k(k − 2)
+ y1

k
+ (k + 2)y1

= y1 × 2 + (k − 2) + k(k − 2)(k + 2)

k(k − 2)
− 2k

k(k − 2)

= y1(k
2 − 3)

k − 2
− 2

k − 2
.
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Hence we have established that

MX ≥ 1
2

(
n + y1(1 − k)

k

)
≥ (k3 − k2 − 2) n − 2k + 2

2(k3 − 3k)
= φ(k, n),

as desired. �

We now return to the proof of Theorem 3. Let X be a set of vertices in G such that
MX is minimum. By Theorem 1, α′(G) = MX. We wish to show that MX ≥ φ(k, n).
Suppose, to the contrary, that MX < φ(k, n). Then, X does not satisfy the condi-
tions of Claim 5. Hence we may assume that at least one of the following conditions
holds.

Condition (a). X is not independent.
Condition (b). There are even components in G − X.
Condition (c). There are odd components in G − X which do not have one or k

edges into X.

Now define a graph ZX and integers zX, pX, and rX as follows.

– If G − X has odd components which do not have one or k edges into X or
even components, then let ZX be the graph consisting of all such components.
Furthermore, let

zX = |V (ZX)|.
– For each x ∈ X, let px denote the degree of x in G[V (ZX) ∪ X]; that is, px is the

number of vertices in V (ZX) ∪ X adjacent to x in G. Let

pX =
∑
x∈X

px.

– Let rX denote the number of components in G − E(G[X]) − V (ZX) (i.e., we
delete all edges in G[X] and all vertices in ZX).

For notational convenience, in what follows we denote ZX, zX, pX, and rX simply
by Z, z, p, and r.

Let GX be the graph obtained from G − V (Z) by deleting all edges in G[X], if
any. Hence, GX can be obtained from G by the following three steps.

Step (a). Delete all edges in G[X], if any.

Step (b). Delete all vertices in even components in G−X, if such components exist.

Step (c). Delete all vertices in odd components in G − X which do not have one
or k edges into X, if such components exist.

Notice that in steps (b) and (c) we have deleted z vertices, while in step (c) we
have deleted oc(Z) components. Furthermore we remark that the graph GX consists
of r components and

p =
∑

x∈V (GX)

(k − dGX
(x)).
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Now for every vertex x in GX with dGX
(x) < k (necessarily, x ∈ X), add k −

dGX
(x) copies of the subgraph Hk+2 to GX and in each added copy of Hk+2, join

the vertex named wk+2 in Hk+2 to x (see Definition 5.1). The resulting graph, which
we call G∗, is clearly k-regular and still consists of r components. Also note that X

is a subset of V (G∗), as we didn’t delete any vertices from X in steps (a), (b) or (c).
As X satisfies the conditions of Claim 5 in the graph G∗, we know that the following
holds (note that we actually apply Claim 5 to each of the r components in G∗).

1
2

(|V (G∗)| + |X| − oc(G∗ − X)
) ≥ (k3 − k2 − 2) |V (G∗)| − 2r(k − 1)

2(k3 − 3k)
.

Since |V (G∗)| = p(k + 2) + n − z and oc(G∗ − X) = oc(G − X) − oc(Z) + p, this
implies that

MX + 1
2

(p(k + 2) − z − (p − oc(Z)))

≥ φ(k, n) + (k3 − k2 − 2) (p(k + 2) − z) − 2(r − 1)(k − 1)

2(k3 − 3k)
.

Thus since φ(k, n) − M > 0 (by assumption), we know that the following holds:

1
2

(p(k + 2)−z−(p−oc(Z))) >
(k3 − k2 − 2) (p(k + 2)−z)−2(r−1)(k−1)

2(k3−3k)
�

p

(
k + 1 − (k + 2)(k3 − k2 − 2)

k3 − 3k

)
+ oc(Z) > z

(
1 − k3 − k2 − 2

k3 − 3k

)
− 2(r − 1)

(
k − 1

k3 − 3k

)

�
p(4 − k − k2) + oc(Z)(k3 − 3k) > z(k2 − 3k + 2) − 2(r − 1)(k − 1).

Note that p > 0 since otherwise we were done by Claim 5 (it can also be seen
as steps (a), (b) and (c) all decrease the degree of at least one vertex in X and
p = ∑

x∈V (GX)(k − dGX
(x))). As G is connected we note that every component in

GX has at least one vertex that has degree less than k. Therefore we must have p ≥ r,
which by the above implies the following.

p(4 − k − k2) + oc(Z)(k3 − 3k) > z(k2 − 3k + 2) − 2(p − 1)(k − 1)

�
oc(Z)(k3 − 3k) > z(k2 − 3k + 2) + p(k2 − k − 2) + 2(k − 1).

Note that if oc(Z) = z = p = 0, then the last inequality is false as 0 > 2(k − 1)

is false. We now consider what happens to this last inequality when each of the steps
(a), (b) and (c), respectively, are performed.

(a) When step (a) is performed, each edge in G[X] contributes two to p and zero to
each of z and oc(Z).

(b) When step (b) is performed, each even component in G−X contributes at least
one to p, at least two to z, and zero to oc(Z).
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(c) When step (c) is performed, we consider the following two possibilities.
Consider the case when we delete an odd component, C, of G−X with less than
k, but with at least two, edges into X. Then, C contributes at least two to p and
one to oc(Z). By Observation 2, we note that |V (C)| ≥ k+1. As |V (C)| is odd we
must have |V (C)| ≥ k + 2, and so C contributes at least k + 2 to z. Therefore we
increase the left-hand side above with (k3 − 3k) and we increase the right-hand
side with at least (k + 2)(k2 − 3k + 2) + 2(k2 − k − 2) = (k3 − 3k) + (k2 − 3k).
As k ≥ 3, this means we increase the right-hand side by at least the same as the
left-hand side.
Now consider the case when we delete a component, C, of G − X with more
than k edges into X. In this case C contributes at least k + 1 to p and at least
one to z, which implies that again we increase the right-hand side by at least as
much as the left-hand side.

As oc(Z)(k3 − 3k) ≥ z(k2 − 3k + 2) + p(k2 − k − 2) + 2(k − 1) was false before
we performed any of the steps (a), (b) or (c) (i.e., when oc(Z) = z = p = 0), then
by the above it must remain false as we never increase the left-hand side by more
than the right-hand side. This is the desired contradiction. Hence, MX ≥ φ(k, n) as
claimed. �

The following proposition shows that the lower bound of Theorem 3 is tight.

Proposition 5. For every integer p ≥ 1 and every odd integer k ≥ 3, there exists a
connected k-regular graph Hk

p of order p(k3 − 3k) + k2 + 2k + 1 satisfying

α′(Hk
p) = (k3 − k2 − 2) |V (Hk

p)| − 2k + 2

2(k3 − 3k)
.

Proof. Let T k
p be the bipartite graph with partite sets V1 = {w1, w2, . . . , wp} and

V2 = {v1, v2, . . . , vp(k−1)+1}, and where N(wi) = {v(k−1)(i−1)+1, v(k−1)(i−1)+2, . . . ,

v(k−1)(i−1)+k} for all i = 1, 2, . . . , p. Note that the degree of all the wi ∈ V1 is k and
the degree of all vertices in V2 is one except for the vertices in {w(k−1)+1, w2(k−1)+1,

. . . , w(p−1)(k−1)+1} which have degree two. Now for every vertex x in V (T k
p ) with

dT k
p
(x) < k, add k − dT k

p
(x) copies of the subgraph Hk+2 to T k

p and in each added

copy of Hk+2, join the vertex named wk+2 in Hk+2 to x (see Definition 5.1). Let Hk
p

denote the resulting graph. Then, Hk
p is a connected k-regular graph of order

|V (Hk
p)| = |V1| + |V2| + (|V2|(k − 1) − (p − 1))(k + 2)

= p + (p(k − 1) + 1) + ((p(k − 1) + 1)(k − 1) − (p − 1))(k + 2)

= p(1 + (k − 1) + (k − 1)2(k + 2) − (k + 2)) + 1 + (k−1)(k+2)+(k+2)

= p(k3 − 3k) + k2 + 2k + 1.

Furthermore by deleting the vertices V2 from Hk
p we obtain p + (p(k − 1) + 1)

(k − 1) + (p − 1) odd components. Therefore, by Theorem 1,
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α′(Hk
p) ≤ 1

2

(
|V (Hk

p)| + |V2| − oc(Hk
p − V2)

)

= 1
2

(
(p(k3−3k)+(k+1)2)+(p(k−1)+1)

−(p + (p(k − 1) + 1)(k − 1) + (p − 1))
)

= 1
2

(
(p(k3−3k + (k−1) − 1 − (k−1)2 + 1) + (k + 1)2 − 1 − (k − 1)+1

)

= 1
2

(
p(k3 − k2 − 2) + k2 + k + 2

)

=
(

k3 − k2 − 2
k3 − 3k

× p(k3 − 3k) + k2 + 2k + 1
2

)

+ (k3 − 3k)(k2 + k + 2) − (k2 + 2k + 1)(k3 − k2 − 2)

2(k3 − 3k)

= (k3 − k2 − 2) |V (Hk
p)| − 2k + 2

2(k3 − 3k)
.

However the lower bound of Theorem 3 shows that

α′(Hk
p) ≥ (k3 − k2 − 2) |V (Hk

p)| − 2k + 2

2(k3 − 3k)
,

and so the desired result of the proposition follows. �
Using a shorter proof than that of Theorem 3 it is possible to prove the fol-

lowing weaker result. If k ≥ 1 is odd and G is a k-regular graph of order n, then
α′(G) ≥ k2+k+2

k2+2k+1
× n

2 . This can also be shown as a consequence of Theorem 3 as


 k2+k+2
k2+2k+1

× n
2 � ≤ 
 (k3−k2−2) n−2k+2

2(k3−3k)
� holds for all n and k we consider. However this

weaker result can be useful in some cases as for some values of n and k we actually

have k2+k+2
k2+2k+1

× n
2 >

(k3−k2−2) n−2k+2
2(k3−3k)

. It is for example used in the paper [3].

6. Closing Remarks

Let G be a connected k-regular graph. As α′(G) ≤ n
2 we note that our results imply

that α′(G)
n

→ 1
2 when k → ∞. In comparison, the bound, n(3k − 6)/(7k − 13),

in [4] is always less than 3n/7. For small values of k, we summarize our results in
the accompanying table.

G is a connected k-regular graph

k 3 4 5 6 7 8

α′(G) ≥ 4n − 1
9

min
{

5n

11
,
n − 1

2

}
49n − 4

110
min

{
5n

11
,
n − 1

2

}
73n − 3

161
min

{
17n

37
,
n − 1

2

}
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