Graphs and Combinatorics

© Springer 2007

Tight Lower Bounds on the Size of a Maximum Matching in a Regular Graph

Michael A. Henning^{1,*} Anders Yeo²

- ¹ School of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209 South Africa.
- ² Department of Computer Science, Royal Holloway, University of London, Egham Surrey TW20 OEX, UK. e-mail: anders@cs.rhul.ac.uk

Abstract. In this paper we study tight lower bounds on the size of a maximum matching in a regular graph. For $k \geq 3$, let G be a connected k-regular graph of order n and let $\alpha'(G)$ be the size of a maximum matching in G. We show that if k is even, then $\alpha'(G) \geq$ $\min\left\{\left(\frac{k^2+4}{k^2+k+2}\right)\times\frac{n}{2},\frac{n-1}{2}\right\}$, while if k is odd, then $\alpha'(G)\geq \frac{(k^3-k^2-2)n-2k+2}{2(k^3-3k)}$. We show that both bounds are tight.

Key words. Lower bounds, matching number, regular graph.

AMS Subject Classification: 05C70

1. Introduction

Two edges in a graph G are *independent* if they are not adjacent in G. A set of pairwise independent edges of G is called a *matching* in G, while a matching of maximum cardinality is a *maximum matching*. The number of edges in a maximum matching of G is called the *matching number* of G which we denote by $\alpha'(G)$. In this paper we study tight lower bounds on the size of a maximum matching in a connected regular graph, that is, in a graph in which every vertex has the same degree. Matchings in graphs are extensively studied in the literature (see, for example, the survey articles by Plummer [5] and Pulleyblank [6]). For a graph G and a set $S \subseteq V(G)$, the subgraph induced by S is denoted by $G[S]$.

For $k \ge 2$, let G be a connected k-regular graph of order n. If $k = 2$, then G is a cycle C_n and $\alpha'(G) \ge (n-1)/2$ with this bound achieved when G is an odd cycle. Hence in what follows, we assume that $k \geq 3$. When $k = 3$, Biedl et al. [2] proved that $\alpha'(G) \ge (4n - 1)/9$. When $k = 4$ and $n \ge 6$, Lichiardopol [4] has shown that $\alpha'(G) \geq \frac{7n}{17}$, and if $k \geq 5$, then $\alpha'(G) \geq \frac{((3k-6)n)}{7k-13}$. In this paper, we generalize the result of Biedl et al. [2] when $k = 3$ to all values $k \ge 3$. Our results improve those of Lichiardopol [4].

^{*} Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

2. Preliminary Results

We need the following result of Berge [1] about the matching number of a graph, which is sometimes referred to as the Tutte-Berge formulation for the matching number.

Theorem 1 (Berge [1]). *For every graph* G*,*

$$
\alpha'(G) = \min_{X \subseteq V(G)} \frac{1}{2} (|V(G)| + |X| - \mathrm{oc}(G - X)),
$$

where $oc(G - X)$ *denotes the number of odd components of* $G - X$ *.*

We shall also need the following two observations.

Observation 1. *Every graph has an even number of vertices of odd degree.*

Observation 2. *Let* $k > 1$ *and let* G *be a graph with* $\Delta(G) \leq k$ *. If*

$$
\sum_{x \in V(G)} (k - d(x)) < k,
$$

then $|V(G)| \geq k + 1$ *.*

Proof. Let G be defined as in the observation and let $p = \sum_{x \in V(G)} (k - d(x))$ and $n = |V(G)|$. As the maximum degree in G is at most $n - 1$ we note that $p \ge n(k - (n - 1))$, which implies that $n(k + 1 - n) < k$. As this is equivalent to $0 < (n-1)(n-k)$ we note that $n > k$, which implies the observation. \Box

3. Main Results

We shall show that:

Theorem 2. For $k \geq 2$ even, if G is a connected k-regular graph of order n, then

$$
\alpha'(G) \ge \min\left\{ \left(\frac{k^2 + 4}{k^2 + k + 2} \right) \times \frac{n}{2}, \frac{n - 1}{2} \right\},\
$$

and this bound is tight.

Theorem 3. For $k \geq 3$ odd, if G is a connected k-regular graph of order n, then

$$
\alpha'(G) \ge \frac{(k^3 - k^2 - 2)n - 2k + 2}{2(k^3 - 3k)},
$$

and this bound is tight.

4. Proof of Theorem 2

First we present a proof of the lower bound of Theorem 2. If $k = 2$, then $\alpha'(G) =$ $\alpha'(C_n) \ge (n-1)/2$, and the theorem holds. Hence we may assume that $k \ge 4$. Let X be a set of vertices in G such that $(n+|X|-\infty(G-X))/2$ is minimum and let M be a maximum matching in G. By Theorem 1 we note that $|M| = (n+|X|-\operatorname{oc}(G-X))/2$. If $X = \emptyset$, then $|M| \ge (n - 1)/2$, and we are done, so assume that $X \ne \emptyset$.

By Observation 1, we note that there is no odd component in $G-X$ with exactly one edge into X in G, as it would have only one vertex of odd degree in $G - X$. Therefore every odd component has at least two edges into X in G . Let y_k denote the number of odd components in $G - X$ that have at least k edges into X in G and let y₂ denote the number of odd components in $G - X$ that have less than k edge into X in G. If there are $d(X, V - X)$ edges between X and $V(G) - X$, then we obtain the following, by the above,

$$
k|X| \ge d(X, V - X) \ge 2y_2 + ky_k.
$$

Hence, $|X| \geq y_k + 2y_2/k \geq 2y_2/k$. By Observation 2, we note that any odd component in $G - X$ with less than k edges into X in G must contain at least $k + 1$ vertices. This implies that $n > |X| + y_2(k + 1)$. We therefore obtain the following.

$$
|M| = \frac{1}{2}(n+|X| - \infty(G - X))
$$

\n
$$
= \left(\frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2}\right) + \left(\frac{k - 2}{k^2 + k + 2} \times \frac{n}{2}\right) + \left(\frac{|X| - (y_2 + y_k)}{2}\right)
$$

\n
$$
\geq \left(\frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2}\right) + \left(\frac{k - 2}{k^2 + k + 2} \times \frac{|X| + y_2(k + 1)}{2}\right) + \left(\frac{\frac{2y_2}{k} - y_2}{2}\right)
$$

\n
$$
\geq \left(\frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2}\right) + \left(\frac{k - 2}{k^2 + k + 2} \times \frac{\frac{2y_2}{k} + y_2(k + 1)}{2}\right) - y_2\left(\frac{k - 2}{2k}\right)
$$

\n
$$
= \left(\frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2}\right) + \left(\frac{y_2(k - 2)}{2k(k^2 + k + 2)} \times \left(k^2 + k + 2 - (k^2 + k + 2)\right)\right)
$$

\n
$$
= \frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2}.
$$

This establishes the lower bound of Theorem 2. The following proposition shows that the lower bound of Theorem 2 is tight.

Proposition 4. For every integer $p \geq 2$ and every even integer $k \geq 4$, there exists a *connected* k-regular graph G_p^k of order $p(k^2 + k + 2)/2$ satisfying

$$
\alpha'(G_p^k) = \left(\frac{k^2 + 4}{k^2 + k + 2}\right) \times \frac{|V(G_p^k)|}{2}.
$$

Proof. Let G_p^k be the connected k-regular graph of order $p(k^2 + k + 2)/2$ defined as follows. Let X_p be any k-regular connected multigraph of order p (i.e., we allow multiple edges). Note that $|E(X_p)| = kp/2$. For every edge $uv \in E(X_p)$, add a complete graph, C_{uv} , on $k + 1$ new vertices, delete the edge uv and any edge $xy \in E(C_{uv})$, and then add the edges ux and vy. Once we have done this for all edges in X_p , we note that the resulting graph, G_p^k , is a connected k-regular graph of order $|V(G_p^k)| = |V(X_p)| + (k+1)kp/2 = p(1+k(k+1)/2) = p(k^2+k+2)/2$. Furthermore by deleting the vertices $V(X_p)$ from G_p^k we obtain $kp/2$ odd components (namely all the C_{uv} 's). Therefore, by Theorem 1,

$$
\alpha'(G_p^k) \le \frac{1}{2} \left(|V(G_p^k)| + |V(X_p)| - \mathrm{oc}(G_p^k - V(X_p)) \right)
$$

= $\frac{1}{2} \left(\frac{1}{2} p(k^2 + k + 2) + p - \frac{1}{2}kp \right)$
= $\frac{p}{4} \left((k^2 + k + 2) + 2 - k \right)$
= $\left(\frac{k^2 + 4}{k^2 + k + 2} \right) \times \frac{p}{4} \left(k^2 + k + 2 \right)$
= $\left(\frac{k^2 + 4}{k^2 + k + 2} \right) \times \frac{|V(G_p^k)|}{2}.$

However the lower bound of Theorem 2 shows that $\alpha'(G_p^k) \geq \left(\frac{k^2+4}{k^2+k+2}\right) \times \frac{|V(G_p^k)|}{2}$, and so the desired result of the proposition follows.

We remark that the $(n - 1)/2$ bound in the statement of Theorem 2 is only included as it is necessary when *n* is very small or $k = 2$. As an immediate consequence of Theorem 2, we have the following slightly weaker result.

Corollary 1. For $k \geq 4$ even, if G is a connected k-regular graph of order n, then

$$
\alpha'(G) \ge \left\lfloor \left(\frac{k^2 + 4}{k^2 + k + 2} \right) \times \frac{n}{2} \right\rfloor,
$$

and this bound is tight.

Proof. Observe that if $n \geq k + 3 + \frac{8}{1}$ $\frac{6}{k-2}$, then

$$
\frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2} \le \frac{n - 1}{2},
$$

while if
$$
n < k + 3 + \frac{8}{k-2}
$$
, then $\frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2} - \frac{n-1}{2} \in \left(0, \frac{1}{2}\right)$, whence\n
$$
\left\lfloor \frac{k^2 + 4}{k^2 + k + 2} \times \frac{n}{2} \right\rfloor = \left\lfloor \frac{n-1}{2} \right\rfloor.
$$

Tight Lower Bounds on the Size of a Maximum Matching in a Regular Graph 651

Hence for all $k > 4$ and $n > k + 1$, we have that

$$
\left\lfloor \frac{k^2+4}{k^2+k+2} \times \frac{n}{2} \right\rfloor \le \left\lfloor \frac{n-1}{2} \right\rfloor.
$$

The desired result now follows from Theorem 2. \Box

5. Proof of Theorem 3

In order to prove Theorem 3, we shall need the following definition.

Definition 5.1. *Let* $k \geq 3$ *be an odd integer and let* H_{k+2} *be the graph with vertex set* $V(H_{k+2}) = \{w_1, w_2, \ldots, w_{k+2}\}\$ and containing all possible edges except the follow*ing:*

$$
\left(\bigcup_{i=0}^{(k-3)/2} \{w_{2i+1}w_{2i+2}\}\right) \cup \{w_kw_{k+2}, w_{k+1}w_{k+2}\}.
$$

Note that the degree of every vertex in H_{k+2} *isk, except for* w_{k+2} *which has degree* $k-1$ *.*

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let

$$
\phi(k,n) = \frac{(k^3 - k^2 - 2)n - 2k + 2}{2(k^3 - 3k)}.
$$

We wish to show that $\alpha'(G) \ge \phi(k, n)$. For a subset $X \subset V(G)$, we define

$$
M_X = \frac{1}{2} (n + |X| - \mathrm{oc}(G - X)).
$$

We proceed further with the following claim.

Claim. If X is an independent set of vertices in G such that every component H in $G - X$ has odd order and the number of edges between X and $V(H)$ is either one or k, then $M_X \ge \phi(k, n)$.

Proof. Let y_k denote the number of components in $G - X$ that have k edges into X in G and let V_k denote the set of all vertices that lie in such components. Let y_1 denote the number of components in $G - X$ that have one edge into X in G and let V_1 denote the set of all vertices that lie in such components. Note that the following holds.

- (1) $|X| = y_k + y_1/k$. This is the case as if there are $d(X, V X)$ edges between X and $V(G) - X$, then we note that $k|X| = d(X, V - X) = ky_k + y_1$.
- (2) $n \ge |X| + y_k + (k+2)y_1$. This follows from $|V_k| \ge y_k$ and from Observations 1 and 2, which imply that $|V_1| \ge (k+2)y_1$.

(3) $y_k \ge \frac{y_1 - k}{k(k-2)}$. Note that $G - V_k$ has exactly |X| distinct components. By adding to $G - V_k$ a component from $G[V_k]$ and the resulting k edges from that component into X, we decrease the number of components by at most $k - 1$. As G is connected we must therefore have $y_k(k - 1) \ge |X| - 1$. Using (1), we get $y_k(k-1) \ge y_k + y_1/k - 1$, and so solving for y_k implies (3).

By (1) we note that if $y_1 = 0$, then $M_X = n/2$ which implies that the claim holds in this case. Hence we may assume that $y_1 \geq 1$. By (1), we can bound M_X as follows:

$$
M_X = \frac{1}{2} (n + |X| - oc(G - X))
$$

\n
$$
\geq \frac{1}{2} \left(n + \frac{y_1}{k} + y_k - y_1 - y_k \right)
$$

\n
$$
= \frac{1}{2} \left(n + \frac{y_1(1 - k)}{k} \right).
$$

Now,

$$
\frac{1}{2}\left(n+\frac{y_1(1-k)}{k}\right) \ge \frac{(k^3-k^2-2)n-2k+2}{2(k^3-3k)}
$$

企

$$
\frac{y_1(1-k)}{k} + \frac{2(k-1)}{k(k^2-3)} \ge \left(\frac{(k^3 - k^2 - 2) - (k^3 - 3k)}{k(k^2 - 3)}\right)n
$$
\n
$$
\frac{y_1(1-k)(k^2 - 3) + 2(k-1)}{k(k^2 - 3)} \ge \left(\frac{-k^2 + 3k - 2}{k(k^2 - 3)}\right)n
$$
\n
$$
\frac{y_1(k-1)(k^2 - 3) + 2(k-1)}{k(k^2 - 3)} \ge -(k-1)(k-2)n
$$
\n
$$
\frac{y_1(k-2)}{k} \ge \frac{y_1(k^2 - 3)}{k-2} - \frac{2}{k-2}.
$$

However, by (1), (2) and (3) we get the following bound on n.

$$
n \ge |X| + y_k + (k+2)y_1
$$

\n
$$
\ge \left(y_k + \frac{y_1}{k}\right) + y_k + (k+2)y_1
$$

\n
$$
\ge \frac{2(y_1 - k)}{k(k-2)} + \frac{y_1}{k} + (k+2)y_1
$$

\n
$$
= y_1 \times \frac{2 + (k-2) + k(k-2)(k+2)}{k(k-2)} - \frac{2k}{k(k-2)}
$$

\n
$$
= \frac{y_1(k^2 - 3)}{k-2} - \frac{2}{k-2}.
$$

Tight Lower Bounds on the Size of a Maximum Matching in a Regular Graph 653

Hence we have established that

$$
M_X \ge \frac{1}{2} \left(n + \frac{y_1(1-k)}{k} \right) \ge \frac{(k^3 - k^2 - 2) n - 2k + 2}{2(k^3 - 3k)} = \phi(k, n),
$$
as desired.

We now return to the proof of Theorem 3. Let X be a set of vertices in G such that M_X is minimum. By Theorem 1, $\alpha'(G) = M_X$. We wish to show that $M_X \ge \phi(k, n)$. Suppose, to the contrary, that $M_X < \phi(k, n)$. Then, X does not satisfy the conditions of Claim 5. Hence we may assume that at least one of the following conditions holds.

Condition (a). X is not independent.

Condition (b). There are even components in $G - X$.

Condition (c). There are odd components in $G - X$ which do not have one or k edges into X.

Now define a graph Z_X and integers z_X , p_X , and r_X as follows.

– If G − X has odd components which do not have one or k edges into X or even components, then let Z_X be the graph consisting of all such components. Furthermore, let

$$
z_X = |V(Z_X)|.
$$

For each $x \in X$, let p_x denote the degree of x in $G[V(Z_X) \cup X]$; that is, p_x is the number of vertices in $V(Z_X) \cup X$ adjacent to x in G. Let

$$
p_X = \sum_{x \in X} p_x.
$$

– Let r_X denote the number of components in $G - E(G[X]) - V(Z_X)$ (i.e., we delete all edges in $G[X]$ and all vertices in Z_X).

For notational convenience, in what follows we denote Z_X , z_X , p_X , and r_X simply by Z , z , p , and r .

Let G_X be the graph obtained from $G - V(Z)$ by deleting all edges in $G[X]$, if any. Hence, G_X can be obtained from G by the following three steps.

Step (a). Delete all edges in $G[X]$, if any.

Step (b). Delete all vertices in even components in $G - X$, if such components exist.

Step (c). Delete all vertices in odd components in $G - X$ which do not have one or k edges into X , if such components exist.

Notice that in steps (b) and (c) we have deleted ζ vertices, while in step (c) we have deleted $oc(Z)$ components. Furthermore we remark that the graph G_X consists of r components and

$$
p = \sum_{x \in V(G_X)} (k - d_{G_X}(x)).
$$

Now for every vertex x in G_X with $d_{G_X}(x) < k$ (necessarily, $x \in X$), add k $d_{G_X}(x)$ copies of the subgraph H_{k+2} to G_X and in each added copy of H_{k+2} , join the vertex named w_{k+2} in H_{k+2} to x (see Definition 5.1). The resulting graph, which we call G^* , is clearly k-regular and still consists of r components. Also note that X is a subset of $V(G^*)$, as we didn't delete any vertices from X in steps (a), (b) or (c). As X satisfies the conditions of Claim 5 in the graph G^* , we know that the following holds (note that we actually apply Claim 5 to each of the r components in G^*).

$$
\frac{1}{2} \left(|V(G^*)| + |X| - \mathrm{oc}(G^*-X) \right) \ge \frac{(k^3 - k^2 - 2)|V(G^*)| - 2r(k-1)}{2(k^3 - 3k)}.
$$

Since $|V(G^*)| = p(k + 2) + n - z$ and $oc(G^* - X) = oc(G - X) - oc(Z) + p$, this implies that

$$
M_X + \frac{1}{2} (p(k+2) - z - (p - oc(Z)))
$$

\n
$$
\geq \phi(k,n) + \frac{(k^3 - k^2 - 2) (p(k+2) - z) - 2(r-1)(k-1)}{2(k^3 - 3k)}.
$$

Thus since $\phi(k, n) - M > 0$ (by assumption), we know that the following holds:

$$
\frac{1}{2} (p(k+2) - z - (p - oc(Z))) > \frac{(k^3 - k^2 - 2) (p(k+2) - z) - 2(r-1)(k-1)}{2(k^3 - 3k)}
$$

\n
$$
\Phi
$$
\n
$$
p\left(k+1 - \frac{(k+2)(k^3 - k^2 - 2)}{k^3 - 3k}\right) + oc(Z) > z\left(1 - \frac{k^3 - k^2 - 2}{k^3 - 3k}\right) - 2(r - 1)\left(\frac{k-1}{k^3 - 3k}\right)
$$
\n
$$
p(4 - k - k^2) + oc(Z)(k^3 - 3k) > z(k^2 - 3k + 2) - 2(r - 1)(k - 1).
$$

Note that $p > 0$ since otherwise we were done by Claim 5 (it can also be seen as steps (a), (b) and (c) all decrease the degree of at least one vertex in X and $p = \sum_{x \in V(G_X)} (k - d_{G_X}(x))$. As G is connected we note that every component in G_X has at least one vertex that has degree less than k. Therefore we must have $p \ge r$, which by the above implies the following.

$$
p(4 - k - k^{2}) + oc(Z)(k^{3} - 3k) > z(k^{2} - 3k + 2) - 2(p - 1)(k - 1)
$$

$$
oc(Z)(k^{3} - 3k) > z(k^{2} - 3k + 2) + p(k^{2} - k - 2) + 2(k - 1).
$$

Note that if $oc(Z) = z = p = 0$, then the last inequality is false as $0 > 2(k - 1)$ is false. We now consider what happens to this last inequality when each of the steps (a), (b) and (c), respectively, are performed.

- (a) When step (a) is performed, each edge in $G[X]$ contributes two to p and zero to each of z and $oc(Z)$.
- (b) When step (b) is performed, each even component in $G X$ contributes at least one to p, at least two to z, and zero to $oc(Z)$.
- (c) When step (c) is performed, we consider the following two possibilities.
	- Consider the case when we delete an odd component, C , of $G-X$ with less than k, but with at least two, edges into X. Then, C contributes at least two to p and one to $oc(Z)$. By Observation 2, we note that $|V(C)| \geq k+1$. As $|V(C)|$ is odd we must have $|V(C)| \geq k+2$, and so C contributes at least $k+2$ to z. Therefore we increase the left-hand side above with $(k^3 - 3k)$ and we increase the right-hand side with at least $(k + 2)(k^2 - 3k + 2) + 2(k^2 - k - 2) = (k^3 - 3k) + (k^2 - 3k)$. As $k \geq 3$, this means we increase the right-hand side by at least the same as the left-hand side.

Now consider the case when we delete a component, C, of $G - X$ with more than k edges into X. In this case C contributes at least $k + 1$ to p and at least one to z, which implies that again we increase the right-hand side by at least as much as the left-hand side.

As $oc(Z)(k^3 - 3k) \ge z(k^2 - 3k + 2) + p(k^2 - k - 2) + 2(k - 1)$ was false before we performed any of the steps (a), (b) or (c) (i.e., when $oc(Z) = z = p = 0$), then by the above it must remain false as we never increase the left-hand side by more than the right-hand side. This is the desired contradiction. Hence, $M_X \ge \phi(k, n)$ as claimed. \Box

The following proposition shows that the lower bound of Theorem 3 is tight.

Proposition 5. For every integer $p \ge 1$ and every odd integer $k \ge 3$, there exists a *connected* k-regular graph H_p^k of order $p(k^3 - 3k) + k^2 + 2k + 1$ *satisfying*

$$
\alpha'(H_p^k) = \frac{(k^3 - k^2 - 2) |V(H_p^k)| - 2k + 2}{2(k^3 - 3k)}.
$$

Proof. Let T_p^k be the bipartite graph with partite sets $V_1 = \{w_1, w_2, \dots, w_p\}$ and $V_2 = \{v_1, v_2, \ldots, v_{p(k-1)+1}\}\$, and where $N(w_i) = \{v_{(k-1)(i-1)+1}, v_{(k-1)(i-1)+2}, \ldots\}$ $v_{(k-1)(i-1)+k}$ for all $i = 1, 2, \ldots, p$. Note that the degree of all the $w_i \in V_1$ is k and the degree of all vertices in V_2 is one except for the vertices in $\{w_{(k-1)+1}, w_{2(k-1)+1},\}$ \dots , $w_{(p-1)(k-1)+1}$ } which have degree two. Now for every vertex x in $V(T_p^k)$ with $d_{T_p^k}(x) < k$, add $k - d_{T_p^k}(x)$ copies of the subgraph H_{k+2} to T_p^k and in each added copy of H_{k+2} , join the vertex named w_{k+2} in H_{k+2} to x (see Definition 5.1). Let H_p^k denote the resulting graph. Then, H_n^k is a connected k-regular graph of order

$$
|V(H_p^k)| = |V_1| + |V_2| + (|V_2|(k-1) - (p-1))(k+2)
$$

= $p + (p(k-1) + 1) + ((p(k-1) + 1)(k-1) - (p-1))(k+2)$
= $p(1 + (k-1) + (k-1)^2(k+2) - (k+2)) + 1 + (k-1)(k+2) + (k+2)$
= $p(k^3 - 3k) + k^2 + 2k + 1$.

Furthermore by deleting the vertices V_2 from H_p^k we obtain $p + (p(k-1) + 1)$ $(k-1) + (p-1)$ odd components. Therefore, by Theorem 1,

$$
\alpha'(H_p^k) \le \frac{1}{2} \left(|V(H_p^k)| + |V_2| - \alpha(H_p^k - V_2) \right)
$$

= $\frac{1}{2} \left((p(k^3 - 3k) + (k+1)^2) + (p(k-1) + 1)$
 $-(p + (p(k-1) + 1)(k-1) + (p - 1)) \right)$
= $\frac{1}{2} \left((p(k^3 - 3k + (k-1) - 1 - (k-1)^2 + 1) + (k+1)^2 - 1 - (k-1) + 1 \right)$
= $\frac{1}{2} \left(p(k^3 - k^2 - 2) + k^2 + k + 2 \right)$
= $\left(\frac{k^3 - k^2 - 2}{k^3 - 3k} \times \frac{p(k^3 - 3k) + k^2 + 2k + 1}{2} \right)$
+ $\frac{(k^3 - 3k)(k^2 + k + 2) - (k^2 + 2k + 1)(k^3 - k^2 - 2)}{2(k^3 - 3k)}$
= $\frac{(k^3 - k^2 - 2) |V(H_p^k)| - 2k + 2}{2(k^3 - 3k)}$.

However the lower bound of Theorem 3 shows that

$$
\alpha'(H_p^k) \ge \frac{(k^3 - k^2 - 2)|V(H_p^k)| - 2k + 2}{2(k^3 - 3k)},
$$

and so the desired result of the proposition follows. \Box

Using a shorter proof than that of Theorem 3 it is possible to prove the following weaker result. If $k \ge 1$ is odd and G is a k-regular graph of order n, then $\alpha'(G) \geq \frac{k^2 + k + 2}{k^2 + 2k + 1} \times \frac{n}{2}$. This can also be shown as a consequence of Theorem 3 as $\lceil \frac{k^2+k+2}{k^2+2k+1} \times \frac{n}{2} \rceil \leq \lceil \frac{(k^3-k^2-2)n-2k+2}{2(k^3-3k)} \rceil$ holds for all *n* and *k* we consider. However this weaker result can be useful in some cases as for some values of n and k we actually have $\frac{k^2+k+2}{k^2+2k+1} \times \frac{n}{2} > \frac{(k^3-k^2-2)n-2k+2}{2(k^3-3k)}$. It is for example used in the paper [3].

6. Closing Remarks

Let G be a connected k-regular graph. As $\alpha'(G) \leq \frac{n}{2}$ we note that our results imply that $\frac{\alpha'(G)}{n} \to \frac{1}{2}$ when $k \to \infty$. In comparison, the bound, $n(3k - 6)/(7k - 13)$, in [4] is always less than $3n/7$. For small values of k, we summarize our results in the accompanying table.

References

- 1. Berge, C., C. R. Acad. Sci. Paris Ser. I Math. **247**, 258–259 (1958) and Graphs and Hypergraphs (Chap. 8, Theorem 12), North-Holland, Amsterdam (1973)
- 2. Biedl, T., Demaine, E.D., Duncan, C.A., Fleischer, R., Kobourov, S.G.: Tight bounds on maximal and maximum matchings. Discrete Math. **285**, 7–15 (2004)
- 3. Frendrup, A., Vestergaard, P.D., Yeo, A.: Total domination in partitioned graphs. Submitted.
- 4. Lichiardopol, N.: Lower bounds on the matching number of regular graphs, manuscript, July 4, (2004)
- 5. Plummer, M.: Factors and Factorization. In: Gross, J.L., Yellen, J. (eds.) Handbook of Graph Theory. CRC Press, pp. 403–430 (2003), ISBN: 1-58488-092-2
- 6. Pulleyblank, W.R.: Matchings and Extension. 179–232. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics. Elsevier Science B.V. (1995), ISBN 0-444-82346-8.

Received: October 24, 2005 Final version received: September 14, 2007