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Abstract. Let the integers 1, . . . , n be assigned colors. Szemerédi’s theorem implies that if
there is a dense color class then there is an arithmetic progression of length three in that
color. We study the conditions on the color classes forcing totally multicolored arithmetic
progressions of length 3.

Let f (n) be the smallest integer k such that there is a coloring of {1, . . . , n} without
totally multicolored arithmetic progressions of length three and such that each color appears
on at most k integers. We provide an exact value for f (n) when n is sufficiently large, and
all extremal colorings. In particular, we show that f (n) = 8n/17 + O(1). This completely
answers a question of Alon, Caro and Tuza.
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1. Introduction

In this paper we investigate colorings of sets of natural numbers. We say that a
subset is monochromatic if all of its elements have the same color and we say that
it is rainbow if all of its elements have distinct colors. A famous result of van der
Waerden [5] can be reformulated in the following way.

Theorem 1. For each pair of positive integers k and r there exists a positive integer
M such that any coloring of integers 1, . . . , M with r colors yields a monochromatic
arithmetic progression of length k.

This theorem was generalized by the following very strong statement of Sze-
merédi [4].

Theorem 2. For every natural number k and positive real number δ there exists a natu-
ral number M such that every subset of {1, . . . , M} of cardinality at least δM contains
an arithmetic progression of length k.

This means that “large” color classes force monochromatic arithmetic progres-
sions. In this paper we invesigate conditions on the color classes which force a totally
multicolored arithmetic progression of length three.
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Assume that the integers in {1, . . . , n} are colored by r colors. Can we always
find an arithmetic progression of length k so that all of its elements are colored with
distinct colors? We call such colored arithmetic progressions rainbow AP(k).

The answer to this question is “No”, for r ≤ �log3 n+1�. The following coloring
c of {1, . . . , n}, given by Jungić, et al. [3], demonstrates this fact. Let c(i) = max{q :
i is divisible by 3q}. This coloring has no rainbow arithmetic progressions of length
3 or more.

It is an open question to determine certain conditions which force the existence
of rainbow arithmetic progressions. There are two natural approaches which can be
studied. First, one can fix the number of colors and require that each color class is
not “too small”. Second, one can require that each color class is not “too big” to
guarantee some rainbow arithmetic progression.

The first approach for AP(3) and three colors, among others, was studied in [3]
and completely resolved by Fon-Der-Flaass and the first author as follows.

Theorem 3 ([2]). Let [n] be colored in three colors, each color class has size larger than
(n + 4)/6. Then there is a rainbow AP(3). Moreover, for each n = 6k − 4 there is a
coloring of [n] in three colors with the smallest color class of size k and with no rainbow
AP(3).

The second approach was introduced and developed by Alon, et al. [1]. It was
called “Sub-Ramsey numbers for arithmetic progressions” as a way to investigate
the problem provided that the size of the largest color class is bounded. Specifically,
a coloring of [n] was called a sub-k-coloring if every color appears on at most k inte-
gers. For a given m and a given k, the Sub-Ramsey number, sr(m, k), is defined to
be the minimum n0 such that any sub-k-coloring of [n], n > n0 contains a rainbow
AP(m). When m = 3, i.e., when the desired rainbow arithmetic progressions are of
size three, the following bounds were proved in [1].

Theorem 4. As k grows, 2k < sr(3, k) ≤ (4.5 + o(1))k.

In that paper it was suggested that the lower bound is close to the correct order of
magnitude for sr(3, k). Here, we show that the truth is away from both the lower
and upper bounds. In theorem 6, we compute tight bounds for sr(3, k) in a dual
form. In particular, theorem 6 implies the following:

Theorem 5. For any k ≥ 1, (17/8)k − 4 ≤ sr(3, k) ≤ (17/8)k + 10.

Moreover, for k large enough, we determine the value of sr(3, k) exactly.

2. Main Results

Definition 1. We define f (n) to be the smallest integer k such that there is a coloring
of [n] with the largest color class of size k and with no rainbow AP(3).

The following proposition allows us to determine sr(3, k) from f (n):
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Proposition 1. The value sr(3, k) is the largest value of n such that k ≥ f (n).

Proof. Since there exists a k-bounded coloring of [sr(3, k)] with no rainbow AP(3),
f (sr(3, k)) ≤ k. Assume that f (sr(3, k)+1) ≤ k, then there is a k-bounded coloring
of [sr(3, k) + 1] with no rainbow AP(3), a contradiction. �

For the rest of the paper, we analyze the function f (n). Theorem 6 immediately
implies the conclusion we draw in theorem 5.

We find an extremal coloring c0 with no rainbow AP(3) and with largest color
class of the smallest possible size.

Construction.

c0(i) =






G, if i ≡ 0 (mod 17),

R, if i ≡ ±1, ±2, ±4, ±8 (mod 17),

B, if i ≡ ±3, ±5, ±6, ±7 (mod 17).

Let q(I ) be the size of the largest color class of c0 in the interval I and

Q(n) = min{q(I ) : I has length n}.

It can be easily verified that Q(n) = �8(n−1)/17�+ε, where ε =






1, n ≡ 3, 5
(mod 17),

0, otherwise.

Theorem 6. Let n0 = 2600. If n ≥ n0 then

f (n) = Q(n).

Any extremal coloring of {1, . . . , n} is colored identically to a subinterval of Z colored
by c0. Moreover, for any n ≥ 1,

Q(n) − 4 ≤ f (n) ≤ Q(n).

Corollary 1.
⌈

8(n − 1)

17

⌉

≤ f (n) ≤
⌈

8(n − 1)

17

⌉

+ 1,

for n ≥ 2600. Moreover

8(n − 1)

17
− 4 ≤ f (n) ≤ 8(n − 1)

17
+ 2,

for n ≥ 1.

Remark 1. We did not try to optimize the constant n0. A more careful analysis of
the proof results in a smaller number. We believe that in fact f (n) = Q(n) for all
values of n and this must be a coloring of some subinterval of Z for all but a very
small number of values of n.
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3. Definitions and Notations, Outline of the Proof

Let [n] = {1, . . . , n}. For convenience, sometimes we shall use the closed interval
notation [1, n] for [n]. Let c : [n] → {R, G, B}. We say that a color X ∈ {R, G, B} is
solitary if there is no x ∈ [n−1] such that c(x) = c(x +1) = X. For a set S ⊆ [n], we
denote by r(S), g(S), b(S) the number of elements in S colored R, G, B respectively.
We write |R| = r([n]), |G| = g([n]), |B| = b([n]). If all elements of S have the same
color X, we write c(S) = X.

We say that the interval [x, x + i] is X-X-interval if c(x) = c(x + i + 1) = X and
c(x + j) �= X for all 1 ≤ j ≤ i, note that the left X is included in the interval but
the right one is not. For a color X, we define a set N(X) of neighbors of X as follows
N(X) = {i ∈ [n] : c(i + 1) = X or c(i − 1) = X}. For a sequence of colors
A0, A1, . . . , Ak, Ai ∈ {R, G, B}, we say that a coloring c contains A0A1 · · · Ak in
the interval I if there is an integer x ∈ I , such that x + k ∈ I and c(x + i) = Ai ,
i = 0, . . . , k. Sometimes we shall simply say that I contains A0A1 · · · Ak. We use
subintervals of [1, n] or subsets of [n] wherever convenient.

In order to prove our upper bound on f (n), we consider an arbitrary coloring
of [n] with no rainbow AP(3) and first reduce the analysis to the case of three colors
only. We show that there must be a solitary color, say G. Moreover we show that
each number in the neighbor set of G must have the same color, say R. I.e., each
integer colored G is surrounded by two integers colored R. Therefore the interval
[1, n] can be split into G-G intervals and perhaps some initial and terminal intervals
containing no G. Next, we show that either each G-G interval has many integers
colored R, thus arriving at a conclusion that |R| ≥ Q(n) or that there are not too
many integers colored G and either |R| or |B| is at least (n − |G|)/2 ≥ Q(n).

We present the proof in the section 4, and all necessary technical lemmas in
sections 5, 6.

4. Proof of Theorem 6

Let c be a coloring of [n] with no rainbow AP(3). We shall conclude that one of the
color classes has size at least Q(n). By lemma 2, we can assume that c uses three
colors, say R, G, B. Lemma 4 implies an existence of a solitary color, without loss
of generality G. If there are only two numbers of color G, then either R or B has size
at least (n − 2)/2 ≥ 8(n − 1)/17 + 3 > Q(n), for n ≥ n0 and (n − 2)/2 ≥ Q(n) − 3
for n ≥ 1. Otherwise, by lemma 5, we can assume that the neighbor set of G is
colored R. We can also assume that there are two consecutive numbers colored B
in [n]; otherwise, the cardinality of R is at least (n − 2)/2 > Q(n), for n ≥ n0 and
(n − 2)/2 > Q(n) − 3 for n ≥ 1.

Since G is a solitary color and R is the color of its neighborhood, we see that c

looks as follows:

∗ ∗ · · · ∗ ∗RGR ∗ ∗ · · · ∗ ∗RGR ∗ ∗ · · · ∗ ∗RGR ∗ ∗ · · · ∗ ∗RGR ∗ ∗ · · · ∗ ∗,

where ∗ ∈ {R, B}. Furthermore, there is a BB somewhere in [n].
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Case 1. All G-G-intervals contain BB.
Lemma 8 proves that the smallest length of a G-G interval containing BB is 15 and
there is no such interval of length 16. Assume first that there is such an interval of
length 15. Then lemma 9 shows that this coloring must be very specific, in particular,
it is defined up to translation on all integers except, perhaps, every 15th one. So, in
that case, lemma 9 gives that |R| ≥ 8(n − 1)/15 − 1 ≥ 8(n − 1)/17 + 3 > Q(n) for
n ≥ n0 and 8(n − 1)/15 − 1 > Q(n) − 3 for n ≥ 1. If the smallest G-G interval
has length 17 then lemma 10 says that the coloring of [n] must be a translation of
c0 for all integers except, perhaps, every 17th one. In this case |R| = Q(n). Finally,
if all intervals have length at least 18, lemma 8 proves that in fact, the smallest
interval has length 21. Then |G| ≤ n/21 + 1. Thus either |B| or |R| is at least
(n − |G|)/2 ≥ (10n − 11)/21 > Q(n) for n ≥ n0 and (10n − 11)/21 > Q(n) − 3 for
n ≥ 1.

Case 2. There is a G-G-interval containing no BB.
We split interval [1, n] and find a lower bound on the number of integers colored

R in each of those subintervals. There are two subcases we shall treat. In case 2.1,
the initial subinterval contains at least three Gs, and we use our structural lemmas.
Otherwise, we have case 2.2, in which we apply case 1 to a special subinterval. We
shall define the following special subintervals.

◦ I1 is the longest initial segment of [n] containing no BB and ending with G,
I1 = [1, l],

◦I2 is an interval following I1, containing no BB except for the last two positions
which are colored BB,

◦I3 = [n] − I1 − I2,
◦I0 ⊆ I1 is the longest initial segment of [1, n] containing no G,
◦I ′

2 = [l + 1, 2l − 1], I ′′
2 = I2 \ I ′

2.
◦It is the longest terminal subinterval of [n] containing no BB.

Case 2.1. Let g(I1) ≥ 3. Let gi be the number of G-G intervals of length i in I1 \ {l}.
Lemma 6(b) and 6(c) claims that there is no GRG or GRRG in [n]. Thus each
G-G interval in [n] has length at least 4 and gi = 0 for i ≤ 3. In particular, |I1| =
|I0| + ∑

i≥4 igi + 1.

Since I1 contains no BB we have

r(I1) ≥ |I0|/2 +
∑

i≥4

(i/2 + 1)gi . (1)

Lemma 11 states that I ′
2 ⊆ I2 and r(I ′

2) ≥ r(I1). Since I ′′
2 does not contain any

BB except at the last two positions, r(I ′′
2 ) ≥ |I ′′

2 |/2 − 1. Thus

r(I2) = r(I ′
2) + r(I ′′

2 ) ≥ r(I1) + |I ′′
2 |/2 − 1. (2)
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Finally, by lemma 12,

r(I3) ≥ (|I3| − 3)/4. (3)

We can summarize (1), (2) and (3) as follows.

|R| = r(I1) + r(I ′
2) + r(I ′′

2 ) + r(I3)

≥ 2r(I1) + |I ′′
2 |/2 − 1 + (|I3| − 3)/4

= 2r(I1) + |I ′′
2 |/2 − 1 + (n − |I1| − |I ′

2| − |I ′′
2 | − 3)/4

≥ (n − 3)/4 − 1 + 2r(I1) − |I1|/2

≥ (n − 7)/4 + 2



|I0|/2 +
∑

i≥4

gi(i/2 + 1)



 − (1/2)



|I0| +
∑

i≥4

igi + 1





≥ (n − 9)/4 + |I0|/2 +
∑

i≥4

gi(i/2 + 2)

≥ (n − 9)/4 + 4
∑

i≥4

gi

= (n − 9)/4 + 4(g(I1) − 1).

Lemma 12 implies that g(I1) − 1 = |G| − 1 − g(I2 ∪ I3) ≥ |G| − 3. So,

|R| ≥ (n − 9)/4 + 4(|G| − 3).

Let M = max{|R|, |B|}. By definition, it is the case that |R| ≤ M and |G| ≥
n − 2M. As a result,

M ≥ |R| ≥ (n − 9)/4 + 4(|G| − 3) ≥ (n − 9)/4 + 4(n − 2M − 3).

Thus

M ≥ 17n − 57
36

≥ 8(n − 1)/17 + 3 ≥ Q(n),

for n ≥ n0. We also have that M ≥ (17n − 57)/36 ≥ 8(n − 1)/17 > Q(n) − 3 for all
values of n ≥ 1.1

Case 2.2. Let g(I1) ≤ 2. By symmetry, we can also assume that g(It ) ≤ 2, otherwise
we can apply the previous calculation to the coloring defined as c′(i) = c(n+1− i),
i ∈ [n]. Let J = [n] \ (I1 ∪ It ). If J contains no G then g([n]) ≤ 4 and either
|R| or |B| is at least (n − 4)/2 ≥ 8(n − 1)/17 + 3 ≥ Q(n) for n ≥ n0, moreover
(n − 4)/2 ≥ Q(n) − 3 for all n ≥ 1.

If there is at least one G in J then we conclude that all G-G intervals in J ∪ {l}
contain BB by lemma 7 and that r(I1) ≥ |I1|/2 and r(It ) ≥ |It |/2. As in case 1, we
observe that if J contains a G-G interval of length 15 then |R| ≥ 8(n − 1)/15 − 1 ≥
1 Note that this is the only time we need the value of 2600 for n0, in all other calculations, a
smaller bound of 900 is sufficient.
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8(n − 1)/17 + 3 ≥ Q(n), for n ≥ n0. In addition, if J ∪ {l} contains a G-G inter-
val of length 17 then lemma 10 gives that the coloring must be a translation of c0
except, perhaps on every 17th position. In this case, |R| ≥ Q(n). Otherwise, the
length of each G-G interval is at least 21. This follows from lemma 8. In that case,
g(J ) ≤ |J |/21 + 1. Thus |G| ≤ g(J ) + 4 ≤ (n − 4)/21 + 5. Therefore either |R| or
|B| is at least (n − |G|)/2 ≥ (10n − 51)/21 ≥ 8(n − 1)/17 + 3 > Q(n), for n ≥ n0,
moreover |R| ≥ 8(n − 1)/17 − 1 ≥ Q(n) − 4 for all n ≥ 1.

This case concludes the proof of the theorem. �

5. General Lemmas for Colorings with No Rainbow AP(3)s

Lemma 1. The coloring c0 does not have any rainbow AP(3)s.

Proof. Consider AP(3) at positions i < j < k with c(j) = G. Then j = 0 (mod 17)

and then i = −k (mod 17). Therefore, by construction, c(i) = c(k) and this AP(3)

is not rainbow. �
Now, let us have AP(3) at positions i < j < k such that c(i) = G. Then, since

i = 0 (mod 17) we have k = 2j (mod 17). We claim that c(j) = c(k) in this case
simply by multiplying the numbers in corresponding congruence classes by two as
follows:

x 1 2 4 8 3 5 6 7
2x (mod 17) 2 4 8 −1 6 −7 −5 −3

Therefore, in this case we see that this AP(3) is not rainbow and there is no
rainbow AP(3) in our coloring.

Lemma 2. Let c be a coloring of [n] with no rainbow AP(3), n ≥ 21 and every color
class of size at most m, (n + 4)/6 ≤ m < (n − 4)/2. Then there is a coloring c′ of [n]
with no rainbow AP(3), in three colors with each color class being the union of some
color classes of c and such each color class of c′ has size at most m.

Proof. Let A1, A2, . . . be the color classes of c. Note first that if c′ is formed by
merging color classes of c then c′ does not have rainbow AP(3)s. If there were a
rainbow AP(3) in c′, then it must be a rainbow AP(3) in c, a contradiction.

Assume first that there are two color classes A1 and A2 of sizes more than
(n + 4)/6. Consider S = [n] − A1 − A2. Let the color classes of c′ be A1, A2, S. If
|S| > (n + 4)/6 then the new color are all of sizes at least (n + 4)/6, thus there is a
rainbow AP(3) in c′ by Theorem 3, a contradiction. Otherwise, |S| ≤ (n+4)/6 ≤ m

and all color classes in c′ have sizes at most m.
Now, assume that there is exactly one color class of size more than (n+4)/6, say

A1. LetT = A2∪A3∪· · ·∪Aq such that |T | > (n+4)/6 but |T \Aq | ≤ (n+4)/6. Then,
we see that |T | ≤ (n+4)/3. Therefore, n−|T |−|A1| ≥ n−(n+4)/3−m > (n+4)/6.
If we make the new color classes A1, T , [n] \ (T ∪ A1), then by Theorem 3, there is
a rainbow AP(3) in c′, a contradiction.
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Finally, if each color class has cardinality less than (n + 4)/6 then we choose
color classes of c′ greedily. Let B1 = A1 ∪ A2 ∪ · · · Aq and B2 = Aq+1 ∪ · · · Ar

be two new color classes such that (n + 4)/6 < |Bi | ≤ (n + 4)/3, i = 1, 2. Let
B3 = [n] \ (B1 ∪ B2). Then |B3| ≥ (n − 8)/3. If n ≥ 21, then |B3| > (n + 4)/6 and
we again apply Theorem 3 to get a rainbow AP(3) in c′ a contradiction. �

Lemma 3 ([2]). Let c be a coloring of [n] in three colors with no rainbow AP(3). Let
there be integers x and z, 1 ≤ x < z < n such that c(x) = c(x + 1) = X and
c(z) = c(z + 1) = Z, X �= Z. Then there is w, x < w < z such that (c(w) = X,
c(w + 1) = Z) or (c(w) = Z, c(w + 1) = X).

Lemma 4. Let c be a coloring of [n] in three colors with no rainbow AP(3). Then there
is a solitary color.

Proof. Assume the opposite. Let c be a coloring of [n] with colors R, G, B and
such that each color appears on consecutive positions somewhere in [n]. In partic-
ular, there are numbers 1 ≤ x < y < z < n such that, without loss of generality,
c(x) = c(x + 1) = R, c(y) = c(y + 1) = G, and c(z) = c(z + 1) = B, and such that
there are no two consecutive integers colored BB or RR in the interval [x + 1, z].

By lemma 3, there is a w, with x < w < z, such that (c(w) = R and c(w+1) = B)
or (c(w) = B and c(w+1) = R). Assume without loss of generality that x < w < y

and that w is closest to y satisfying this property, and c(w) = R, c(w + 1) = B.
Note that w + 1 < y − 1, otherwise {w, w + 1, w + 2} will be a rainbow AP(3). But
now c(w +2) = B otherwise we shall contradict the choice of w. Therefore, we have
c(w + 1) = c(w + 2) = B, a contradiction. �

Lemma 5. Let c be a coloring of [n] in three colors R,G,B with no rainbow AP(3). Let
color G be solitary. Then, either the neighbor set of G is monochromatic or there are
at most two numbers x, y with c(x) = c(y) = G.

Proof. Note first that if c(x) = G, for some x ∈ {2, . . . , n − 1} then c(x − 1) =
c(x+1) ∈ {B, R}. Now, assume that there are two integers x, y, 1 ≤ x < y ≤ n, such
that c(x) = c(y) = G but c(z) �= G for all x < z < y and such that c(x + 1) = R
and c(y − 1) = B. Assume that there are at least three integers colored G. Then, it
is easy to see that we may assume that x ≥ 2 or y ≤ n − 2. Let y be at most n − 2,
without loss of generality.

If y +x is odd then c((y +x +1)/2) = R and c((y +x +1)/2) = B which follows
from considering the AP(3) {x + 1, (x + y + 1)/2, y} and {x, (x + y + 1)/2, y + 1},
respectively, a contradiction.

If y+x is even and c(y+2) = B, we have c(x+2) = R. Then c((x+y+2)/2) = R
and c((x + y + 2)/2) = B from the AP(3) {x + 2, (x + y + 2)/2, y}, and the AP(3)

{x, (x + y + 2)/2, y + 2}, a contradiction.
If y + x is even and c(y + 2) = G, consider the largest w, x < w < y such that

c(w) = c(w + 1) = R. Then one of w + y and w + 1 + y is even. Assume, without
loss of generality, that w + y is even. Then (w + y)/2 and (w + y + 2)/2 will have
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to have color R because of AP(3)s {w, (w + y)/2, y} and {w, (w + y + 2)/2, y + 2},
a contradiction to maximality of w. �

6. Lemmas Specific to the Main Theorem

In all of the following lemmas we consider a coloring c of [n] in three colors R, G, B
with a solitary color G having all neighbors of color R. We also assume that this
coloring has two consecutive integers colored B. The intervals I1, I2, I3 are defined
as in the proof of the theorem in section 4.

Lemma 6.
(a) If x ∈ [1, n − 1] and c(x), c(x + 1) ∈ {G, B} then c(x) = c(x + 1) = B.
(b) [1, n] does not contain GRG
(c) [1, n] does not contain GRRG.
(d) If x ∈ [1, n − 2] and c(x), c(x + 2) ∈ {G, B} then c(x) = c(x + 2) = B.

Proof. (a) Note that having c(x) = c(x + 1) = G is impossible since G is a solitary
color. Having exactly one integer x or x + 1 of color G and another of color B is
impossible since the neighbors of G are colored with R.

(b) Without loss of generality, we may assume that there are integers w, y ∈ [n],
y > w and such thatw, w+1, w+2 is colored GRG andy is the least integer such that
c(y) = c(y + 1) = B. If y has the same parity as w then the AP(3) {w, (w +y)/2, y}
and {w + 2, (w + 2 + y)/2, y} imply that c((w + y)/2) = c((w + 2 + y)/2) = B.
If y + 1 has the same parity as w then the AP(3) {w, (w + y + 1)/2, y + 1} and
{w+2, (w+2+y+1)/2, y+1} imply that c((w+y+1)/2) = c((w+2+y+1)/2) = B.
This is a contradiction to the minimality of y.

(c) Without loss of generality, we may assume that there are integers y, w ∈ [n]
such that w, w + 1, w + 2, w + 3 is colored GRRG and that y is the least inte-
ger such that c(y) = c(y + 1) = B. If w + y is even, then consider the following
AP(3)s: {w, (w+y)/2, y} and {w+2, (w+2+y)/2, y}. It follows that c((w+y)/2) =
c((w+y+2)/2) = B. Since y > (w+y)/2 > w, we have a contradiction to the mini-
mality of y. If w+y is odd, the consider the following AP(3)s: {w, (w+y+1)/2, y+1}
and {w+3, (w+3+y)/2, y}. It follows that c((w+y+1)/2) = c((w+y+3)/2) = B.
Since y > (w + y + 1)/2 > w, we have a contradiction to the minimality of y.

(d) Note that c(x) = c(x+2) = G is impossible because of b). If {c(x), c(x+2)} =
{B, G} then, since c(x + 1) = R, {x, x + 1, x + 2} is a rainbow AP(3). �

Lemma 7. Let x < y, c(x) = c(y) = G and both intervals [1, x] and [y, n] contain
BBs. Then [x, y] contains BB.

Proof. Let w be the largest number such that w < x and c(w) = c(w + 1) = B. Let
z be the smallest number such that z > y and c(z) = c(z − 1) = B. Assume without
loss of generality that x −w ≤ z − y. By considering the AP(3)s {w, x, 2x −w} and
{w + 1, x, 2x − w − 1}, we have that c(2x − w − 1), c(2x − w) ∈ {B, G}, and using
lemma 6 a), we have c(2x − w − 1) = c(2x − w) = B. If x < 2x − w − 1 < y, then
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we are done. Otherwise, 2x −w−1 > y and 2x −w−1−y < z−y, a contradiction
to the choice of z. �

Lemma 8. Let I be a G-G interval with at least one B. Then for each such I of length
at most 21, I must be colored as in Table 1.

Proof. Let I = [0, k − 1]; i.e., c(0) = c(k) = G. Because there is no rainbow AP(3),
we must have that c(x) = c(2x) for all x < k/2 and c(2x −k) = c(x) for all x > n/2.
Since the neighbor set of G is R, c(1) = c(k − 1) = R. With these conditions we can
exhibit all possible colorings of I . The ones with at least one B are listed in table 1,
for 1 ≤ k ≤ 21. �

Now we present the main structural lemma.

Lemma 9. Let [x, x + 14] be a G-G interval containing BB. Then

c(z) =
{

R, if (z − x) ≡ ±1, ±2, ±4, ±7 (mod 15),

B, if (z − x) ≡ ±3, ±5, ±6 (mod 15).

Proof. To simplify our calculations, we shift the indices so that considered G-G
interval is [0, 14] and the whole interval being colored is [1 − x, n − x]. The lemma
8 shows that the coloring of [0, 15] must be as follows:

GRRBRBBRRBBRBRRG.

In particular, we have that

c(2i) = c(i), c(2i − 1) = c(7 + i), i ∈ {1, . . . , 7}. (4)

Table 1. Colorings of G-G intervals of lengths at most 21 containing B. Here, x, y ∈ {R, B}

Interval
Length Coloring

6 G R R B R R
9 G R R B R R B R R
10 G R R R R B R R R R
12 G R R B R R B R R B R R
14 G R R R R R R B R R R R R R
15 G R R x R y x R R x y R x R R
17 G R R B R B B B R R B B B R B R R
18 G R R B R R B R R B R R B R R B R R
20 G R R R R B R R R R B R R R R B R R R R
21 G R R x R R x y R x R R x R y x R R x R R
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Let A = [−w + 1, z − 1] be the largest interval having the coloring c as in the
statement of the lemma. I.e., for each y ∈ A

c(y) =
{

R, ify ≡ ±1, ±2, ±4, ±7 (mod 15),

B, ify ≡ ±3, ±5, ±6 (mod 15)

Let z = 15k + i, 0 < i < 15. If z ≤ n − x, we shall show that z must be
colored as in c, thus contradicting the maximality of [−w + 1, z − 1]. By symme-
try, it will be the case that if −w ≥ 1 − x then −w must be colored as in c, again
contradicting the maximality of [−w + 1, z − 1]. Therefore we shall conclude that
A = [−w + 1, z − 1] = [1 − x, n − x].

First we show that c(z) �= G if i �= 0. Assume that c(z) = c(15k + i) = G. If
i ∈ {4, 5, 6, 7, 8, 10, 11, 12, 13, 14} then either c(z − 1) = B or (c(z − 2) = B and
c(z − 1) = R). We arrive at a contradiction since the neighbors of G are colored R
and we can not have three consecutive numbers colored BRG. For i ∈ {1, 2, 3, 9} we
consider the following AP(3)s: {15k−3, 15k−1, 15k+1}, {15k−6, 15k−2, 15k+2},
{15k −5, 15k −1, 15k +3}, {15k +5, 15k +7, 15k +9}. Note that the first two terms
in each of these four AP(3)s have distinct colors from the set {R, B}, thus the last
terms can not be colored with G.

Next we show that c(15k + i) = c(i).

Case 1. k is even, i is even.
Consider AP(3) {0, (15k + i)/2, 15k + i}. Since c((15k + i)/2) = c(15(k/2)+ i/2) =
c(15(k/2) + i) = c(i), we have that c(15k + i) = c(i).

Case 2. k is odd, i is odd.
Consider AP(3) {0, (15k + i)/2, 15k + i}. Since c((15k + i)/2) = c(15((k − 1)/2) +
(15 + i)/2) = c(15((k − 1)/2) + 15 + i) = c(i), we have that c(15k + i) = c(i).

Case 3. k is odd, i is even.
Consider AP(3) {15, (15(k + 1) + i)/2, 15k + i}. Since c((15(k + 1) + i)/2) =
c(15((k +1)/2)+ i/2) = c(15((k +1)/2)+ i) = c(i), we have that c(15k + i) = c(i).

Case 4. k is even, i is odd.
Consider AP(3) {15, (15k+i+15)/2, 15k+i}. Since c((15k+i+15)/2) = c(15(k/2)+
(i+15)/2) = c(15(k/2)+(i+15)) = c(i+15) = c(i), we have that c(15k+i) = c(i).

�

Lemma 10. Let [x, x + 16] be a G-G interval. Then

c(z) =
{

R, if (z − x) ≡ ±1, ±2, ±4, ±8 (mod 17),

B, if (z − x) ≡ ±3, ±5, ±6, ±7 (mod 17).
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Remark. The proof is almost identical to the proof of the previous lemma and can
be easily mimicked by replacing 15 with 17 and modifying corresponding indices.

Lemma 11. |I1| ≤ |I2| + 1 and r(I ′
2) ≥ r(I1).

Proof. Assume first that |I1| ≥ |I2| + 2. Let I1 = [1, l] and I2 = [l + 1, b + 1].
Recall that c(l) = G and c(b) = c(b + 1) = B. The following AP(3)s: {2l − b, l, b}
and {2l − b − 1, l, b + 1} and lem 6(a) imply that c(2l − b) = c(2l − b − 1) = B,
a contradiction to the fact that I1 does not contain BB. To prove the second state-
ment, consider {x, l, 2l − x}, where x ∈ I1 and c(x) = R. Since 2l − x ∈ I ′

2 and
c(2l −x) �= G, we have c(2l −x) = R. Therefore, for each x ∈ I1 such that c(x) = R
there is a unique y ∈ I ′

2 such that c(y) = R. �

Lemma 12. If g(I1) ≥ 3 then g(I2 ∪ I3) ≤ 2 and r(I3) ≥ (|I3| − 3)/4.

Proof. Assume that I2∪I3 contains at least three integers colored G. Since g(I2) = 0
by definition of I2, we have g(I3) ≥ 3. We know that I1 contains at least three Gs
as well. Then, there are x, x′ ∈ I1 and y, y′ ∈ I3, such that c(x) = c(x′) = c(y) =
c(y′) = G, x and x′ are of the same parity and y and y′ are of the same parity. Let
x < x′ and y < y′. Let b be the smallest integer such that c(b) = c(b + 1) = B.
Note that x′ < b < y.

Claim. n < 2b+2−x′. Assume not, then 2b+2−x′ ∈ [1, n], thus considering AP(3)s
{x′, b, 2b−x′} and {x′, b+1, 2b+2−x′} we see that c(2b−x′) = c(2b+2−x′) = B.
Now, the AP(3)s {x, b − (x′ − x)/2, 2b − x′} and {x, b + 1 − (x′ − x)/2, 2b + 2 − x′}
show that c(b − (x′ − x)/2) = c(b + 1 − (x′ − x)/2) = B. This contradiction to
minimality of b proves the claim.

Let z be the largest number such that z < y and c(z) = c(z + 1) = B. Observe
that 2z−y ≥ 2b−y ≥ n−2+x′−y+1 = n−(y−x′)−1. Since x′ ≥ 4 and y ≤ n, we
have that 2z−y ≥ n−n+4−1 ≥ 3. Therefore we can consider the following AP(3)s:
{2z−y, z, y}, {2z−y +2, z+1, y}, which imply that c(2z−y) = c(2z−y +2) = B.
Then {2z − y, z + (y′ − y)/2, y′}, {2z − y + 2, z + 1 + (y′ − y)/2, y′} give us that
c(z + (y′ − y)/2) = c(z + 1 + (y′ − y)/2) = B, contradicting maximality of z.

This proves that there are at most two integers colored G in I3. In order to prove
the second statement of the lemma we show that I3 does not contain BBBB.

Assume that there is y ∈ I3 such that y + 3 ∈ I3 and y, y + 1, y + 2, y + 3 is
colored BBBB. Assume that y and y + 2 have the same parity as x′ (otherwise take
y + 1 and y + 3). Then {x′, (y + x′)/2, y} and {x, (y + x′)/2 + 1, y + 2} imply that
c((y + x′)/2) = c((y + x′)/2 + 1) = B. Using the claim, we have that y ≤ n − 3 <

2b+2−x′ −3. Thus (y +x′)/2 < (2b−1)/2 < b, a contradiction to the minimality
of b. �
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Progressions and Anti-Ramsey Results, Combinatorics, Probability and Computing 12,
599–620 (2003)
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