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Abstract. If D = (V, A) is a digraph, its competition hypergraph CH(D) has vertex set
V and e ⊆ V is an edge of CH(D) iff |e| ≥ 2 and there is a vertex v ∈ V , such that
e = {w ∈ V |(w, v) ∈ A}. For several products D1 ◦ D2 of digraphs D1 and D2, we investigate
the relations between the competition hypergraphs of the factors D1, D2 and the competition
hypergraph of their product D1 ◦ D2.
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1. Introduction and Definitions

All hypergraphs H = (V (H), E(H)) and digraphs D = (V (D), A(D)) considered
here may have isolated vertices but no multiple edges and arcs, respectively. More-
over, in digraphs loops are forbidden.

In 1968 Cohen [2] introduced the competition graph C(D) associated with a
digraph D = (V, A) representing a food web of an ecosystem. C(D) = (V, E) is the
graph with the same vertex set as D (corresponding to the species) and

E = {{u, v} | u �= v ∧ ∃ w ∈ V : (u, w) ∈ A ∧ (v,w) ∈ A},

i.e. {u, v} ∈ E iff u and v compete for a common prey w ∈ V .
Surveys of the large literature around competition graphs can be found in

Roberts [6], Kim [4] and Lundgren [5].
In [7] it is shown that in many cases competition hypergraphs yield a more

detailed description of the predation relations among the species in D = (V, A)

than competition graphs. If D = (V, A) is a digraph its competition hypergraph
CH(D) = (V, E) has the vertex set V and e ⊆ V is an edge of CH(D) iff |e| ≥ 2
and there is a vertex v ∈ V , such that e = {w ∈ V | (w, v) ∈ A}. In this case we say
v ∈ V = V (D) corresponds to e ∈ E and vice versa.

In our paper [7] we dealt with competition hypergraphs without loops, that
way we followed the most usual definition of competition graphs. In the case of
digraphs D possessing vertices with only one predecessor, a competition hyper-
graph with loops contains a more detailed information on D. For that reason, we
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also include competition hypergraphs with loops in our investigations of competi-
tion hypergraphs of products of digraphs and modify the notion of a competition
hypergraph.

If D = (V, A) is a digraph its l-competition hypergraph (competition hypergraph
with loops) CHl(D) = (V, E l) has the vertex set V and e ⊆ V is an edge of CH(D)

iff |e| �= ∅ and there is a vertex v ∈ V , such that e = {w ∈ V | (w, v) ∈ A}.
For the sake of brevity, in the following we often use the term competition

hypergraph (sometimes in connection with the notation CH(l)(D)) for the com-
petition hypergraph CH(D) as well as for the l-competition hypergraph CHl(D).

In standard terminology concerning digraphs we follow Bang–Jensen and
Gutin [1]. With d−

D(v), d+
D (v), N−

D (v) and N+
D (v) we denote the in–degree, out–

degree, in–neighbourhood and out–neighbourhood of a vertex v in a digraph D,
respectively.

For five products D1 ◦ D2 (Cartesian product D1 × D2, Cartesian sum D1 + D2,
normal product D1 ∗ D2, lexicographic product D1 · D2 and disjunction D1 ∨ D2) of
digraphs D1 = (V1, A1) and D2 = (V2, A2) we investigate the construction of the
competition hypergraph CH(l)(D1 ◦ D2) = (V, E (l)◦ ) from CH(l)(D1) = (V1, E (l)

1 ),

CH(l)(D2) = (V2, E (l)
2 ) and vice versa.

The products considered here have always the vertex set V := V1 × V2; using the
notation ˜A := {((a, b), (a′, b′)) | a, a′ ∈ V1 ∧ b, b′ ∈ V2} their arc sets are defined
as follows:

A(D1 × D2) := {((a, b), (a′, b′)) ∈ ˜A | (a, a′) ∈ A1 ∧ (b, b′) ∈ A2},
A(D1 + D2) := {((a, b), (a′, b′)) ∈ ˜A | ((a, a′) ∈ A1 ∧ b = b′) ∨ (a = a′ ∧ (b, b′) ∈ A2)},
A(D1 ∗ D2) := A(D1 × D2) ∪ A(D1 + D2),

A(D1 · D2) := {((a, b), (a′, b′)) ∈ ˜A | (a, a′) ∈ A1 ∨ (a = a′ ∧ (b, b′) ∈ A2)},
A(D1 ∨ D2) := {((a, b), (a′, b′)) ∈ ˜A | (a, a′) ∈ A1 ∨ (b, b′) ∈ A2}.

It follows immediately that A(D1+D2) ⊆ A(D1∗D2) ⊆ A(D1 ·D2) ⊆ A(D1∨D2)

and A(D1 × D2) ⊆ A(D1 ∗ D2). Except the lexicographic product all these products
are commutative in the sense that D1 ◦ D2  D2 ◦ D1, where ◦ ∈ {×,+, ∗,∨}.

Usually we arrange the vertices of V = V1 × V2 according to the places of an
(r, s)-matrix, where r := |V1| and s := |V2|. Then, for each ◦ ∈ {+, ∗, ·,∨}, the
subdigraph of D1 ◦ D2 generated by the vertices of a column and a row of this
matrix scheme is isomorphic to D1 and D2, respectively.

The factor decomposition of product graphs is an interesting question
(cf. Imrich and Klavzar [3]). Related to this problem the question arises, whether or
not CH(l)(D1 ◦ D2) can be obtained from CH(l)(D1) and CH(l)(D2) and vice versa
(cf. Theorems 1-3 and Propositions 1-2).

But there is yet another point of view: In general, it is impossible to reconstruct
the digraph D from its competition hypergraph CH(l)(D), since CH(l)(D) does not
contain the complete information on D. Up to now in the literature no results
concering this reconstruction problem are known. All the more it is interesting that
under certain conditions D1 ◦ D2 and even D1 and D2 can be reconstructed from
CH(l)(D1 ◦ D2) (cf. Corollaries 1-3).
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2. Determination of CH(l)(D1 Æ D2) from CH(l)(D1) and CH(l)(D2)

In the following let D1 = (V1, A1) and D2 = (V2, A2) be digraphs. By N−
1 (v), N−

2 (v)

and N−◦ (v) we denote the set of all predecessors of a vertex v in D1, D2 and D1 ◦ D2,
respectively, where ◦ ∈ {×,+, ∗, ·,∨}.

Theorem 1. The l-competition hypergraph CHl(D1 × D2) = (V, E l×) of the Cartesian
product can be obtained from the l-competition hypergraphs CHl(D1) = (V1, E l

1) and
CHl(D2) = (V2, E l

2) of D1 and D2: E l× = {e1 × e2 | e1 ∈ E l
1 ∧ e2 ∈ E l

2}.

Proof. Choose (i, j) ∈ V = V1×V2 such that N−× ((i, j)) �= ∅. Then ∅ �= N−
1 (i) ∈ E l

1
and ∅ �= N−

2 ( j) ∈ E l
2. Obviously, with e1 = N−

1 (i) and e2 = N−
2 ( j) we obtain

N−× ((i, j)) = e1 × e2. On the other hand, for e1 ∈ E l
1 and e2 ∈ E l

2 there are i ∈ V1

and j ∈ V2 such that e1 = N−
1 (i) and e2 = N−

2 ( j), i.e. e1 × e2 = N−× ((i, j)) ∈ E l×.
�

Theorem 2. The l-competition hypergraph CHl(D1 ∨ D2) = (V, E l∨) of the disjunc-
tion can be obtained from the l-competition hypergraphs CHl(D1) = (V1, E l

1) and
CHl(D2) = (V2, E l

2) of D1 and D2, if for each of the following conditions is known
whether it is true or not:

(a) ∃ v2 ∈ V2 : N−
2 (v2) = ∅ and (b) ∃ v1 ∈ V1 : N−

1 (v1) = ∅.

In general, CHl(D1 ∨ D2) cannot be obtained from CHl(D1) and CHl(D2) without
the extra information on points (a) and (b).

Proof. Let e ∈ E l∨. Then there is a vertex (i, j) ∈ V = V1 × V2 such that e =
N−∨ ((i, j)). Considering a vertex (i ′, j ′) ∈ e we obtain i ′ ∈ N−

1 (i) ∈ E l
1 or j ′ ∈ N−

2 ( j)
∈ E l

2.

(Note that in case N−
1 (i) = ∅ we have N−

1 (i) /∈ E l
1; analogously N−

2 ( j) /∈ E l
2 for

N−
2 ( j) = ∅).

Clearly, e = N−∨ ((i, j)) = (N−
1 (i) × V2) ∪ (V1 × N−

2 ( j)).

First, consider N−
1 (i) = ∅.

Because of ∅ �= e ∈ E l∨ we obtain ∅ �= N−
2 ( j) ∈ E l

2 and e = V1 × N−
2 ( j).

Analogously, from N−
2 ( j)=∅ it follows ∅ �= N−

1 (i) ∈ E l
1 and e=N−

1 (i)×V2 ∈ E l∨.

Let A := {e1 × V2 | e1 ∈ E l
1}, B := {V1 × e2 | e2 ∈ E l

2} and C := {(e1 × V2)∪ (V1 ×
e2) | e1 ∈ E l

1 ∧ e2 ∈ E l
2}.

Then (a) is equivalent to A ⊆ E l∨, (b) is equivalent to B ⊆ E l∨ and, finally,
C contains all hyperedges N−∨ ((i, j)) ∈ E l∨ with ∅ �= N−

1 (i) ∈ E l
1 and ∅ �= N−

2 ( j) ∈
E l

2.
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Consequently, every hyperedge of CHl(D1 ∨ D2) is contained in exactly one of
the sets A, B and C, respectively, and therefore the edge set of CHl(D1 ∨ D2) is

E l∨ =

⎧

⎪

⎨

⎪

⎩

A ∪ B ∪ C, if (a) ∧ (b)

A ∪ C, if (a) ∧ ∼ (b)

B ∪ C, if ∼ (a)∧ (b)

C, if ∼ (a)∧ ∼ (b).

�

Proposition 1. In general, CH(D1 + D2) = (V, E+), CH(D1 ∗ D2) = (V, E∗) and
CH(D1 · D2) = (V, E .) cannot be obtained from CHl(D1) and CHl(D2) (less than
ever CHl(D1 ◦ D2), for ◦ ∈ {+, ∗, ·}).

Proof. Consider the digraphs D1 = (V1, A1), D′
1 = (V1, A′

1) and D2 = (V2, A2)

(cf. Fig. 1) with V1 = {1, 2, 3, 4}, V2 = {1, 2, 3}, A1 = {(1, 2), (3, 2), (4, 3)}, A′
1 =

{(1, 4), (3, 4), (4, 2)} and A2 = {(1, 3), (2, 3)}, respectively.
Then E(CHl(D1)) = {{1, 3}, {4}} = E(CHl(D′

1)). On the other hand:

– CH(D1 + D2) � CH(D′
1 + D2) (cf. Fig. 1)

(Note that in CH(D1 + D2) the only hyperedge of cardinality 3, i.e. {(3, 1), (3, 2),

(4, 3)}, is adjacent to the hyperedges {(1, 1), (3, 1)} and {(1, 2), (3, 2)}, but in
CH(D′

1 + D2) the hyperedge {(2, 1), (2, 2), (4, 3)} is not adjacent to other hyper-
edges).

– CH(D1 ∗ D2) � CH(D′
1 ∗ D2) (cf. Fig. 2)

(Note that in CH(D1 ∗ D2) the only hyperedge of cardinality 5, i.e. {(3, 1), (4, 1),

(3, 2), (4, 2), (4, 3)}, is adjacent to three hyperedges of cardinality 2 ({(1, 1),

(3, 1)}, {(1, 2), (3, 2)} and {(4, 1), (4, 2)}), but in CH(D′
1 ∗ D2) the hyperedge

{(2, 1), (4, 1), (2, 2), (4, 2), (4, 3)} is not adjacent to any hyperedge of cardinal-
ity 2).

– CH(D1 · D2) � CH(D′
1 · D2) (cf. Fig. 3)

(Note that in CH(D1 · D2) the only hyperedge of cardinality 5, i.e. {(3, 1), (4, 1),

(3, 2), (4, 2), (4, 3)}, contains a hyperedge of cardinality 2 ({(4, 1), (4, 2)}), but in
CH(D′

1 · D2) the hyperedge {(2, 1), (4, 1), (2, 2), (4, 2), (4, 3)} does not contain
any hyperedge of cardinality 2). �

3. Reconstruction of CH(l)(D1) and CH(l)(D2) from CH(l)(D1 Æ D2)

In the following, for a set e = {{i1, j1}, . . . , {ik, jk}} ⊆ V1 × V2 we define π1(e) :=
{i1, . . . , ik} and π2(e) := { j1, . . . , jk}, respectively, i.e. πi denotes the projection of
vertices of CH(l)(D1 ◦ D2) onto their ith component, for i ∈ {1, 2}.

For the competition hypergraphs (without loops) of D1 = (V1, A1) and D2 =
(V2, A2) and their products D1 ◦ D2 we verify

Theorem 3. For all products D1 ◦ D2 (◦ ∈ {+, ∗, ·,∨}) the competition hypergraphs
CH(D1) and CH(D2) can be obtained from CH(D1 ◦ D2).
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Fig. 1.

Fig. 2.
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CH(D1 · D2) :

1

1

3

2

2

3

4

1

1

2

2

3

3

4

CH(D1 · D2) :

Fig. 3.

For the Cartesian product D1 × D2 this is true by using the extra assumption A1 =
A2 = ∅ or A1 �= ∅ �= A2.

Extending the proof of the Theorem it can be shown

Proposition 2. An analogous proposition holds for CHl(D1), CHl(D2) and CHl(D1 ◦
D2)(◦ ∈ {×, ∗, ·,∨}).

For the Cartesian sum D1 + D2 this is true by using the extra assumption
(1) E l+ = ∅ or
(2) (∀e ∈ E l+ : |π1(e)| = 1) ∧ (∃ e ∈ E l+ : |π2(e)| ≥ 2) or
(3) (∀e ∈ E l+ : |π2(e)| = 1) ∧ (∃ e ∈ E l+ : |π1(e)| ≥ 2) or
(4) ∃ e ∈ E l+ : |π1(e)| ≥ 3 ∧ |π2(e)| ≥ 3.

Now we prove Theorem 3 and Proposition 2 for each ◦ ∈ {×,+, ∗, ·,∨} in the
subsections 3.1 to 3.5.

3.1. The Cartesian Product D1 × D2

Let D1 = (V1, A1) and D2 = (V2, A2) fulfill either A1 = A2 = ∅ or A1 �= ∅ �= A2.
Obviously, if the arcsets of D1 and D2 are empty, then E(CH(D1 × D2)) = ∅ as

well as E(CHl(D1 × D2)) = ∅. Consequently, let A1 �= ∅ �= A2.

Proof (Proposition 2). We construct CHl(D1) = (V1, E l
1) and CHl(D2) = (V2, E l

2)

from CHl(D1 × D2) = (V, E l×).
For each e = {{i1, j1}, . . . , {ik, jk}} ∈ E l× there exist i ∈ V1 and j ∈ V2 such that

N−
1 (i) = π1(e) = {i1, . . . , ik} ∈ E l

1 and N−
2 ( j) = π2(e) = { j1, . . . , jk} ∈ E l

2. (Obvi-
ously, neither i1, . . . , ik nor j1, . . . , jk have to be pairwise distinct. Moreover, note
that in general the vertices i and j are not uniquely determined by CHl(D1 × D2).)

Since A1 �= ∅ �= A2 every e1 ∈ E l
1 and every e2 ∈ E l

2 appears as π1(e) and
π2(e) of some e ∈ E l×, respectively. Consequently, E l

1 = {π1(e) | e ∈ E l×} and E l
2 =

{π2(e) | e ∈ E l×}. �
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From the above note concerning i ∈ V1 and j ∈ V2 it follows

Proposition 3. In general, from CHl(D1 × D2) the digraphs D1 and D2 cannot be
obtained.

Proof (Theorem 3). The restriction of E l
1 and E l

2 to sets π1(e) and π2(e) of cardinal-
ity greater than 1 proves the Theorem, since hyperedges e ∈ E l×\E×, i.e. hyperedges
of CHl(D1 × D2) of cardinality 1, are trivially not needed. �

3.2. The Cartesian Sum D1 + D2

At first we consider the Theorem, i.e. competition hypergraphs without loops.

Proof (Theorem 3). Since every hyperedge e ∈ E+ is the set of all predecessors
N−+ ((i, j)) of a vertex (i, j) ∈ V1 × V2, we have e = {{i, j1}, . . . , {i, jk}, {i1, j}, . . . ,
{il , j}}, where i, i1, . . . , il as well as j, j1, . . . , jk are pairwise distinct. Therefore, if
l ≥ 2 then π1(e)\{i} = {i1, . . . , il} = N−

1 (i) ∈ E1 and if k ≥ 2 then π2(e)\{ j} =
{ j1, . . . , jk} = N−

2 ( j) ∈ E2.
The question arises, whether or not the vertices i ∈ π1(e) and j ∈ π2(e) are

uniquely determined? (Note that in some cases this determination will not be nec-
essary).

(a) |π1(e)| = 1.

Then l = 0, π1(e) = {i}, N−
1 (i) = ∅, k ≥ 2 and π2(e) = { j1, . . . , jk} = N−

2 ( j) ∈
E2 with an (unknown) j ∈ V2\{ j1, . . . , jk}.

(b) |π2(e)| = 1.

Then k = 0, π2(e) = { j}, N−
2 ( j) = ∅, l ≥ 2 and π1(e) = {i1, . . . , il} = N−

1 (i) ∈
E1 with an (unknown) i ∈ V1\{i1, . . . , il}.

(c) |π1(e)| ≥ 2 ∧ |π2(e)| ≥ 2.

(c1) |e| = 2.

Because of e = {(a, b), (a′, b′)} with a �= a′ and b �= b′ there are two
possibilities: e = N−+ ((a, b′)) or e = N−+ ((a′, b)). Since all hyperedges in
competition hypergraphs without loops contain at least two vertices, it
follows N−

1 (a) = {a′} /∈ E1 ∧ N−
2 (b′) = {b} /∈ E2 or N−

1 (a′) = {a} /∈
E1 ∧ N−

2 (b) = {b′} /∈ E2.
Therefore, from case (c1) there result no hyperedges ofCH(D1)andCH(D2),
respectively.

(c2) |e| ≥ 3.

Since e = {{i, j1}, . . . , {i, jk}, {i1, j}, . . . , {il , j}}, we obtain k ≥ 2 or l ≥ 2,
i.e. at least two vertices in e have the same first or second components.
In the case k ≥ 2 let i be the first component which appears in several
vertices of e. Then π1(e)\{i} = {i1, . . . , il} = N−

1 (i) �= ∅ and for l ≥ 2
obviously π1(e)\{i} ∈ E1. Deleting the second component j of the verti-
ces (i1, j), . . . , (il , j) ∈ e in π2(e), we obtain π2(e)\{ j} = { j1, . . . , jk} =
N−

2 ( j) ∈ E2.
The case k = 1 ∧ l ≥ 2 can be considered analogously.
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Fig. 4.

Evidently, this way we obtain all hyperedges of CH(D1) and CH(D2), respec-
tively, and the Theorem holds for the Cartesian sum. �

Before verifying the Proposition, we give some examples explaining the use of
the additional suppositions (1)–(4).

Note that E+ �= ∅ is equivalent to ∃ e ∈ E l+ : |e| ≥ 2 as well as to ∼ (∀e ∈ E l+ :
|π1(e)| = |π2(e)| = 1).

In general, in the case E l+ �= ∅ ∧ E+ = ∅ the determination of CHl(D1) and
CHl(D2) from CHl(D1 + D2) is impossible:

Let D1 := C2, D2 := ({1, 2, 3},∅) and D′
1 := ({1, 2},∅), D′

2 := C3 (cf. Fig. 4;
the (very simple) l-competition hypergraphs are omitted).

Obviously, E l(D1 + D2) = E l(D′
1 + D′

2) = {{v} | v ∈ V1 × V2}.
On the other hand we have E l(D1) = {{1}, {2}} �= ∅ = E l(D′

1) and E l(D2) =
∅ �= {{1}, {2}, {3}} = E l(D′

2).
The next example shows digraphs D1, D2 with E+ �= ∅ and D′

2 such that
CHl(D1 + D2) = CHl(D1 + D′

2) but CHl(D2) � CHl(D′
2) (cf. Fig. 5):

Let D1 := C2, D2 := (V2 = {1, 2, 3, 4}, A2 = {(1, 2), (3, 4), (4, 3), (4, 1)})
and D′

2 := (V ′
2 = {1, 2, 3, 4}, A′

2 = {(1, 2), (1, 4), (4, 3), (4, 1)}). Then D2 � D′
2,

CHl(D2) � CHl(D′
2), D1 + D2 � D1 + D′

2, but CHl(D1 + D2) = CHl(D1 + D′
2).

Note that for E l+ none of the conditions (1)–(4) is valid, since |π1(e)| = |π2(e)| = 2
for all e ∈ E l+.

Proof (Proposition 2).
Case 1: E l+ = ∅.

Obviously, A(D1 + D2) = ∅ = A(D1) = A(D2) = E l(D1) = E l(D2).
(Note that the analogous implication E l◦ = ∅ ⇒ A(D1 ◦ D2) = ∅ = . . . holds

for all ◦ ∈ {+, ∗, ·,∨}.)
Case 2: (∀e ∈ E l+ : |π1(e)| = 1) ∧ (∃ e ∈ E l+ : |π2(e)| ≥ 2).

Let e ∈ E l+ with |π2(e)| ≥ 2, i.e. e = {(i, j1), . . . , (i, jk)} = N−+ ((i, j)) with k ≥ 2
and suitable i ∈ V1, j ∈ V2 and j1, . . . , jk ∈ V2. Then N−

2 ( j) = { j1, . . . , jk} = π2(e).
(Note that for given e ∈ E l+ in general the determination of the vertex j will be impos-
sible. This implies that the digraph D2 = (V2, A2) itself cannot be obtained from
CHl(D1 + D2)).



Competition Hypergraphs of Products of Digraphs 619

Fig. 5.

The assumption ∃ i ′ ∈ V1 ∃ l ≥ 1 ∃ i ′1, . . . , i ′l : N−
1 (i ′) = {i ′1, . . . , i ′l } �= ∅ would

lead to e′ = N−+ ((i ′, j)) = {(i ′1, j), . . . , (i ′l , j), (i ′, j1), . . . , (i ′, jk)} with |π1(e′)| ≥ 2,
a contradiction.

Therefore, E l
1 = ∅ and E l

2 = {π2(e) | e ∈ E l+}.
Case 3: (∀e ∈ E l+ : |π2(e)| = 1) ∧ (∃ e ∈ E l+ : |π1(e)| ≥ 2).

This can be treated analogously to Case 2.

Case 4: ∃ e ∈ E l+ : |π1(e)| ≥ 3 ∧ |π2(e)| ≥ 3.
Let e be such a hyperedge, i ∈ V1 with |{(i, j ′) | j ′ ∈ V2} ∩ e| ≥ 2 and j ∈ V2

with |{(i ′, j) | i ′ ∈ V1} ∩ e| ≥ 2.
Then e = N−+ ((i, j)) and therefore N−

1 (i)= {i1, . . . , il} = π1(e)\{i} and N−
2 ( j) =

{ j1, . . . , jk} = π2(e)\{ j}.
For each x ∈ V1 let ex := {(x, j1), . . . , (x, jk), (x1, j), . . . , (xlx , j)} ∈ E l+ with

lx ≥ 0. Obviously, ex = N−+ ((x, j)) and N−
1 (x) = {x1, . . . , xlx } = π1(ex )\{x}. This

way we obtain D1 = (V1, A1) as well as E l
1 = {N−

1 (x) | x ∈ V1 ∧ N−
1 (x) �= ∅}.

Analogously, for each y ∈ V2 let ey := {(i1, y), . . . , (il , y), (i, y1), . . . , (i, yky )} ∈
E l+ with ky ≥ 0. Then ey = N−+ ((i, y)) and N−

2 (y) = {y1, . . . , yky } = π2(ey)\{y}.
�

From Cases 1 and 4 of the above proof it follows:

Corollary 1. If (1) or (4) is valid, then from CHl(D1 + D2) the digraphs D1 and D2
themselves can be obtained.

3.3. The Normal Product D1 ∗ D2

In case of the normal product we can strengthen Theorem 3 and Proposition 2 to
the following
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Corollary 2. Suppose there is an e ∈ E∗ with |π1(e)| ≥ 2 ∧ |π2(e)| ≥ 2. (This is
equivalent to A1 �= ∅ ∧ A2 �= ∅.) Then from CH(D1 ∗ D2) the digraphs D1 and D2
themselves and, therefore, the l-competition hypergraphs CHl(D1) and CHl(D2) can
be obtained.

Proof (Theorem 3, Proposition 2 and Corollary 2).
Case 1: A1 = ∅ ∨ A2 = ∅.

We show how to obtain the hyperedges of CH(D1), CH(D2), CHl(D1) and
CHl(D2), since only Theorem 3 and Proposition 2 have to be verified in Case 1. Be-
cause of A1 = ∅ or A2 = ∅ obviously ∀e ∈ E∗ : |π1(e)| = 1 or ∀e ∈ E∗ : |π2(e)| = 1
is valid.

If ∀e ∈ E∗ : |π1(e)| = 1, then E1 = ∅ and E2 = {π2(e) | e ∈ E∗}; the analogue
holds in the situation ∀e ∈ E∗ : |π2(e)| = 1 as well as for E l∗, E l

1, E l
2 instead of

E∗, E1, E2. (Obviously, this includes E1 = E2 = ∅ and E l
1 = E l

2 = ∅ if E∗ = ∅ and
E l∗ = ∅, respectively.)

Case 2: A1 �= ∅ ∧ A2 �= ∅.
It suffices to demonstrate Corollary 2.
Let e = {(i, j1), . . . , (i, jk), (i1, j), . . . , (il , j), (i1, j1), (i1, j2), . . . , (i1, jk), . . . ,

(il , j1), (il , j2), . . . , (il , jk)} ∈ E∗ with |π1(e)| ≥ 2 ∧ |π2(e)| ≥ 2.

(a) Because of l = |π1(e)|− 1 ≥ 1 and k = |π2(e)|− 1 ≥ 1, the vertices i ∈ V1 and
j ∈ V2 with N−∗ ((i, j)) = e can be identified as the only vertices which occur
exactly k and l times in π1(e) and π2(e), respectively.
Moreover, π1(e)\{i} = {i1, . . . , il} = N−

1 (i) and π2(e)\{ j} = { j1, . . . , jk} =
N−

2 ( j).
(b) Obviously, for every x ∈ V1 with N−

1 (x) �= ∅ in N−∗ ((x, j)) there are at least 3
vertices: (x, j1), (x ′, j), (x ′, j1), where x ′ ∈ N−

1 (x). Therefore N−∗ ((x, j)) ∈ E∗.
Analogously, for each y ∈ V2 with N−

2 (y) �= ∅ we get N−∗ ((i, y)) ∈ E∗.
(c) Note that if x ∈ V1 with N−

1 (x) = ∅, then N−∗ ((x, j)) = {(x, j1), . . . , (x, jk)};
i.e. N−∗ ((x, j)) ∈ E∗ if and only if k ≥ 2.
Analogously, for every y ∈ V2 with N2(y) = ∅ it follows N−∗ ((i, y)) ∈ E∗ if and
only if l ≥ 2.

Because of (b), for all vertices of D1 and D2, respectively, with positive inde-
gree we get their sets of predecessors applying the procedure described in (a) to all
hyperedges e ∈ E∗ with |π1(e)| ≥ 2 and |π2(e)| ≥ 2. (In general, for a vertex v1 ∈ V1
and v2 ∈ V2, respectively, with positive indegree, procedure (a) will produce its set of
predecessors more than once.) Trivially, each vertex for which (a) does not provide
a set of predecessors has indegree 0 (cf. (c)).

Thus we obtain the digraphs D1 and D2 and – of course – their l-competition
hypergraphs CHl(D1) and CHl(D2).

Note that we did not need hyperedges e ∈ E l∗\E∗, i.e. hyperedges of cardinality
1. �

3.4. The Lexicographic Product D1 · D2

At first we discuss which types of hyperedges can occur in CHl(D1 · D2):
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(a) e = e1 × V2 with e1 ∈ E l
1.

Such hyperedges exist if and only if there is a vertex j ∈ V2 with N−
2 ( j) = ∅:

choosing a vertex i ∈ V1 with π1(e) = N−
1 (i) = e1 ⊂ V1 we get e = N .−((i, j)).

Therefore, each j ∈ V2 appears exactly d−
1 (i) = |e1|-times as second compo-

nent of a vertex in e. (Note that in general the vertex i ∈ V1\e1 as well as j ∈ V2
is not uniquely determined by e or e1.)

(b) e = {i} × e2 with e2 ∈ E l
2.

Obviously, in this case the vertex i ∈ V1 has N−
1 (i) = ∅. If j ∈ V2 and e2 =

N−
2 ( j) = π2(e) ⊂ V2, then e = N .−((i, j)) and |e| = |e2| = |N−

2 ( j)| = d−
2 ( j).

(Also in this case in general the vertex j ∈ V2\e2 is not uniquely determined
by e or e2.)

(c) e = (e1 × V2) ∪ ({i} × e2) with e1 ∈ E l
1, e2 ∈ E l

2.
Again, i ∈ V1 has N−

1 (i) = e1 and e2 = N−
2 ( j) for a certain (in general

unknown) vertex j ∈ V2\e2, i.e. e = N .−((i, j)). But in contrast to (a) and (b)
now we have e1 = N−

1 (i) ⊂ π1(e) = N−
1 (i) ∪ {i} and e2 = N−

2 ( j) ⊂ π2(e) =
V2.

Proof (Proposition 2). In case of E .l = ∅ both E l
1 and E l

2 are empty, too (therefore
D1 = (V1,∅) as well as D2 = (V2,∅)).

So let E .l �= ∅ and for an arbitrary hyperedge e ∈ E .l and i ∈ π1(e) we introduce
the notation π i

2(e) := { j | (i, j) ∈ e}. Now let

A := {e∈E .l | ∀i ∈π1(e) : π i
2(e)=V2},B :={e∈E .l | ∀i ∈π1(e) : π i

2(e) ⊂ V2} and

C := {e ∈ E .l | (∃ i ∈ π1(e) : π i
2(e) = V2) ∧ (∃ i ′ ∈ π1(e) : π i ′

2 (e) ⊂ V2)}.
Then A, B and C contain exactly the type (a), (b) and (c) hyperedges, respectively.
Consequently, the edge set E l

1 of CHl
1 consists of all hyperedges

e1 := {i ∈ V1 | π i
2(e) = V2},

where e ∈ A ∪ C.

(If A �= ∅, i.e. ∃ j ∈ V2 : N−
2 ( j) = ∅, E l

1 can be obtained simply by E l
1 =

{π1(e) | e ∈ A}.)
Obviously, each type (b) hyperedge e ∈ B fulfils |π1(e)| = 1. So we obtain

B = {e ∈ E .l | π2(e) ⊂ V2}. If B �= ∅, i.e. ∃ i ∈ V1 : N−
1 (i) = ∅, we get E l

2 by
E l

2 = {π2(e) | e ∈ B}. Otherwise, if B = C = ∅ then E l
2 = ∅ and if B = ∅ �= C, then

for every type (c) hyperedge e ∈ C there is exactly one i e ∈ V1 such that π i e

2 (e) =
{ j | (i e, j) ∈ e} ⊂ V2. (Note that e = N .−((i e, j ′)) with a certain j ′ ∈ V2\π i e

2 (e).)
Using this notation, we obtain E l

2 = {π i e

2 (e) | e ∈ C}. �

Proof (Theorem 3). Hyperedges e ∈ E .l of cardinality 1 can be omitted because
they lead only to hyperedges of cardinality 1 of CHl(D1) and CHl(D2) which do
not occur in CH(D1) and CH(D2), respectively. �

Corollary 3. (1) If |V2| ≥ 2 and B = ∅ (this is equivalent to ∀ i ∈ V1 : N−
1 (i) �= ∅),

then the l-competition hypergraphs CHl(D1) and CHl(D2) can be obtained from
CH(D1 · D2).
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(2) If there are ẽ ∈ E . and k ∈ V1 with ∅ �= πk
2 (̃e) ⊂ V2, then D1 = (V1, A1) can be

obtained from CH(D1 · D2).

Proof. (1) In CHl(D1 · D2) there are no hyperedges of cardinality 1: this follows
from |V2| ≥ 2 for hyperedges of type (a); since B = ∅, no hyperedges of type (b)
exist and, evidently, hyperedges of type (c) have at least cardinality |V2|+1 ≥ 3.
Hence CH(D1 · D2) = CHl(D1 · D2) and (1) follows from Proposition 2.

(2) Let i ∈ V1. If ∃ e′ ∈ E . : π1(e′) = {i} ∧ π2(e′) ⊂ V2, then this hyperedge e′ is
of type (b): e′ ∈ B. Consequently, N−

1 (i) = ∅.
On the other hand, let ∀ e′ ∈ E . : π1(e′) �= {i} ∨ π2(e′) = V2. The existence
of ẽ ∈ E . and k ∈ V1 with ∅ �= πk

2 (̃e) ⊂ V2 provides e2 := πk
2 (̃e) ∈ E l

2. This
implies ∅ �= N−

1 (i) = e1 ∈ E l
1 and therefore there exists a hyperedge e of type

(c) of the form e = (e1 × V2) ∪ ({i} × e2) in CH(D1 · D2).
e is uniquely determined by π i

2(e) = e2, because e2 is known. Finally, N−
1 (i) =

π1(e)\{i}.
Consequently, the arc set A1 and the digraph D1 = (V1, A1) can be obtained.

�

3.5. The Disjunction D1 ∨ D2

Again we find three types of hyperedges in CHl(D1 ∨ D2):

(a) e = e1 × V2 with e1 ∈ E l
1.

The comments to type (a) hyperedges of the lexicographic product can be taken
over word-for-word.

(b) e = V1 × e2 with e2 ∈ E l
2.

In CHl(D1 ∨ D2) there are such hyperedges if and only if an i ∈ V1 exists
with N−

1 (i) = ∅. Obviously, if e = V1 × e2 then there is a j ∈ V2 with π2(e) =
N−

2 ( j) = e2 ⊂ V2 and we have e = N−∨ ((i, j)). Therefore, each i ∈ V1 appears
exactly d−

2 ( j) = |e2|-times as first component of a vertex of e. (Note that in
general neither the vertex i ∈ V1 nor j ∈ V2\e2 is uniquely determined by e or
e2.)

(c) e = (e1 × V2) ∪ (V1 × e2) with e1 ∈ E l
1, e2 ∈ E l

2.
Obviously, N−

1 (i) = e1 ⊂ V1 and e2 = N−
2 ( j) ⊂ V2 for certain (in general

unknown) vertices i ∈ V1\e1 and j ∈ V2\e2, respectively; i.e. e = N−∨ ((i, j)).
In contrast to (a) and (b) now we have e1 = N−

1 (i) ⊂ π1(e) = V1 and e2 =
N−

2 ( j) ⊂ π2(e) = V2.

Proof (Proposition 2). In case of E l∨ = ∅ both E l
1 and E l

2 are empty, too.
So let E l∨ �= ∅. Additionally to the notation π i

2(e) (cf. 3.4, for the disjunction
instead of the lexicographic product) for an arbitrary hyperedge e ∈ E l∨ and j ∈
π2(e) we define π

j
1 (e) := {i | (i, j) ∈ e}. Let

A := {e ∈ E l∨ | π1(e) ⊂ V1}, B := {e ∈ E l∨ | π2(e) ⊂ V2} and

C := {e ∈ E l∨ | π1(e) = V1 ∧ π2(e) = V2}.
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CHl(D1 ∨ D2) = CHl(D1 ∨ D2) :

1

1 2

2

3

3

4

Fig. 6.

Then A, B and C contain exactly the type (a), (b) and (c) hyperedges, respectively,
and

A = C = ∅ if and only if A1 = ∅ = E l
1 and E l

2 = {π2(e) | e ∈ E l∨};
B = C = ∅ if and only if A2 = ∅ = E l

2 and E l
1 = {π1(e) | e ∈ E l∨};

C �= ∅ if and only if A1 �= ∅ �= A2.
It remains to investigate the case C �= ∅. Obviously, to determine E l

1 and E l
2 it

suffices to make use of the type (c) hyperedges (in C):

E l
1 = { {i ∈ V1 | π i

2(e) = V2} | e ∈ C} and E l
2 = { { j ∈ V2 | π j

1 (e) = V1} | e ∈ C}.
(Note that in case A �= ∅ we have E l

1 = {π1(e) | e ∈ A} and, analogously, if
B �= ∅ it follows E l

2 = {π2(e) | e ∈ B}.) �

Proof (Theorem 3). Replacing E l
1, E l

2 and E l∨ by E1, E2 and E∨, respectively, the
above proof can be taken over word-for-word. �

If |V1|, |V2| ≥ 2 then there are no hyperedges of cardinality 1 in E l∨, i.e. CH(D1 ∨
D2) = CHl(D1 ∨ D2). Hence Proposition 2 and Theorem 3 can be strengthened to

Corollary 4. If |V1|, |V2| ≥ 2 then the l-competition hypergraphs CHl(D1) and CHl

(D2) can be obtained from CH(D1 ∨ D2).

Proposition 4. In general, it is impossible to obtain the digraphs D1 = (V1, A1) and
D2 = (V2, A2) from CHl(D1 ∨ D2).

To prove Proposition 4, we consider the same digraphs used for the verifica-
tion of Proposition 1, i.e. D1 = (V1, A1), D′

1 = (V1, A′
1) and D2 = (V2, A2) with

V1 = {1, 2, 3, 4}, V2 = {1, 2, 3}, A1 = {(1, 2), (3, 2), (4, 3)}, A′
1 = {(1, 4), (3, 4),

(4, 2)} and A2 = {(1, 3), (2, 3)}, respectively (cf. Fig. 1).

Obviously, D1 � D′
1 but CHl(D1 ∨ D2) = CHl(D′

1 ∨ D2) (cf. Fig. 6), since
E(CHl(D1 ∨ D2)) = E(CHl(D′

1 ∨ D2)) consists of the same hyperedges, namely:



624 M. Sonntag, H.-M. Teichert

N−∨ ((1, 3)) = N−∨ ((4, 3)) = N−
∨′((1, 3)) = N−

∨′((3, 3))

= {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)},
N−∨ ((2, 1)) = N−∨ ((2, 2)) = N−

∨′((4, 1)) = N−
∨′((4, 2))

= {(1, 1), (1, 2), (1, 3), (3, 1), (3, 2), (3, 3)},
N−∨ ((2, 3)) = N−

∨′((4, 3))

= {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2)},
N−∨ ((3, 1)) = N−∨ ((3, 2)) = N−

∨′((2, 1)) = N−
∨′((2, 2))

= {(4, 1), (4, 2), (4, 3)},
N−∨ ((3, 3)) = N−

∨′((2, 3))={(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},
where N−

∨′((i, j)) := N−
D′

1∨D2
((i, j)), for (i, j) ∈ V1 × V2.
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