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Abstract. Let I' denote a Q-polynomial distance-regular graph with diameter at least three
and standard module V. We introduce two direct sum decompositions of V. We call these
the displacement decomposition for I' and the sp/it decomposition for I'. We describe how
these decompositions are related.
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1. Introduction

In this paper I' = (X,R) will denote a Q-polynomial distance-regular graph
with diameter D > 3 and adjacency matrix 4 (see Section 2 for formal defi-
nitions). In order to describe our main results we make a few comments. Fix a
vertex x € X. For 0<i<D let Ef =E(x) denote the diagonal matrix in
MatyC that represents the projection onto the ith subconstituent of I with
respect to x. Let Ey, Ey,...,Ep denote a Q-polynomial ordering of the primitive
idempotents for 4 and let 4* = A*(x) denote the corresponding dual adjacency
matrix. The subconstituent algebra T = T(x) is the subalgebra of MatyC gen-
erated by 4 and A*. Let W denote an irreducible 7-module. By the displace-
ment of W we mean p+t+d—D, where p=min{ilEIW #0},
v =min{i|E;W # 0}, d = |{i|E;W # 0}| — 1. We show the displacement of W is
nonnegative and at most D. Let ¥ = C* denote the standard module. We show
V:Z;):OV,7 (orthogonal direct sum), where F, denotes the subspace of V
spanned by the irreducible 7-modules that have displacement #. This is the
displacement decomposition with respect to x. For —1 <i j<D we define
Vi=(EV + - +EV)N(EV +--+E¥V). We show V=37,57V; (di-
rect sum), where V;; denotes the orthogonal complement of V;;_; + Vi_;; in Vj;
with respect to the Hermitean dot product. This direct sum is the split
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decomposition with respect to x. The above decompositions are related as
follows. For 0 <n < D we show V, = I7ij, where the sum is over all ordered
pairs i,j such that 0 <i,; <D and i+ j=D+#n. Using this we obtain the
following results. For 0 <i,j <D we show V;;=01if i+j<D. For 0<i<D
let 0; (resp. 07) denote the eigenvalue of A4 (resp. 4*) for E; (resp. E}). For
0 <i,j <D we show (4 — 0j1)17,j C 17,417,;1 and (4* — 071) I7ij - 17,;1#1, where
V,s =0 unless r,s € {0,1,...,D}. We finish with an application related to the
work of Brouwer, Godsil, Koolen and Martin [4] concerning the dual width of
a subset of X.

2. Preliminaries Concerning Distance-regular Graphs

In this section we review some definitions and basic concepts concerning distance-
regular graphs. For more background information we refer the reader to [1], [3],
[19] and [29].

Let C denote the complex number field. Let X denote a nonempty finite set.
Let MatyC denote the C-algebra consisting of all matrices whose rows and col-
umns are indexed by X and whose entries are in C. Let ¥ = C¥ denote the vector
space over C consisting of column vectors whose coordinates are indexed by X
and whose entries are in C. We observe MatyC acts on V' by left multiplication.
We call V' the standard module. We endow V' with the Hermitean inner product (, )
that satisfies (u,v) = 4’ for u,v € V, where ¢ denotes transpose and ~ denotes
complex conjugation. For all y € X let y denote the element of  with a 1 in the y
coordinate and 0 in all other coordinates. We observe {y | y € X} is an ortho-
normal basis for V.

Let I' = (X, R) denote a finite, undirected, connected graph, without loops or
multiple edges, with vertex set X and edge set R. Let d denote the path-length
distance function for I', and set D = max{J(x,y) | x,y € X}. We call D the
diameter of T'. We say I is distance-regular whenever for all integers
h,i,j (0 < h,i,j < D) and for all vertices x,y € X with d(x,y) = h, the number

pli=NHzeX | 0(x,2) =i,0(z,y) = j}|

is independent of x and y. The pZ— are called the intersection numbers of T'.
For the rest of this paper we assume I is distance-regular with diameter D > 3.
We recall the Bose-Mesner algebra of I'. For 0 < i < D let 4; denote the matrix
in MatyC with xy entry

(1, if (k) =i
Mf)xy‘{o, ifa(i,i)%

We call 4; the ith distance matrix of I'. We abbreviate 4 = 4, and call this the
adjacency matrix of T. We observe (1) Ao =1; (i) ZiD:OA,» =J; (i)
A =4; (0<i<D); (iv) A =4; (0 < i < D); (V) Aid; = Yo Py (0 < i, j < D),

(x,y € X).
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where I (resp. J) denotes the identity matrix (resp. all 1’s matrix) in MatyC. Using
these facts we find 4g,4;,...,4Ap is a basis for a commutative subalgebra M
of MatyC. We call M the Bose-Mesner algebra of T'. It turns out 4 generates M [1,
p- 190]. By [3, p. 45], M has a second basis Ey, Ey, ..., Ep such that (i) Ey = |X|71J;
() N2 E=I (i) E=FE@0<i<D) (v) E=FE(©0<i<D) (v)
EE; = 0;E; (0 <1i,j <D). Wecall Ey,E\, ..., Ep the primitive idempotents of T

We recall the eigenvalues of I'. Since Ey, E}, ..., Ep form a basis for M there
exist complex scalars 0y,0i,...,0p such that A= Zf): o OiE;.  Observe
AE; = E;A = OE; for 0 <i < D. By [1, p. 197] the scalars 0y, 0,,...,0p are in R.
Observe 0y, 0, ...,0p are mutually distinct since 4 generates M. We call 0; the
eigenvalue of T associated with E; (0 <i < D). Observe

V=EW+EV+---+EpV (orthogonal direct sum).

For 0 < i < D the space E;V is the eigenspace of 4 associated with 6;.

We now recall the Krein parameters. Let o denote the entrywise product in
MatyC. Observe 4;04; = 6;4; for 0 <i,j <D, so M is closed under o. Thus
there exist complex scalars qu (0 < h,i,j < D) such that

D
EioE; =Xy qliEy  (0<ij<D)
h=0

By [2, p. 170], qf’j is real and nonnegative for 0 < 4,i,j < D. The qf'j are called the
Krein parameters. The graph I' is said to be Q-polynomial (with respect to the
given ordering Ey,E,...,Ep of the primitive idempotents) whenever for
0<hi,j<D, qf.; =0 (resp. qf.} = () whenever one of A,i,j is greater than (resp.
equal to) the sum of the other two [3, p. 59]. See [1, 4, 5, 6, 9, 10, 14, 15, 23, 24] for
more information on the Q-polynomial property. From now on assume I' is Q-
polynomial with respect to Ey, Ey,...,Ep.

We recall the dual Bose-Mesner algebra of T'. Fix a vertex x € X. We call x the
base vertex. For 0 <i < D let Ef = E}(x) denote the diagonal matrix in MatyC
with yy entry

@, ={o ol s ex. 1)

We call £} the ith dual idempotent of I" with respect to x [29, p. 378]. We observe
() SPoE =1 (i) E=E (0<i<D); (i) E'=E (0<i<D); (iv)
E{E; = 6;E; (0 <i,j<D). By these facts Ej,E7,...,E;, form a basis for a
commutative subalgebra M* = M*(x) of MatyC. We call M* the dual Bose-
Mesner algebra of T with respect to x [29, p. 378]. For 0 <i < D let 47 = Af(x)
denote the diagonal matrix in MatyC with yy entry (4;),, = [X|[(E;),, for y € X.
Then A4j,47,...,4} is a basis for M* [p. 379,29]. Moreover (i) 4;=1; (ii)
L =4 (0<i<D); (i) 4'=d (0<i<D); (v) A4 =17 4}4;
(0<i,j<D)[29, p. 379]. We call A}, 45,...,4} the dual distance matrices of T
with respect to x. We abbreviate 4* = A} and call this the dual adjacency matrix of
I" with respect to x. The matrix 4* generates M* [29, Lemma 3.11].
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We recall the dual eigenvalues of I'. Since Ej, E7,. .., E}, form a basis for M*,
there exist complex scalars 0}, 0;,...,0; such that 4* =32 07E;. Observe
A*E; = EfA* = 0;Ef for 0 <i < D. By [29, Lemma 3.11] the scalars 0;,0;,...,0),
are in R. The scalars 0, 07, . . ., 0}, are mutually distinct since A* generates M*. We
call 0} the dual eigenvalue of T associated with Ef (0 <i < D).

We recall the subconstituents of I'. From (1) we find

EV=span{y|y€X, Oxy)=i} (0<i<D). (2)
By (2) and since {y | y € X} is an orthonormal basis for ¥ we find
V=EV+EV+---+E)V (orthogonal direct sum) .

For 0 <i < D the space E;V is the eigenspace of A* associated with 07. We call
E}V the ith subconstituent of I' with respect to x.

We recall the subconstituent algebra of I'. Let 7 = T'(x) denote the subalgebra
of MatyC generated by M and M*. We call T the subconstituent algebra (or
Terwilliger algebra) of T" with respect to x [Definition 3.3, 29]. We observe T is
generated by 4 and 4*. We observe T has finite dimension. Moreover T is semi-
simple since it is closed under the conjugate transponse map [12, p. 157]. See [7, 8,
11, 16, 17, 18, 20, 26, 29, 30, 31] for more information on the subconstituent
algebra.

For the rest of this paper we adopt the following notational convention.

Definition 2.1. We assume I = (X,R) is a distance-regular graph with diameter
D > 3. We assume T is Q-polynomial with respect to the ordering Ey,E\,...,Ep of
the primitive idempotents. We fix x € X and write A* = A*(x), E; =E!(x)
(0<i<D), T=T(x). We abbreviate V = C*. For notational convenience we
define E_1 =0, Epy1 =0 and E* | =0, E;, | = 0.

We have some comments.

Lemma 2.2 [29, Lemma 3.2]. With reference to Definition 2.1, the following (i),
(ii) hold.

(i) AE[V CE.\V+EV+E;,V (0<i<D).

(i) A*E;V CE\V+EV +EiV (0<i<D).

Lemma 2.3. With reference to Definition 2.1, the following (i)—(iv) hold.

(i) AX o EV €L EY (0<i< D).
(ii) (A—=00)Y g EnV =Y g ExV (0 <i<D).
(iii) A" Yo ExV € 30 EaV (0 <i < D).
(iv) (A" =61) Y BV = S0 EjV (0<i < D).
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Proof. (i) Immediate from Lemma 2.2(i).

(i) Recall AE; = 0,E; for 0 < j < D.

(iii) Immediate from Lemma 2.2(ii).

(iv) Recall 4°E; = 0;E; for 0 < j < D. O

3. The Irreducible 7-Modules

In this section we recall some results on 7-modules for later use.

With reference to Definition 2.1, by a T-module we mean a subspace W C V'
such that BW C W for all B € T. Let W denote a T-module. Then W is said to be
irreducible whenever W is nonzero and W contains no T-modules other than 0 and
W. Let W, W' denote T-modules. By an isomorphism of T-modules from W to W’
we mean an isomorphism of vector spaces g : W — W’ such that (6B — Ba)W =0
for all B € T. The modules W, W’ are said to be isomorphic as T-modules whenever
there exists an isomorphism of T-modules from W to #’. Any two nonisomorphic
irreducible 7-modules are orthogonal [7, Lemma 3.3].

Let W denote a T-module and let W’ denote a T-module contained in W. Then
the orthogonal complement of W’ in W is a T-module [p. 802,18]. It follows that
each 7-module is an orthogonal direct sum of irreducible 7-modules. In particular
V' is an orthogonal direct sum of irreducible T-modules.

Let W denote an irreducible 7-module. By the endpoint of W we mean
min{il0 <i <D, EfW # 0}. By the diameter of W we mean [{il0 <i<D,
E;W # 0}| — 1. By the dual endpoint of W we mean min{i|0 <i < D, E;W # 0}.
By the dual diameter of W we mean |{i|0 <i < D, E;W # 0}| — 1. The diameter of
W is equal to the dual diameter of W [Corollary 3.3,23]. There exists a unique
irreducible T-module with diameter D. We call this module the primary T-module.
The primary T-module has basis 4y, ..., 4px [29, Lemma 3.6].

Lemma 3.1 [29, Lemmas 3.4, 3.9, 3.12]. With reference to Definition 2.1, let W
denote an irreducible T-module with endpoint p, dual endpoint ©, and diameter d.

Then p,t,d are nonnegative integers such that p +d < D and t 4+ d < D. Moreover
the following (i)—(iv) hold.

(i) EEW#Oifandonly if p<i<p+d, (0<i<D).
(i) W=>"0_, ES W (orthogonal direct sum).
(iii) EW #0ifand only if t <i<t+d, (0<i<D).
(iv) W= ZZ:() E. W (orthogonal direct sum).

Lemma 3.2. With reference to Definition 2.1, let W denote an irreducible T-module
with endpoint p, dual endpoint t, and diameter d. Then the following (i), (ii) hold.

(i) AE, W CE, , W+E, W+E, W (0<i<d).

(ii) AEc W CE W+ E W +E W (0<i<a).

Proof. (i) Follows from Lemma 2.2(i) and since E;W = E;V N W for 0 < j < D.
(ii) Follows from Lemma 2.2(ii) and since E;W = E;V NW for 0 < ;< D. O
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Remark 3.3. With reference to Definition 2.1, let W denote an irreducible
T-module. Then 4 and 4™ act on W as a tridiagonal pair in the sense of [Definition
1.1,21]. This follows from Lemma 3.1, Lemma 3.2, and since 4,4* together
generate T. See [22, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] for information on
tridiagonal pairs.

Lemma 3.4 [6, Lemmas 5.1, 7.1]. With reference to Definition 2.1, let W denote an
irreducible T-module with endpoint p, dual endpoint t, and diameter d. Then the
following (i), (ii) hold.

(i) 2p+d>D.
(i) 2t+d > D.

Lemma 3.5. With reference to Definition 2.1, let W denote an irreducible T-module

with endpoint p, dual endpoint t, and diameter d. Then

W= W, (direct sum), (3)

d
h=0
where

W, = (E;W—l—m—&—E;H,W)ﬂ(ETW—&—m—&—EHd,hW) (0 <h<d). 4)

Proof. Immediate from Remark 3.3 and [21, Theorem 4.6]. O

Remark 3.6. The sum (3) is not orthogonal in general.

4. The Displacement Decomposition

In this section we introduce the displacement decomposition for the standard
module.

Definition 4.1. With reference to Definition 2.1, let W denote an irreducible T-
module. By the displacement of W we mean the integer p + v+ d — D, where p,7,d
denote respectively the endpoint, dual endpoint, and diameter of W.

Lemma 4.2. With reference to Definition 2.1, let W denote an irreducible T-module
with displacement n. Then 0 < n < D.

Proof. Let p, t,d denote respectively the endpoint, dual endpoint, and diameter of
W. By Lemma 3.4 we have 2p + d > D and 2t + d > D; adding these inequalities
we find p+t+d>D son>0. By Lemma 3.1 we have p <D and t1+d < D.
Combining these inequalities we find p + 7+ d < 2D so n < D. O
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Definition 4.3. With reference to Definition 2.1, For 0 <y < D we let V, denote the
subspace of V spanned by the irreducible T-modules that have displacement n. We
observe V, is a T-module.

Lemma 4.4. With reference to Definition 2.1,

D
V= Z Vy (orthogonal direct sum). (5)
n=0

Proof. We mentioned earlier that V' is spanned by the irreducible 7-modules. By
Lemma 4.2 and Definition 4.3, each of these modules is contained in one of
Vo, i,...,Vp. Therefore V' = ZnDzo V. To show this sum is orthogonal and direct,
it suffices to show g, V1, ..., Vp are mutually orthogonal. For distinct integers i, j
(0 <i,j < D) observe V;,V; are orthogonal since the isomorphism classes of
irreducible 7-modules that span V; are distinct from the isomorphism classes of
irreducible 7-modules that span ¥;. We have now shown ¥, 7;,...,Vp are
mutually orthogonal so the sum Zﬂ:(] V, is orthogonal and direct. O

Definition 4.5. We call the sum (5) the displacement decomposition of V with
respect to X.

5. The Split Decomposition

In this section we introduce the split decomposition of the standard module.

Definition 5.1. With reference to Definition 2.1, for —1 <i,j < D we define
Vi=(E)V+EV+--+EV)N(EV+EV+---+EV). (6)

We observe Vi; =0 if i = —1 or j = —1.
In the following three lemmas we make some observations concerning Defi-
nition 5.1. In each case the proof is routine and omitted.

Lemma 5.2. With reference to Definition 2.1, for 0 < i, j < D the space V;; consists
of those vectors v € V such that E;v =0 for i < h < D and E,v =0 for j < h < D.

Lemma 5.3. With reference to Definition 2.1, we have Vi_y; C Vij and V,;_ C V;
for 0 <i j<D.

Lemma 5.4. With reference to Definition 2.1, the following (i)—(iii) hold.

(i) Vip=EV+EV+--+EV (0<i<D).
(ii) VDj:E0V+E1V+...+EjV(OSjSD).
(iii) Vpp = V.

Later in the paper we will show V;; =0if i+ j <D, (0 <i,j <D).
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Definition 5.5. With reference to Definition 2.1, for 0 < i,j < D we let Vij denote
the ort@()gonal complement of Vi ;_1 + Vi_1; in Vj;. For notational convenience we
define V;; = 0 unless i,j € {0,1,...,d}.

Our next goal is to show ¥, = > Zj‘:o 17,-j (direct sum) for 0 < r,s < D. We
will use the following lemma.

Lemma 5.6. With reference to Definition 2.1,
diml7,»j = dimVU — dl'mI/,‘7j,1 — dimV,-,Lj + dimijl,jfl (7)

for 0 <i,j<D.

Proof. Let z denote the dimension of V;;_| + Vie1- The space 17,-]- is the orthog-
onal complement of V;;_| 4 Vi_1; in Vj; so dimV;; + z = dimV;;. Using Definition
5.1 we find Vi‘jfl n Vle = Vifl,jfl SO Z+dl.mV,',1‘j,1 = dl.mV,"J;l -|—dimV,~,17j. From
these comments we routinely obtain (7). O

Theorem 5.7. With reference to Definition 2.1, for 0 < r,s < D we have

Vi = z’: i: 17,-_,- (direct sum).

i=0 j=0

Proof. We first show

Vis = Vi (8)
=0 j=0

The proof is by induction on r +s. The result is trivial for » +s =0 so assume
r+s>0. Recall V,, is the orthogonal complement of V., + V,_, in V.
Therefore

Vis = I7rs + Vr‘sfl + Vo1 (9)

roos—1 r—

I/;,s—l = I7ij7 I/;’—l,s = Z

1 s
i=0 j=0 i=0

Vij. (10)
=0

Combining (9), (10) we routinely obtain (8). We now show the sum (8) is direct.
From Lemma 5.6 we routinely obtain
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i=0 j=0

and it follows the sum (8) is direct. O

Corollary 5.8. With reference to Definition 2.1,
D

V=2

i—0

1

D
Vi (direct sum). (11)
=0

J

Proof. Set r =D and s = D in Theorem 5.7 and use Lemma 5.4(iii). O

Definition 5.9. We call the sum (11) the split decomposition of V with respect to x.
This decomposition is not orthogonal in general.

6. The Displacement and Split Decompositions

In this section we describe the relationship between the displacement decomposition
and the split decomposition. Our main result is the following. With reference to
Definition 2.1, for 0 < n < D we show ¥, = 3" V;;, where the sum is over all ordered
pairs i, j such that 0 <i,j < Dand i+ j = D + n. We begin with a lemma.

Lemma 6.1. With reference to Definition 2.1, let W denote an irreducible T-module
with endpoint p, dual endpoint t, and diameter d. Let the subspaces Wo, Wi,..., Wy
be as in Lemma 3.5. Then Wy, C V piprqa—n for 0 < h <d.

Proof. Comparing (4) and (6) we find W), C V, 14 c+a—is. We show W, is orthogonal
to Vorh—trtd—n + Vot ord—n—1. For we W, and for v € V, 41 cya—n We show
(w,v) = 0. Let W+ denote the orthogonal complement of W in V. Observe
V =W+ W' (direct sum) and that W=+ is a T-module. Observe there exists
wy € W and v; € W+ such that v = wy +v;. By the construction w € W and
vy €Wt so (w,v) =0. We show w;=0. By Lemma 5.2 and since
V€ Vprh—tera—n we find Ev=0 for p+h<i<D and Ew=0 for
t4+d—h+1<j<D.Since V=W + W+ is a direct sum of T-modules we find
Eiwy =0 for p+h<i<D and Ew; =0 for t+d—-h+1<,;<D. Since
wi € W and since ¥ has endpoint p we have Efw; = 0 for 0 <i < p — 1. Similarly
since W has dual endpoint t we have E;w; =0 for 0 < j <t —1. From these
comments we find

w) € (E;W—‘r s +E;+h71W) N (EIW—I— oo+ Evg W), (12)

Using (4) we find the intersection on the right in (12) is equal to W), N W),_;, where
W_; = 0. The sum (3) is direct so W, N W,_; = 0. We now see w; = 0. Now v = v; so



272 P. Terwilliger

(w,v) = 0. We have now shown W, is orthogonal to ¥V, 41 cya—h- By a similar
argument we find W, is orthogonal to V1, :14—s—1. We conclude W, C Vi rq—p. O

Theorem 6.2. With reference to Definition 2.1, the following (i)—(iii) hold.

(i) For0<n<DwehaveV, =" Vij, where the sum is over all ordered pairs i, j
such that 0 <i,j<Dandi+j=D+n.

(ii) Vi=0ifi+j<D, (0<i,j<D).

(iii) V;=0ifi+j<D,  (0<i,j<D).

Proof. (i), (ii) For —D <5 < D we define ¥ =3 V;; where the sum is over all
ordered palrs i,j such that 0 <i, j <D and i+ j= D+ 5. Using (11) we find
V= Z D V,{ (direct sum). We show Vy=0for =D <n <0 and V=V, for
0<n< <'D. Since the sums V" = Z” o and ¥ = Z _pV, are direct it 'Suffices to
show V, C V’ for 0 <y < D. Let n be given. Let W denote an irreducible T-
module with displacement 7. Combining Lemma 3.5 and Lemma 6.1 we find
w C Vn, . The space V), is spanned by the irreducible 7-modules that have dis-
placement #; therefore ¥, C Vn/' We have now shown V; C Vn/ for 0 <y <D. We
conclude ¥ =0 for =D <5 <0 and ¥, = ¥, for 0 <n < D. Lines (i), (i) follow.
(iii) Combine (ii) above with Theorem 5.7. O

We have some comments.

Theorem 6.3. With reference to Definition 2.1, for 0 < i,j < D such thati+ j > D,
and for 0 <n <D,

Viijn:ZI;rsy

where the sum is over all ordered pairs r,s such that 0 <r <iand 0 <s < and
r+s—D=n.

Proof. Combine Theorem 5.7 and Theorem 6.2(i). ]

Corollary 6.4. With reference to Definition 2.1, for 0<i,j<D such that
i+j>D,wehave Vi =V;NV, where n =i+ j—D.

Proof. Apply Theorem 6.3 with n =i+ j — D. O

7. The Action of A and A* on the Split Decomposition

In this section we describe how the adjacency matrix and the dual adjacency
matrix act on the split decomposition.
Theorem 7.1. With reference to Definition 2.1, the following (i), (ii) hold.

(l) (Afgl)ﬁzj C 17!+lj 1 (OSl,jSD)
(”) (A* H [)th g Vl 1,j+1 (0 S laJSD)
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Proof. (1) Assume i + j > D; otherwise I7ij = 0 and the result is trivial. For con-
venience we treat the cases i = D and i < D separately. To obtain the result for the
case i = D, we show (4 — 0;1)V p; = 0. From Corollary 6.4 (with i = D and 5 = j)
we have Vp;=Vp;N V. Using Lemma 2.3(ii) and Lemma 5.4(ii) we find
(4 — 0,1)Vp; = Vp 1. Therefore (4 — 0,1)Vp; C Vp,—1. Recall ¥} is a T-module so
(4 — 0,1)V; C V. Therefore (4 — 0,1)Vp; C V;. Now

(A= 0,)Vp; CVp;1 NV,
=0

in view of Theorem 6.3. We have now shown (4 — 0;,1)Vp; = 0 so we are done for
the case i = D. Next assume i < D. From Corollary 6.4 we have V;; = V;; NV,
where n =i+ j—D. Using Lemma 2.3 and (6) we find (4 — 0;I)V;; C Viy1 -1
Therefore (4 — 0;1)V;; C Viy1j-1. Recall ¥, is a T-module so (4 — 0,1)V;, C V.
Therefore (4 — 0;1) Vij C ¥,. Now

(A= 0,0V SV jm1 NV,

=Vir1,j-1

in view of Corollary 6.4.
(i1) Similar to the proof of (i) above. O

8. An Application

In this section we give an application of Theorem 6.2(iii). We first give two
definitions.

Definition 8.1. Let I' = (X,R) denote a distance-regular graph with standard
module V. For v € V, by the support of v we mean the subset of X consisting of those
vertices y such that coordinate y of v is nonzero.

Definition 8.2 [4, Section 4]. Let T denote a distance-regular graph with diameter
D > 3. Assume T is Q-polynomial with respect to the ordering Ey,E1, . ..,Ep of the
primitive idempotents. Let v denote a nonzero vector in the standard module V. By
the dual width of v we mean

max{i|0 <i <D, Ev # 0}.

Theorem 8.3. Let I' = (X, R) denote a distance-regular graph with diameter D > 3.
Assume T is Q-polynomial with respect to the ordering Ey, E1,...,Ep of the prim-
itive idempotents. Let v denote a nonzero vector in the standard module V and let g
denote the corresponding dual width from Definition 8.2. Then for all x € X there
exists y in the support of v such that

d(x,y) > D —yg. (13)
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Proof. We assume the result is false and obtain a contradiction. By this
assumption there exists x € X such that d(x,y) < D — g for all vertices y in the
support of v. Abbreviate Ej = Ej(x) for 0 <i < D. Then v € EjV + -+ E;V
where /' = D — g — 1. Using Definition 8.2 we find v € EgV + --- + E;V. Now

v E(EZ;V—&—~-~+E_;‘V)ﬂ(EoV+--~+EgV)
=V

We mentioned f =D — g — 1 so f + g < D; combining this with Theorem 6.2(iii)
we find Vy; = 0. Now v = 0 for a contradiction. The result follows. O

Remark 8.4. Referring to Theorem 8.3, pick any x € X. If v is not orthogonal to
the primary module for T'(x) then (13) follows from [25, Equation (2.8)]. See also
[4, Lemma 1].

9. Directions for Further Research
In this section we give some suggestions for further research.

Problem 9.1. With reference to Definition 2.1, recall that for 0 < i, j < D the space
Vi; depends on x. Does the dimension of V,; depend on x?

Problem 9.2. With reference to Definition 2.1, let W denote an irreducible T-
module and consider the multiplicity with which W appears in V. In general this
multiplicity is not determined by the intersection numbers of I [26]. Is this multi-
plicity determined by the intersection numbers of T and the scalars
{dimV;; | 0 <i,j < D}?

Problem 9.3. Let I denote a Q-polynomial distance-regular graph. In many cases I
exists on the top fiber of a ranked poset [13], [27], [28]. For this case investigate
the relationship between the poset structure and the split decomposition of T.

Acknowledgments. The author would like to thank Brian Curtin, Eric Egge, Michael Lang,
Stefko Miklavic, and Arlene Pascasio for giving this manuscript a careful reading and
offering many valuable suggestions.

References

1. Bannai, E., Ito, T.: Algebraic Combinatorics I, Association Schemes. London: Ben-
jamin/Cummings 1984.

2. Biggs, N.: Algebraic Graph Theory. Second edition. Cambridge: Cambridge University
Press 1993



The Displacement for a Q-Polynomial Distance-regular Graph 275

o]

10.

11.

12.

13.

14.

15.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Brouwer, A.E., Cohen, A.M. Neumaier, A.: Distance-Regular Graphs. Berlin

Springer-Verlag, 1989

. Brouwer, A.E., Godsil, C.D. Koolen, J.H., Martin, W.J.: Width and dual width of subsets

in polynomial association schemes. J. Comb. Theory, Ser. A 102, 255-271 (2003)

. Caughman IV, J.S.: Spectra of bipartite P- and Q-polynomial association schemes.

Graphs Comb. 14, 321-343 (1998)

. Caughman IV, J.S.: The Terwilliger algebras of bipartite P- and Q-polynomial asso-

ciation schemes. Discrete Math. 196, 65-95 (1999)

. Curtin, B.: Bipartite distance-regular graphs I. Graphs Comb. 15, 143-158 (1999)
. Curtin, B.: Bipartite distance-regular graphs II. Graphs Comb. 15, 377-391 (1999)
. Curtin, B.: 2-homogeneous bipartite distance-regular graphs. Discrete Math. 187, 39—

70 (1998)

Curtin, B.: Distance-regular graphs which support a spin model are thin. 16th British
Combinatorial Conference (London, 1997). Discrete Math. 197/198, 205-216 (1999)
Curtin, B., Nomura, K.: Distance-regular graphs related to the quantum enveloping
algebra of s/(2). J. Algebr. Comb. 12, 25-36 (2000)

Curtis, C., Reiner, I.: Representation Theory of Finite Groups and Associative Alge-
bras. New York: Interscience 1962

Delsarte, P.: Association schemes and ¢-designs in regular semilattices. J. Comb.
Theory Ser. A 20, 230-243 (1976)

Dickie, G.: Twice Q-polynomial distance-regular graphs are thin. Eur. J. Comb. 16,
555-560 (1995)

Dickie, G., Terwilliger, P.: A note on thin P-polynomial and dual-thin Q-polynomial
symmetric association schemes. J. Algebr. Comb. 7, 5-15 (1998)

. Egge, E.: A generalization of the Terwilliger algebra. J. Algebra 233, 213-252 (2000)
. Go, J.T.: The Terwilliger algebra of the hypercube. Eur. J. Comb. 23, 399-429 (2002)
. Go, J.T., Terwilliger, P.: Tight distance-regular graphs and the subconstituent algebra.

Eur. J. Comb. 23, 793-816 (2002)

. Godsil, C.D.: Algebraic Combinatorics. New York: Chapman and Hall, Inc., 1993
. Hobart, S.A., Ito, T.: The structure of nonthin irreducible 7-modules: ladder bases and

classical parameters. J. Algebr. Comb. 7, 53-75 (1998)

. Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to P- and Q-polynomial

association schemes. Codes and Association Schemes (Piscataway NJ, 1999), 167-192,
DIMACS Ser. Discrete Math. Theor. Comput. Sci. 56, Amer. Math. Soc., Providence
RI 2001.

Ito, T., Terwilliger, P.: The shape of a tridiagonal pair. J. Pure Appl. Algebra. 188, 145—
160 (2004)

Pascasio, A.A.: On the multiplicities of the primitive idempotents of a Q-polynomial
distance-regular graph. Eur. J. Comb. 23, 1073-1078 (2002)

Pascasio, A.A.: Tight distance-regular graphs and the Q-polynomial property. Graphs
Comb. 17, 149-169 (2001)

Roos, C.: On antidesigns and designs in association schemes. Delft Progress Rpt. 7, 98—
109 (1982)

Tanabe, K.: The irreducible modules of the Terwilliger algebras of Doob schemes.
J. Algebr. Comb. 6, 173-195 (1997)

Terwilliger, P.: Quantum matroids. Progress in Algebraic Combinatorics (Fukuoka,
1993), 323-441, Adv. Stud. Pure Math., 24, Tokyo: Math. Soc. Japan, 1996
Terwilliger, P.: The incidence algebra of a uniform poset. Coding Theory and Design
Theory, Part I, 193-212, IMA Vol. Math. Appl., 20, New York: Springer, 1990
Terwilliger, P.: The subconstituent algebra of an association scheme I. J. Algebr.
Comb. 1, 363-388 (1992)

Terwilliger, P.: The subconstituent algebra of an association scheme II. J. Algebr.
Comb. 2, 73-103 (1993)

Terwilliger, P.: The subconstituent algebra of an association scheme III. J. Algebr.
Comb. 2, 177-210 (1993)



276 P. Terwilliger

32. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an ei-
genbasis of the other. Linear Algebra Appl. 330, 149-203 (2001)

33. Terwilliger, P.: Two relations that generalize the g-Serre relations and the Dolan-Grady
relations. In Physics and Combinatorics 1999 (Nagoya), 377-398, World Scientific
Publishing, River Edge, NJ, 2001

34. Terwilliger, P.: Leonard pairs from 24 points of view. Rocky Mt. J. Math. 32, 827-888
(2002)

35. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an ei-
genbasis of the other; the 7D-D and the LB-UB canonical form. J. Algebra. Submitted

36. Terwilliger, P.: Introduction to Leonard pairs. OPSFA Rome 2001. J. Comput. Appl.
Math. 153, 463-475 (2003)

37. Terwilliger, P.: Introduction to Leonard pairs and Leonard systems. Surika-
isekikenkytisho Kokyturoku, (1109):67-79, 1999. Algebraic combinatorics (Kyoto,
1999)

38. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an ei-
genbasis of the other; comments on the split decomposition. OPSFA 7 Copenhagen:
2003. J. Comput. Appl. Math. (to appear)

39. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an ei-
genbasis of the other; comments on the parameter array. Geometric and Algebraic
Combinatorics 2, Oisterwijk, The Netherlands 2002. (to appear)

40. Terwilliger, P.: Leonard pairs and the g-Racah polynomials. Linear Algebra Appl. 387,
235-276 (2004)

41. Terwilliger, P., Vidunas, R.: Leonard pairs and the Askey-Wilson relations. J. Algebra
Appl. (to appear)

Received: October 15, 2003
Final version received: September 2, 2004



