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1. Introduction

A graph G ¼ ðV ;EÞ (or ðV ðGÞ;EðGÞ) is here a finite, simple graph which has
neither multiple edges nor loops. A subgraph F of G is called a factor of G if
V ðF Þ ¼ V and EðF Þ � E. In other words F is a spanning subgraph of G. Given an
integer k, a k-factor of a graph G is a regular spanning subgraph of degree k. More
generally, if f is a function from V ðGÞ into the nonnegative integers, then F is
called an f -factor if degF ðvÞ ¼ f ðvÞ for all v in V ðGÞ. For vertex functions g; f
from V ðGÞ into the non-negative integers satisfying gðvÞ � f ðvÞ for all v in V ðGÞ
we call a factor F of G a ðg; f Þ-factor if gðvÞ � degF ðvÞ � f ðvÞ for all v in V ðGÞ.
Tradition has evolved such that square brackets are used for constants bounding
the degrees of the factor and round parentheses for functions. A family of edge
disjoint factors (respectively edge disjoint ðg; f Þ-factors) F1; F2; . . . ; Fk withSk

i¼1 EðFiÞ ¼ EðGÞ is called a factorization of G (respectively a ðg; f Þ-factoriza-
tion).

As an introduction to our subject of connected factors we give a brief
historical survey on factors. Plummer [120] (2004) has written an up to date
survey on factors and factorizations with many references. An earlier survey is
from 1985 by Akiyama and Kano [1], which appeared in an issue of Journal of
Graph Theory devoted entirely to factors. Results on factors go back at least a
century. In 1891 Petersen [119] proved that a graph is 2-factorable if and only
if it is 2p-regular, p � 1, and that a connected cubic graph with at most two
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bridges has a 1-factor, later generalized by Bäbler [8] in 1938 and many others.
In 1947 Tutte published his famous theorem [139] which states that a graph G
has a 1-factor if and only if deletion of any vertex set S leaves G� S with at
most jSj components of odd order. Independently, between 1931 and 1935,
Hall [66] and König [84] gave some basic results on 1-factors in bipartite
graphs. Rado [121] (1949) considered 1-factors in locally finite bipartite graphs
and through the 1950’s Belck [14] considered k-factors in regular graphs, Gallai
[58] considered k-factors in graphs, and Tutte [138,137] considered f -factors. In
1970 Lovász [106] extended this work to ðg; f Þ-factors. Later Tutte [132] (1981)
proved that the ðg; f Þ-factor theorem could be derived from his f -factor the-
orem, which in turn could be derived from his 1-factor theorem. Let us remark
that M. Cai [27] (1991) and Holton and Sheehan [68] (1993) have illustrated
uses of the ðg; f Þ-factor theorem by giving applications. Anstee gives an
algorithmic proof of Tutte’s f -factor theorem [5] (1985) and variants of the
ðg; f Þ-factor theorem [4,3] (1990, 1998). If, in particular, g and f are constant,
i.e., for two integers 0 � a � b we have gðvÞ ¼ a; f ðvÞ ¼ b for all v in V ðGÞ,
then the factor is said to be an ½a; b�-factor, a special case of a ðg; f Þ-factor.
This was already considered by Tutte [133] and Thomassen [127] for b ¼ aþ 1;
Kano and Saito [79] considered non-consecutive a and b. There is a vast
literature on factors. The books by Bollobás [18] (1978), Lovász [105] (1979)
and, more recently, the book by Volkmann [146] (1996) all have a chapter on
factors.

Guiying [64], M. Cai [26], Kano [78], G.Y. Yan, J.F. Pan, C.K. Wong and
Tokuda [152] have considered ðg; f Þ-factorizations of graphs. Gutin [65] gave a
condition for digraphs to have a connected ðg; f Þ-factor.

As we have already seen above, factors may be selected by degree properties.
One variant is that the parity of the degrees may be prescribed, see e.g. [131], [38],
[2] for odd factors, [89] for even factors and [35] for both. Factors may also be
selected by some structural property, and we shall, in this survey, do exactly that
by putting our emphasis on connected factors. Some of the earliest results of
graph theory on Hamiltonian cycles, spanning trees and walks fall naturally in
that category. In the last decade the notion of connected factors has gained wider
prominence, particularly after an international conference held in Beijing in 1993,
see e.g. Kano [81].

1.1. Notation

Our preferred notation for the order of a graph G is n, i.e., jGj ¼ n. We denote the
minimum degree of G by dðGÞ and its maximum degree by DðGÞ. A set of vertices
is said to be stable or independent if no two of them are joined by an edge. The
stability number aðGÞ is the cardinality of a largest stable set of vertices in G. For a
positive integer p we define the parameter rpðGÞ ¼ minfdegðx1Þ þ � � � þ degðxpÞg,
where the minimum is taken over all stable sets x1; . . . ; xp of p vertices in G.

The graph G is called k-connected if at least k vertices must be removed to
disconnect G or if G is a complete graph Kn; n � k þ 1.
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By xðGÞ we indicate the number of components in G. A connected, non-
complete graph G is said to be t-tough if t � xðG� SÞ � jSj for every cutset S . The
toughness of a connected, non-complete graph G is

toughðGÞ ¼ min
jSj

xðG� SÞ j S � V and xðG� SÞ � 2

� �

:

A complete graph Kn may be defined to have toughness 1.
The composition of two graphs G and H is the graph G½H � with vertex set

V ðGÞ 	 V ðHÞ and edge set fðu1v1; u2v2Þju1u2 2 EðGÞ or u1 ¼ u2 and
v1v2 2 EðHÞg.

A walk in the graph G is a sequence v1e1v2e2v3 . . . vieiviþ1 . . . vp�1ep�1vp of
vertices and edges such that each edge ei has ends vi and viþ1; repetition is allowed
for edges as well as for vertices. The walk is closed if v1 ¼ vp and open if v1 6¼ vp. A
trail is a walk where repetition is permitted for vertices but not for edges. Let kG
denote the multigraph obtained from G by replacing each edge by k parallel edges.
A k-walk, respectively a k-trail, of a graph G is a connected spanning subgraph W
of ð2kÞG, respectively of G, such that the degree of each vertex is even and at most
2k. (This definition implies closedness, but some authors permit a k-walk/k-trail to
be open or closed). So W projected down to G is a closed spanning walk passing
each vertex at least once and at most k times. Note that throughout this paper
k-walks and k-trails by definition are understood to be spanning subgraphs. A
k-walk of G is in particular ½1; 2k�-factor of G, and a k-trail is a ½2; 2k�-factor.

2. Connected [1,k]-Factors

Every connected graph has a spanning tree. The number of spanning trees in the
complete graph Kn is nn�2 (Cayley [33]). A collection of proofs of tree counting
formulas for Kn are given by Moon [112], J. Matoušek and J. Nesětřil [107].

For any connected graph G, the matrix-tree theorem (implied by Kirchhoff
[83]) gives a formula for the number of spanning trees, using the n	 n adjacency
matrix A of G, as follows. Let D ¼ fdijg1�i;j�n be the diagonal matrix with
dii ¼ degGðviÞ and dij ¼ 0 for i 6¼ j. For any integers s and t, 1 � s; t � n, the
number of spanning trees in G equals ð�1Þsþt times the determinant of the matrix
obtained by deleting the s’th row and the t’th column from D� A. As a conse-
quence, for a d-regular graph on n vertices this number is 1

n

Qn�1
j¼1 ðd � kjÞ where

k0 ¼ d; k1; :::; kn�1 are the eigenvalues of the adjacency matrix A of the graph G.
See for example Cvetković, Doob and Sachs [41, p. 39]. Y. Jin and C. Liu [76]
have counted spanning trees in Km;n. Factorizations of Kn and Km;n into spanning
trees have been given in [67,69,140,51].

Many authors have been interested in the existence of edge disjoint spanning
trees, mainly in relation to the existence of Eulerian subgraphs. Tutte [135] and
independently Nash-Williams [114] gave a condition for a graph to have a fac-
torization into connected factors.
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Theorem 1 ([135]). Let k be a positive integer. A connected graph G can be
decomposed into k edge disjoint connected factors if and only if

kðxðG� LÞ � 1Þ � jLj for every L � EðGÞ:

It follows that if G is m-edge connected then G is decomposable into bm=2c
connected factors and consequently G has bm=2c edge disjoint spanning trees. In
fact, we can see that an m-edge connected graph has a factorization with bm=2c
factors by proving that all subsets L � EðGÞ satisfy bm=2cðxðG� LÞ � 1Þ � jLj: if
G� L is connected we have bm=2cðxðG� LÞ � 1Þ ¼ 0 � jLj, and if G� L is not
connected then for each component C of G� L there are at least m edges of G
connecting C to other components of G� L, and therefore we have
mxðG� LÞ � 2jLj implying bm=2cðxðG� LÞ � 1Þ � jLj.

In 1965 J. Edmonds proved the existence, in any 3-edge connected graph, of
three spanning trees with no edge common to all three trees (referred to in [71]).
This result implies the existence of three even subgraphs whose union covers all
edges of G.

Theorem 1 implies that each 4-edge connected graph has two disjoint spanning
trees. This was used by Itai, Lipton, Papadimitrou and Rodeh [71] to obtain
Jaeger’s result [73,74] on the existence of a cycle double cover of the edges of a
4-edge connected graph G as follows: for each spanning tree Ti, they construct an
even subgraph Hi containing EðGÞ � EðTiÞ; so with two disjoint trees T1 and T2

they get a cover of all the edges by H1 [ H2, as an edge of G not covered should be
in both EðT1Þ and EðT2Þ. It follows that fH1, H2, H14H2g, where H14H2 denotes
the symmetric difference of H1 and H2, gives a cycle double cover of EðGÞ.

Consideration of network reliability has lead several authors to investigate
graphs with many edge disjoint spanning trees, see for example Lonc [104],
Rescigno [122].

For a fixed integer k we shall in the following consider k-trees, i.e. spanning
trees with maximum degree at most k. A k-tree of a graph G is in particular a
connected ½1; k�-factor of G. Note, that the existence of a k-tree is equivalent to the
existence of a connected ½1; k�-factor.

Caro, Krasikov and Roditty [28] prove that the square of a connected graph
contains a 3-tree. They also show how close a graph comes to having a k-tree, they
prove that a connected graph either has a k-tree or it contains a tree of maximum
degree at most k and order at least kdðGÞ þ 1.

Ellingham, Nam and Voss consider graphs of high connectivity. They show
that

Theorem 2 ([49]). Let m � 1 be an integer. Then every m-edge connected graph G
has a spanning tree T such that

degT ðvÞ � 2þ ddegGðvÞ=me

for every vertex v of G.
This result implies that every m-edge connected m-regular graph has a 3-tree.
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2.1. k-Trees and Degrees

Dirac’s condition dðGÞ � n=2 ensures the existence of a Hamiltonian cycle in G.
Later, the same conclusion was drawn from a weaker hypothesis, namely in Ore’s
Theorem, which states that if r2ðGÞ � n holds for a graph with at least three
vertices, then G has a Hamiltonian cycle. We observe that a graph G of order n
has a Hamiltonian path if and only if the graph G0 ¼ Gþ K1, obtained from G by
adding one new vertex joined to every vertex of G, has a Hamiltonian cycle.
Consequently the condition r2ðGÞ � n� 1 implies r2ðG0Þ � nþ 1 and hence, by
Ore’s theorem applied to G0, we see that G has a Hamiltonian path, i.e. a 2-tree.

Extending this result, Win proved

Theorem 3 ([144]). Let G be any graph of order n. If rkðGÞ � n� 1 then G has a
k-tree.

The result is sharp: it is sufficient to consider the complete bipartite graph
Krþ1;rkþ1 where k is any integer at least 2.

Recently, Czygrinov, G. Fan, Hurlbert, Kierstead and Trotter [43] studied the
family of graphs satisfying the hypothesis of Theorem 3 and having only k-trees
which actually have their maximum valency equal to k. Such a graph G either has
a k-tree which is a caterpillar, i.e. a tree containing a path such that all other
vertices have degree one, or G is constructed by joining one vertex to every vertex
in the disjoint union of k complete graphs.

Theorem 3 has been generalized by Aung and Kyaw [6] and by Kyaw [91]. To
shorten the statement of Theorem 4 below we define: a ðk þ 1Þ-frame in G is a set
S of k þ 1 independent vertices such that G� S is connected. By degGðSÞ we
understand the number degGðSÞ ¼

P
x2S degGðxÞ. Finally, let NiðSÞ ¼ fx 2

V ðGÞjjNðxÞ \ Sj ¼ ig denote the set of vertices having exactly i neighbours in S.

Theorem 4 ([91]). Let G be a connected graph of order n. Let k � 2 be an integer. If

degGðSÞ þ
Xkþ1

i¼2
ðk � iÞjNiðSÞj � n� 1

for every (k+1)-frame S in G, then G has a k-tree.
R. Xu generalized an earlier result by H. Wang [141]:

Theorem 5 ([147]). Let k and n be integers such that 0 � k � n� 2 and let G be a
connected bipartite graph with partition classes V1; V2 of the same size
jV1j ¼ jV2j ¼ n. If for every u 2 V1; v 2 V2 we have

degGðuÞ þ degGðvÞ � n� k;

then G has a connected ½1; k þ 2�-factor.
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2.2. k-Walks and k-Trees

There are relations between k-walks and k-trees. Jackson and Wormald proved

Lemma 1 ([72]). Let k be a positive integer.

(i) If G has a k-tree then G has a k-walk.
(ii) If G has a k-walk then G has a (k+1)-tree.
(iii) If G has a k-walk then G is 1/k-tough.
(iv) G has a k-walk if and only if G½Kk� has a Hamiltonian cycle.

To see (i) double each edge in the k-tree to obtain an Eulerian multigraph with
degrees at most 2k producing a k-walk of G.

To see (ii), given a k-walk, we traverse an Euler tour starting from a vertex x
and we delete each edge entering in a vertex previously visited, unless the edge has
been used earlier. Each vertex will have one edge entering and at most k edges
going out. In this way we get a spanning tree with maximum degree at most k þ 1.

(iii) is seen by observing that a k-walk of G meets a vertex of a cutset S on
passing between two components of G� S, thus xðG� SÞ � kjSj which implies

that
1

k
� jSj

xðG� SÞ for any cutset S and hence tough ðGÞ � 1=k:

Inspired by this last lemma and by Theorem 2 , Ellingham, Nam and Voss
pose the following conjecture:

Conjecture. Let m � 1 be an integer. If G is an m-edge connected m-regular graph
then G has a 2-walk.

They remark that the conjecture is true for m � 4.
In topological graph theory there are several interesting results on k-trees and

k-walks. Combined results by Barnette [9, 11], Z. Gao and Richter [60], Brunet,
Ellingham, Gao, Metzlar and Richter [21] give the next theorem.

Theorem 6. Every 3-connected graph which embeds in the plane, the projective
plane, the torus or the Klein bottle has a 2-walk and consequently also a 3-tree.

The Euler characteristic v of a polyhedron is n� eþ f , where n; e; f are
respectively the number of vertices, edges and faces. For a connected, planar
graph G we define vðGÞ ¼ n� eþ f , a number which always turns out to be 2.

A surface homeomorphic to a polyhedron has the same Euler characteristic as
the polyhedron. The Euler characteristic of a surface is closely related to its genus
g, the number of handles/crosscaps put on a sphere to obtain the orientable/
nonorientable surface. A surface has Euler characteristic v ¼ 2� 2g if it is ori-
entable and v ¼ 2� g if it is nonorientable. The Euler characteristic is 2 for the
plane, 1 for the sphere and the projective plane and 0 for the Möbius band and the
Klein bottle. Sanders and Zhao [125] proved that a 3-connected graph embed-

dable on a surface of Euler characteristic v � �46 has a d8� 2v
3
e-tree and a

d6� 2v
3
e-walk.
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2.3. Toughness and k-Trees

The notion of toughness is due to Chvátal. He conjectured [39] that there exists
t > 0 such that every t-tough graph has a 1-walk, i.e., a Hamiltonian cycle.
Necessarily t > 9=4; because Bauer, Broersma and Veldman [13] constructed, for
every � > 0, an example of a ð9=4� �Þ-tough graph which is non Hamiltonian.
This improves earlier results by Chvátal [39], Thomassen (see [17]), Enomoto,
Jackson, Katerinis and Saito [52]. Chvátal’s conjecture is still open.

For each k � 2 there exists a positive real number t such that every t-tough
graph has a k-walk. From Win’s Theorem 7 below it follows that for k � 3 a
1=ðk � 2Þ-tough graph has a k-walk. More precisely, Win established the fol-
lowing.

Theorem 7 ([145]). Let k � 2 be an integer. If G is a connected graph such that
xðG� SÞ � ðk � 2Þ j S j þ2 holds for each subset S of V(G), then G has a k-tree.

Theorem 7 is sharp, as mentionned by Win, it is sufficient to consider k þ 1
copies of a complete graph and an extra vertex x0 joined to all the other vertices.
In that graph xðG� SÞ � ðk � 2Þ j S j þ3 holds for each subset S and G has no
k-tree.

Ellingham and Zha [48] gave a new proof for this result. In G let H be an
induced subgraph having a k-tree of maximal order.

To obtain a contradiction, assume H 6¼ G. Through a number of steps they
construct a subset S of V ðHÞ and a k-tree T of H , such that

(i) degT ðvÞ ¼ k for every vertex of S, and
(ii) every edge between H and G� H has an end in S,
(iii) each component of T � S has the same vertex set as the corresponding

component of H � S, i.e. there is no H -edge between distinct components of
T � S; in particular, xðH � SÞ ¼ xðT � SÞ.

Consequently xðG� SÞ > xðH � SÞ because G is connected and H 6¼ G implies
existence of an edge uv, u 2 V ðG� HÞ; v 2 V ðHÞ; by (ii) the vertex v is neces-
sarily in S. Let S ¼ fx1; x2; . . . ; xsg and Si ¼ fx1; x2; . . . ; xig, 1 � i � s: Deleting
first x1 from T creates k components. Next, deleting in succession xi from T
creates k � 1� jNðxiÞ \ Sij additional components. The total number of com-
ponents in T � S is k þ

Ps
i¼2 ðk � 1Þ � jNðxiÞ \ Si�1jð Þ. At worst S spans a tree in

which all jSj � 1 edges are counted. Therefore xðT � SÞ � k þ ðjSj � 1Þ
ðk � 1Þ � ðjSj � 1Þ =ðk � 2ÞjSj þ 2. As xðG� SÞ > xðH � SÞ ¼ xðT � SÞ �
ðk � 2ÞjSj þ 2, this contradicts the inequality of Theorem 7. Therefore G ¼ H
and G has a k-tree.

Every graph that has a k-tree must be 1=k-tough. Jackson and Wormald [72]
conjectured that for k � 2 every 1=ðk � 1Þ-tough graph has a k-walk.

For k ¼ 2 Ellingham and Zha [48] pointed out that there are graphs which are
2=3-tough and have no 2-walk. For k � 3, from examples of Jackson and
Wormald [72], Ellingham and Zha [48] it follows that there are graphs with

asymptotic toughness
8k þ 1

4kð2k � 1Þ, i.e. toughness about 1=ðk � 5=8Þ and with no
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k-walk. This brings the gap to the constant of Jackson and Wormald’s conjecture

down to the order of 1=k2.
For k ¼ 2, the condition of Win’s Theorem 7 demands more than necessary

for G to have a Hamiltonian path. His condition is equivalent to aðGÞ � 2, and
certainly it would suffice to demand r2ðGÞ � n� 1. Ellingham, Nam and Voss
generalize Win’s result as follows:

Theorem 8 ([49]). Let G be a connected graph and let h be a positive integer-valued
function on V(G). Suppose that each S � V ðGÞ satisfies xðG� SÞ �

P
v2S

hðvÞ � 2jSj þ 2. Then G has a spanning tree T with degT ðvÞ � hðvÞ for every vertex v
of G.

Finally, using other generalisations of Win’s theorem and results on 2-factors,
Ellingham and X. Zha [48] also proved that every 4-tough graph has a 2-walk.
Nevertheless, no result is known on toughness and 2-trees. This problem is closely
related to the conjecture of Chvátal.

2.4. K1,h-Free Graphs

There are several results for classes of graphs with forbidden subgraphs. From a
result by Tokuda [129], we know that every connected K1;h-free graph has a ½1; h�-
factor, not necessarily connected, for every h � 3; and by Caro, Krasikov and
Roditty [29], that such a graph has in fact a h-tree. Jackson and Wormald gen-
eralized these results as follows

Theorem 9 ([72]). Let h � 3 be an integer. Every connected, K1;h-free graph has a
ðh� 1Þ-walk and hence a h-tree.

By Lemma 1(ii) it suffices to prove that G has a ðh� 1Þ-walk. The authors in
[72] note that G has a DðGÞ-walk, because 2G is Eulerian. Let W be a DðGÞ-walk
for which jEðW Þj is minimum. The walk W is, in fact, a ðh� 1Þ-walk, for assume
there exists v such that degGðvÞ ¼ 2r � 2h. Then W contains edges vu1;
vu2; . . . ; vur, where u1; . . . ; ur can be chosen to belong to distinct subcycles of W , so
that W n fvu1; vu2; . . . ; vurg is connected. If ui ¼ uj for some i 6¼ j, we form
W 0 ¼ W n fvui; vujg, otherwise aðNðvÞÞ � h� 1 < r implies existence of i; j such
that uiuj 2 EðGÞ and we form W 0 ¼ ðW n fvui; vujgÞ [ uiuj. In both cases we have
obtained a contradiction to the minimality of jEðW Þj.

Let hNðvÞiG denote the graph spanned in G by the neighbours of v and let us
say that G is locally connected if hNðvÞiG is connected for each vertex v of G. A
strengthening of the hypothesis in Theorem 9 now gives:

Theorem 10 ([72]). Let h � 3 be an integer. If a graph is connected, K1;h-free and
also is locally connected, then it has a (h ) 2)-walk and hence also an (h ) 1)-tree.

Theorem 11 ([72]). Let j � 1 and h � 3 be integers such that j divides h ) 1. Then
every j-connected and K1;h-free graph has a ð2þ h� 1

j Þ-walk and hence also a
ð3þ h�1

j Þ-tree.
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A. Kyaw presented in [92] a counterexample to the following conjecture of B.
Jackson and N.C. Wormald [72, Conjecture 4.3], ‘‘Let j � 1 and h � 3 be integers
such that jþ 1 divides h� 2. If G is K1;h-free, connected and locally j-connected

then G has a ðh� 2

jþ 1
þ 1Þ-tree’’. It remains to find the sharp value of k such that the

precedent hypotheses imply the existence of a k-tree.
We conclude this section with an open problem.

Question of B. Jackson. Given integers s; j, determine a sharp value of k such
that any graph which is K1;s-free, connected and locally j-connected has a k-walk.

2.5. Stability and k-Trees

Win [143] states that
Every j-connected graph with stability number at most jþ c contains a spanning

tree with no more than c+1 terminal vertices.
In this way he obtains the existence of an aðGÞ � jþ 1-tree in every

j-connected graph and resolved a conjecture of Las Vergnas.
A classical result is the Chvátal-Erdös theorem,

Theorem 12 ([40]). If the stability number a of a j-connected graph is at most j,
then the graph has a Hamiltonian cycle.

The theorem below follows from Lemma 1, stating that G has an h-walk if and
only if G½Kh� has a Hamiltonian cycle, and the Chvátal-Erdös theorem, applied to
the graph G½Kh� with h ¼ daðGÞ=je.

Theorem 13 ([72]). If G is j-connected then G has an daðGÞ=je-walk.

This, in turn, by Lemma 1(ii) implies that G has a (daðGÞ=je þ 1)-tree.
A related result of Neumann-Lara and Rivera-Campo is slightly better for

existence of k-trees since the maximum degree may be smaller for the tree in
Theorem 14 than in Theorem 13.

Theorem 14 ([115]). Let j � 1 and r � 2 be two integers. If G is a j-connected
graph such that aðGÞ � 1þ ðr � 1Þj then G has an r-tree.

We note that the complete graph Kk;1þkðs�1Þ satisfies the hypothesis of Theorem
14 but has no s� 1 tree.

2.6. Matching and k-Trees

Rivera-Campo considers extension of matchings into k-trees in graphs of low
stability.

Theorem 15 ([123]). Let j be a positive integer and let G be a j-connected graph
having a perfect matching M. If aðGÞ � 1þ 3j

2
then M can be extended to a

3-tree.
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He claims that, with the same proof, this last result can be extended as follows:
If G is j-connected and has a perfect matching M such that

aðGÞ � 1þ ð2r � 3Þj
2

for some integer r � 3, then M can be extended to an r-tree.

Recently Ellingham, Nam and Voss obtained extensions of matchings in tough
graphs.

Theorem 16 ([49]). Let G be a t-tough graph having a perfect matching M. Then

there exists a 2þ
l 1

t

m� �

-tree containing M.

3. Connected ½2; k�-Factors

An even factor is a factor in which all degrees are even, positive integers and an
odd factor has all degrees odd.

3.1. Even Factors

By Fleischner [57], we know that

Theorem 17([57]). If G is a 2-edge connected graph, without vertices of degree 2,
then G has an even factor.

Neither of the hypotheses in Theorem 17 can be weakened. Consider first, e.g.,
the graph composed by 3 copies of a complete graph and an extra vertex joined to
exactly one vertex in each copy. A second example is the Petersen graph where
each edge ab is replaced by three paths of length two joining a and b. None of
these two graphs have an even factor.

Eulerian subgraphs are connected, even, spanning subgraphs, i.e., connected
even ½2; n� 1�-factors, and Hamiltonian cycles are connected ½2; 2�-factors. On
Hamiltonian cycles there have been several surveys, to mention but two,
Bermond [17] (1978) and an up to date survey by Gould [63] (2003). Catlin
[31] surveyed supereulerian graphs, i.e., graphs containing a connected even
factor. Zelinka [153] showed that for every integer r there exists a 2-edge
connected graph G, of order n, with no Eulerian subgraph covering more than
n=r vertices of G. One important result about supereulerian graphs is the
following.

Theorem 18 ([74]). Every 4-edge connected graph is supereulerian.

We have in Section 2 mentioned relations from spanning Eulerian subgraphs to
spanning trees, and to the cycle double cover conjecture. The precedent Theorem
18 of Jaeger has been generalised by Catlin, Z.-Y. Han, H.-J. Lai [30]. They
studied graphs which by addition of at most two edges would have two edge
disjoint spanning trees and they gave a characterization for such graphs to be
supereulerian. Then they proved that
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Any 3-edge connected graph with at most 9 edge cuts of size 3 is supereulerian by
using suitable contractions and thus reducing the graph to one which is at most 2
edges short of having two edge disjoint spanning trees.

A wheel is obtained from a cycle v1; :::; vn and an extra vertex v joined to each
of v1; :::; vn. A rim-subdivision of a wheel is obtained by replacing each edge viviþ1
of the cycle of the wheel by a path viv0iviþ1. We call a graph H a minor of G if H is
isomorphic to the contraction image of a subgraph of G, and H is called an
induced minor if it is isomorphic to the contraction image of an induced subgraph
of G.

For graphs of lower edge connectivity, H.-J. Lai gives a sufficient condition for
G to be supereulerian:

Theorem 19 ([94]). Let G be a 2-edge connected graph. The following are equiva-
lent:

(i) Every 2-edge connected induced subgraph of G is supereulerian.
(ii) G has no induced minor isomorphic to a rim-subdivision of a wheel.

There are many other sufficient conditions for a graph to be supereulerian. Some
conditions are in terms of forbidden subgraphs or require that each edge is in a
short cycle or they are degree conditions. For example H.-J. Lai [93] established
that if the minimum degree of 2-edge-connected triangle free graph is at least n=10
and n � 30 then the graph is supereulerian. Many authors have been interested in
supereulerian graphs because the line graph of a supereulerian graph is Hamil-
tonian.

Spanning eulerian subgraphs with no upper bound on the number of times a
vertex is used have been considered by several authors including Lesniak-Foster
and Williamson [96], Benhocine, Clark, Köhler, and Veldman [15], Catlin [32],
Z.H. Chen [37], Ellingham, X. Zha and Y. Zhang [50].

Theorem 20 ([15]). Let G be a 2-edge connected graph of order n � 3. If
r2ðGÞ � ð2nþ 3Þ=3 then G has a closed spanning trail.

For Eulerian graphs see the work of Jaeger [73,74], the book of Fleischner
[55,56], the book of C.Q. Zhang [154], the survey of Lesniak and Oellermann [95]
or that of Catlin [31].

3.2. Even [a,b]-Factors

Kouider and Vestergaard obtained various sufficient conditions for a graph to
have an even ½a; b�-factor. One of them is

Theorem 21 ([90, 89]). Let a and b be even integers such that 2 � a � b and let G be
a 2-edge connected graph of order n.

1) If a � 4 and n � ðaþ bÞ2
b , and dðGÞ � an

aþ bþ
a
2
, then G has an even ½a; b�-factor.

2) If a=2 and n � 3, dðGÞ � maxf3; 2n
bþ 2

g, then G has an even ½2; b�-factor.
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Notice, that for a ¼ 2 and b ¼ n� 2; or; n� 1 we get as a corollary Fleishner’s
Theorem 17 cited above.

Several authors have considered k-trails. Broersma, Kriesell and Ryjácek
proved [20] that every 4-connected claw-free graph has a 2-trail or in other words
an even ½2; 4�-factor. A triangulated annulus is a planar graph containing two
circuits which each bound a face, while all other faces are triangles. Gao
and Wormald [61] proved that a triangulated annulus has a 4-trail, i.e., it has a
½2; 8�-factor. They derive from this that all triangulations in the projective plane,
the torus and the Klein bottle have (closed) 4-trails. A graph with a (closed) k-trail
contains an even factor and is thus by definition supereulerian.

X. Zha and Y. Zhang show the following.

Theorem 22 ([50]). Let G be a connected graph of order n. If r3ðGÞ � n, then G has
either a closed 2-trail or a Hamiltonian path.

We note that a closed 2-trail is a connected even ½2; 4�-factor.
Theorem 22 is near to being sharp. Consider 3 copies of the same complete

graph with exactly one vertex in common, then r3ðGÞ ¼ n� 4, and G has no
closed 2-trail and no Hamiltonian path.

3.3. Degrees

It seems that Kano posed the following conjecture.

Conjecture: Let k be an integer and G a 2-edge connected graph of order n with
dðGÞ � 2 and n � k þ 3. If r2ðGÞ � 4n

kþ2 then G has a 2-edge-connected ½2; k�-factor.
As support he proved that such a graph has a connected ½2; k�-factor. How-

ever, several authors (Y. Li, M. Cai [100] and R. Xu [148]) have given counte-
rexamples to this conjecture but suggested that Kano’s conjecture might hold if G
is required to be 2-connected. Kouider and Maheo proved

Theorem 23 ([86]). If G is a 2-edge connected graph of order n; k � 2; n � k þ 3;
r2ðGÞ � 4n=ðk þ 2Þ, then if k is even, G has a 2-edge connected ½2; k�-factor; if k is
odd, G has a 2-edge connected ½2; k þ 1�-factor.

Furthermore, if G is 2-connected, under the same hypothesis on the degrees
they prove the existence of a 2-connected ½2; k�-factor.

Theorem 23 is sharp. For k ¼ 2h� 1, consider h copies of a complete graph
and an extra vertex x joined to all the other vertices. In a 2-edge connected factor,
the vertex x must have degree at least 2h ¼ k þ 1. This graph satisfies the condi-
tions of the theorem, but it has no 2-edge connected ½2; k�-factor.

A related result is R. Xu’s theorem [148]: If G has connectivity j � 2, order
n � 10j and r2ðGÞ � 4n=5, then G has a 2-connected ½2; 3�-factor.

3.4. Stability

Kouider [85] has shown that any j-connected graph G has a covering of its
vertices by at most daðGÞ=je elementary cycles. Brandt has deduced
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Theorem 24 ([19]). Let b � 2 be an even integer, and j � 2. If G is j-connected and
aðGÞ � jb=2, then G has a 2-connected ½2; b�-factor.

This proves, in other words, the existence of a 2-connected ½2; 2daðGÞ=je�-
factor, while Theorem 13 only gives a connected ½1; 2daðGÞ=je�-factor. Brandt’s
result is sharp, it cannot be improved for the complete bipartite graphs.

3.5. Toughness

Chvátal conjectured that every k-tough graph on n vertices, with n � k þ 1 and kn
even, has a k-factor. This was established in 1985 by Enomoto, Jackson, Katerinis
and Saito [52]. They furthermore showed that the conjecture is best possible,
because for any k � 1 and for any � > 0 there exists a (k-�)-tough graph with n
vertices, n � k þ 1 and kn even but with no k-factor.

There is a sufficient condition due to C. Chen, for existence of factors, which
may not necessarily be connected,

Theorem 25 ([34]). Let b � 3 be an integer, and let G be a graph of order n � 3.

If toughðGÞ � ð1þ 1

b
Þthen G has a½2; b� � factor:

The author shows that the hypothesis on toughness may not be weakened.
Ellingham, Voss and Nam extended this last result for connected factors as fol-
lows:

Theorem 26 ([49]). If b � 4; n � 3 and tough(G) � 1þ 1
b� 2

then G has a con-
nected ½2; b�-factor that contains a ½2; b� 2�-factor.

Using results from Enomoto, Jackson, Katerinis and Saito [52] on toughness
and k-factors, they also proved that if toughðGÞ � 4 then G has a connected ½2; 3�-
factor. Generalizations from ½2; b�-factors to ½a; b�-factors are given in Theorems
48, 49 later.

3.6. Special Classes of Graphs

Thomassen conjectured [126] that every 4-connected line graph is Hamiltonian.
That is equivalent to a seemingly stronger conjecture by Matthews and Sumner
[111] that every 4-connected claw-free graph is Hamiltonian. Broersma, Kriesell
and Ryjácek proved [20] that every 7-connected claw-free graph is Hamiltonian
and that every 4-connected claw-free graph is Hamiltonian if it contains no in-
duced hourglass, i.e., two triangles with exactly one common vertex. Further-
more, they proved that every 4-connected claw-free graph has a connected
½2; 4�-factor in which each vertex has even degree, i.e., a 2-trail.

G. Li and Z. Liu [98] proved that if G is 2-connected and claw-free then G has
a connected ½2; 3�-factor.

Now, we recall some results on topological graphs and ½2; b�-factors. Tutte
proved [136,134] that every 4-connected planar graph is Hamiltonian, i.e., it
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has a 2-factor. Not all 3-connected planar graphs are Hamiltonian, so relax-
ations on Hamiltonicity have been considered. Barnette [12] proved that every
3-connected planar graph has a 3-tree. Enomoto, Iida and Ota proved [53] that
every 3-connected, planar graph G with dðGÞ � 4 has a connected ½2; 3�-factor.
Barnette proved [10] that every 3-connected, planar graph has a 2-connected
½2; 15�-factor. Later this was strengthened by Z. Gao who proved [59] that
every 3-connected graph embeddable in the plane, the projective plane, the
torus or the Klein bottle has a 2-connected ½2; 6�-factor. Also, we know by
Sanders and Y. Zhao [124] that a 3-connected graph of Euler characteristic v
has a 2-connected ½2; 10� 2v�-factor.

4. ðg; fÞ-Factors

Let us state three factor theorems which are fundamental. We shall consider
ordered pairs of disjoint subsets X ; Y of V ðGÞ. We write degGðX Þ ¼P
fdegGðxÞjx 2 Xg and for a vertex function f we write f ðX Þ ¼

P
ff ðxÞjx 2 Xg.

By eðX ; Y Þ we denote the number of edges having one end in X and one end in Y .
For a graph G and S � V ðGÞ we let oðG� SÞ denote the number of components in
G� S with an odd number of vertices.

Theorem 27 (Tutte’s 1-factor theorem [139]). A graph G has a 1-factor if and only if
oðG� SÞ � jSj for all subsets S of V(G).

Theorem 28 (Tutte’s f-factor theorem [138,137]). Let G be a graph and f be a
nonnegative integer valued function defined on V(G). Let X,Y be disjoint subsets of
V(G). A component C of G� ðX [ Y Þ is called odd if f ðCÞ þ eðC; Y Þ 
 1(mod 2).
Let h(X,Y) be the number of odd components in G� ðX [ Y Þ. Then G has an f-
factor if and only if hðX ; Y Þ � f ðX Þ � f ðY Þ þ degG�X ðY Þ for all ordered pairs X,Y
of disjoint subsets of V(G).

Theorem 29 (Lovász’s ðg; f Þ-factor theorem [106]). Let G be a graph and g,f non-
negative integer valued functions defined on V(G) satisfying gðvÞ � f ðvÞ for all v in
V(G). Let X,Y be disjoint subsets of V(G). A component C of G� ðX [ Y Þ is called
odd if g(v)=f(v) for all v in V(C) and eðC; Y Þ þ f ðCÞ 
 1ð mod 2Þ. Let hðX ; Y Þ
be the number of odd components in G� ðX [ Y Þ. Then G has a (g,f)-factor if and
only if hðX ; Y Þ � f ðX Þ � gðY Þ þ degG�X ðY Þ for all ordered pairs X,Y.

As a corollary, we have

Theorem 30. For integers 1 � a < b the graph G has an ½a; b�-factor if and only if

bjX j � ajY j þ
X

v2Y

degGnX ðvÞ � 0;

for all pairs of disjoint subsets X,Y of V(G).
By slightly changing the hypotheses, Lovász obtained
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Theorem 31 (Lovász’s parity factor theorem). Let G be a graph and g,f nonnegative
integer valued functions defined on V(G) satisfying gðvÞ � f ðvÞ and
gðvÞ 
 f ðvÞ ðmod 2Þ for all v in V(G). Let X,Y be disjoint subsets of V(G). A
component C of G� ðX [ Y Þ is called odd if eðC; Y Þ þ f ðCÞ 
 1 ðmod 2Þ. Let
h(X,Y) be the number of odd components in G� ðX [ Y Þ. Then G has a (g,f)-factor
F with degF ðvÞ 
 gðvÞ for all v in V(G) if and only if hðX ; Y Þ � f ðX Þ�
gðY Þ þ degG�X ðY Þ for all ordered pairs X,Y.

Many authors have given sufficient conditions for a graph to have a ðg; f Þ-
factor and in several proofs Theorems 27–29 are used. Egawa and Kano [45]

proved that gðxÞ < f ðxÞ; gðxÞ
degðxÞ �

gðyÞ
degðyÞ for all adjacent vertices x; y in V ðGÞ, is

sufficient. Kano, Saito [79] proved that the existence of a real number h,
0 < h � 1, such that each vertex x of G satisfies gðxÞ < f ðxÞ and gðxÞ �
h degGðxÞ � f ðxÞ, is sufficient.

Niessen [116] gave a sufficient condition for G to have an h-factor for any
function h satisfying g � h � f .

The concept of connected ðg; f Þ-factors is attributed to Kano [81]. This topic is
closely related to the Hamiltonian cycle problem, as a connected 2-factor is
obviously a Hamiltonian cycle. Existence of a connected ½a; b�-factor, or of a
connected ðg; f Þ-factor, is an NP-complete problem, see for example the classic
book of Garey and Johnson [62] and [7, 42] for an updated reference. Kano [81]
proposed many conjectures and problems on the topic of connected factors.

4.1. Ore-type Conditions

Kouider and Maheo proved

Theorem 32 ([87]). Let G be a connected graph of orden n and minimum degree d.

Let a and b be integers such that 2a � b. Suppose that n � ðaþ bÞðaþ b� 1Þ
b and

d � n

1þbbac
: Then G has a connected ½a; b�-factor.

Note that the condition d � n
1þb

a

is necessary, because if the complete bipartite

graph Kd;n�d has an ½a; b� factor then aðn� dÞ � bd.
For 2-edge connected graphs having large order Matsuda has strengthened

Theorems 23 and 32 as follows

Theorem 33 ([110]). Let a � 2 and t � 2 be integers and G a 2-edge connected graph
of order jGj � 2ðt þ 1Þ a� 2ð Þt þ að Þ þ t � 1. Suppose that dðGÞ � a and
r2ðGÞ � 2jGj=ð1þ tÞ. Then G has an ½a; at�-factor with the property that it contains
a 2-edge connected ½2; 2t�-factor.

Matsuda’s condition cannot be weakened to r2ðGÞ � 2jGj=ð1þ tÞ � 1 as is
seen from the following example.

Let G be a complete bipartite graph with partite sets A and B such that jAj ¼ m
and jBj ¼ tmþ 1, where m is any positive integer. Then it follows that jGj ¼ jAjþ
jBj ¼ ð1þ tÞmþ 1, which for sufficiently large m satisfies the order condition, and
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2jGj
1þ t

> degGðxÞ þ degGðyÞ ¼ 2m >
2jGj
1þ t

� 1

for two nonadjacent vertices x and y in B. However, G has no ½a; at�-factor, since
atjAj < ajBj.

Nishimura proved

Theorem 34 ([118]). Let k � 2 be an integer and let G be a connected graph of order
n such that n � 4k � 3, kn is even and dðGÞ � k. If maxfdegðuÞ;degðvÞg � n=2 holds
for every pair of independent vertices, then G has a k-factor.

The theorem is sharp, the hypothesis on the degree cannot be weakened as can
be seen by considering an unbalanced bipartite graph. The hypothesis on the
order n cannot be weakened either, Nishimura considers the join of a complete
graph K2k�4 with the disjoint union of a vertex and the cycle C2k�1. This graph
satisfies the hypothesis on the degrees but it is of order 4k � 4 and has no k-factor.

This factor is not necessarily connected, but Kano [81] observed that Ore’s
condition holds, hence G has a Hamiltonian cycle. Combined with the k-factor
that gives a connected ½k; k þ 2�-factor in G.

Kano has raised the following problem.
Problem: Find sufficient conditions for a graph to have a connected ½k; k þ 1�-

factor.
Answers to Kano’s problem have been given in Theorems 35, 38, 36 and 50.
B. Wei and Y. Zhu proved

Theorem 35 ([142]). Let k � 2 be an integer and let G be a graph of order n such
that n � 8k � 4 and kn is even. If dðGÞ � n=2, then G has a 2-connected k-factor
containing a Hamiltonian cycle.

The condition dðGÞ � n=2 ensures Hamiltonicity, but it does not ensure exis-
tence of a k-factor containing a given Hamiltonian cycle. For, let n � 6 be even,
k � 3 and set m ¼ n=2, form the cycle C ¼ v1v2 . . . vm and the path
P ¼ vmþ1vmþ2 . . . vn. Then the join G ¼ C þ P obtained by adding all edges be-
tween C and P satisfies dðGÞ � n=2 but G has no k-factor containing the Hamil-
tonian cycle v1v2 . . . vn.

Similarly, in Theorem 36 by M. Cai, Y. Li and Kano below, we observe that
Ore’s condition, r2 � n, implies Hamiltonicity.

Theorem 36 ([22,23]). Let k � 2 be an integer and G a graph of order n with
dðGÞ � k and r2ðGÞ � n. If n � 8k � 16 for even n and n � 6k � 13 for odd n, then
for any given Hamiltonian cycle C, G has a ½k; k þ 1�-factor containing C.

Matsuda [108] obtained this last result with the condition r2 � n replaced by
the weaker condition maxfdegGðxÞ; degGðyÞg � n=2 for nonadjacent x and y.

For ½a; b�-factors Matsuda has proved an analogous result
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Theorem 37 ([109]). Let 2 � a < b be integers and let G be a Hamiltonian graph of

order n � ðaþ b� 4Þð2aþ b� 6Þ
b� 2

. Suppose that dðGÞ � a and maxfdegGðxÞ;

degGðyÞg �
ða� 2Þn
aþ b� 4

þ 2 for each pair of nonadjacent vertices x and y of V(G).

Then G has an [a,b]-factor containing a given Hamiltonian cycle.

Let us mention an unpublished result of Y. Li:

Theorem 38 ([97]). Let k � 2 be an integer and G a graph of order n with
dðGÞ � n=2 and dðG� eÞ < n=2 for all e in E(G). If n � 4k þ 2 then for any
Hamiltonian cycle C of G there exists a ½k; k þ 1�-factor containing C.

Note that the graphs considered in that result are not necessarily regular. Let
us consider for example the join of a stable set of p; ðp < n=4Þ; vertices and an
ðn=2� pÞ-regular Hamiltonian graph.

We state two conjectures about factors containing Hamiltonian cycles.

Conjecture (Y. Zhu, Z. Liu, M. Cai). Let k � 2 be an integer, and G a 2-connected
graph of order n with n � 8k, kn even and dðGÞ � k. If for any two nonadjacent
vertices u and v of G max fdegGðuÞ; degGðvÞg � n=2, then G has a k-factor con-
taining a Hamiltonian cycle.

Conjecture (Y. Zhu, Z. Liu, M. Cai). Let k � 2 be an integer, and G a 2-connected

graph of order n with n � 8k, kn even and dðGÞ � k. If jNGðuÞ [ NGðvÞj �
2n� 3

3
holds for any two nonadjacent vertices u and v of G then G has a k-factor containing

a Hamiltonian cycle.

We get a 2k-factor if we have for example a family of k edge-disjoint Hamil-
tonian cycles. Furthermore this factor is 2k-edge connected. In 1971 Nash-Wil-
liams [113] established a sufficient condition, involving the minimum degree and
the order of the graph, for the existence of such a factor. Several authors con-
sidered extensions of this result with conditions involving r2 instead of the min-
imum degree, but with different bounds on the order of the graph (Faudree,
Rousseau and Schelp [54], H. Li [102], Egawa [46]).

Theorem 39 ([102]). If G is a simple graph with n � 20 and minimum degree d with
n � 2d2 and r2 � n, then G contains at least bðd� 1Þ=2c Hamiltonian cycles.

Theorem 40 ([103]). If G is a simple graph with n � 20 and minimum degree d � 5
and r2 � n, then G contains at least 2 edge disjoint Hamiltonian cycles.

Theorem 41 ([46]). Let k and n be integers such that 2 � k � n
44
þ 1 and let G be a

graph of order n with dðGÞ � 4k � 2, r2ðGÞ � n. Then G has k edge disjoint
Hamiltonian cycles.
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Berman [16] has considered the parity of the number of connected f -factors
avoiding or containing special edge sets.

4.2. K1,h -Free Graphs

G. Li, B. Zhu and C. Chen [99] proved that every 2-connected claw-free graph
having a k-factor, k � 2, also has a connected ½k; k þ 1�-factor.

Egawa and Ota [47] found that a connected claw-free graph with
d � ð9k þ 12Þ=8 and kn even has a k-factor.

B. Xu, Z. Liu and Tokuda prove

Theorem 42 ([149]). Let h � 3 be an integer and let G be a connected K1;h-free
graph. Let g,f be maps from V(G) into the nonnegative integers satisfying
gðvÞ � f ðvÞ, for each v in V(G). If G has a (g,f)-factor then G contains a connected
ðg; f þ h� 1Þ-factor.

For constant functions f and g, the result above is refined for h ¼ 3 by
B. Xu and Z. Liu and for h � 4 by Tokuda. The existence of an ½a; b�-factor
guarantees, also, the existence of a connected ½a; b�-factor if b is big enough.
More precisely,

Theorem 43 ([150,128]). For integers h, a, b satisfying h � 3; a � 1 and
b � aðh� 2Þ þ 2, if G is connected, K1;h-free and has an ½a; b�-factor, then G has a
connected [a,b]-factor.

4.3. Stability

Egawa and Enomoto [44], and independently Nishimura [117] gave a sufficient
condition for a graph to contain a k-factor, not necessarily connected, as a
function of the stability number of the graph and the connectivity. This leads to
the question of whether an integer f ða; b; jÞ exists such that aðGÞ � f ða; b; jÞ
guarantees existence of a connected ½a; b�-factor in G.

Recently, Kouider and Lonc proved:

Theorem 44 ([88]). Let G be a j-connected graph, a � 2, b � aþ 3 and

ða; bÞ 6¼ ð2; 5Þ; ð2; 7Þ; ð3; 6Þ; ð4; 7Þ. If dðGÞ � 10ðaþ 1Þj
9ða� 1Þ þ a and

aðGÞ �
4jb
ðaþ 1Þ2

for a odd;

4jb
aðaþ 2Þ for a even;

8
><

>:

then G has a connected ½a; b�-factor.

Theorem 45 ([88]). Let b � aþ 1 and let one of the following two conditions be
satisfied

(i) a � 4 and ða; bÞ 6¼ ð4; 7Þ or
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(ii) a ¼ 3 and b is divisible by 4.

If G is a j-connected graph such that j � 2, dðGÞ � 2jþ a, and aðGÞ � 4bj
ðaþ 1Þ2

,
then G has a 2-connected ½a; b�-factor.

4.4. Toughness

Win’s theorem on trees and toughness, Theorem 7, combined with Theorem 53
below implies Theorem 42 of B. Xu, Z. Liu and Tokuda.

In fact Ellingham,Nam andVoss [Lemma 6,49] prove that every connectedK1;h-
free graph satisfies the condition of Theorem7byWin, when k in Theorem7 is taken
to be equal to h. Thus G has an h-tree and a ðg; f Þ-factor so that application of
Theorem 53 with f 0 ¼ h produces a connected ðg; f þ h� 1Þ-factor in G as wanted
inTheorem42.Theorem7 togetherwithTheorem46(ii) belowalso implies Theorem
42. B. Xu and Z. Liu observed [151] that any connected 1=ðh� 2Þ-tough graph
having a ðg; f Þ-factor, 1 � gðxÞ � f ðxÞ for all x in V ðGÞ has a connected
ðg; f þ h� 1Þ-factor.

Let h be any integer positive valued function on the vertices of G. In [49]
Ellingham, Nam and Voss consider the extension of a ðg; f Þ-factor into a con-
nected ðg; f þ hÞ-factor. Thus they generalize Win’s theorem by giving four dif-
ferent sufficient conditions. For greater clarity we reformulate their result below
for the case of a constant function h.

Theorem 46 ([49]). Let h � 1 be an integer. Let G be a connected graph and g,f be
positive integer-valued functions defined on V ðGÞ. Suppose that G has a ðg; f Þ-factor
F in which each component has at least c vertices. Then F extends into a connected
ðg; f þ hÞ-factor of G if for every nonempty subset S of V ðGÞ at least one of the
following properties hold:

(i) xðG� SÞ < ðh� 2ÞjSj þ 3; or,
(ii) c � 2 and xðG� SÞ < ðh� 1ÞjSj þ 3; or,

(iii) xðG� SÞ < dðh
2
� 1

c
ÞjSjÞe þ 2,

(iv) c � 2, and xðG� SÞ < d ch� 2

2ðch� 1Þ � hjSj þ
2ch� 1

ch� 1
e:

As a corollary they show that any 1
h�2-tough graph has ‘‘the canonical’’

extension (see Tokuda’s Theorem 43). We mention next the following result of
Katerinis.

Theorem 47 ([82]). Let a and b be two positive integers, 1 � a � b, and let G be a
graph of order n such that a � n is even if a ¼ b. If toughðGÞ � a� 1þ a

b, then G has
an ½a; b�-factor.

Ellingham, Nam and Voss use Theorem 47 above to derive the next two
theorems.

Theorem 48 ([49]). Let a and b be positive integers (4 � aþ 2 � b). If G is a graph
with toughðGÞ � ða� 1Þ þ a

b� 2
, then G has a connected ½a; b�-factor which contains

an ½a; b� 2�-factor.
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Theorem 49 ([49]). Let a and b be positive integers (3 � aþ 1 � b). If G is a graph

with toughðGÞ � maxfa� 1þ a
b� 1

;
2a

a� 1
g, then G has a connected ½a; b�-factor

which contains an ½a; b� 1�-factor.

4.5. Extensions of Factors

As an extension of Theorem 34 M. Cai proves

Theorem 50 ([25]). Let k be an integer, k � 2, and G a connected graph of order n.
If G has a k-factor F and, moreover, among any three independent vertices of G there
is at least one pair of vertices with degree-sum at least n� k, then G has a matching
M such that M and F are edge disjoint and M [ F is a connected ½k; k þ 1�-factor.

M. Cai and Y. Li further extend this in Theorems 51 and 52 below. They
define an almost k-factor to be a factor F � such that every vertex has degree k
except at most one vertex with degree k � 1.

Theorem 51 ([24]). Let k be an odd integer, k � 3, and G a connected graph of order
n with n � 4k � 3 and minimum degree at least k. If maxfdegGðuÞ; degGðvÞg � n=2
for each pair of nonadjacent vertices u,v in G, then G has an almost k-factor F � and
a matching M such that F � and M are edge disjoint and F � [M is a connected
½k; k þ 1�-factor of G.

Theorem 52 ([101]). Let G be a connected graph of order n, let g and f be two
positive integer functions defined on V ðGÞ which satisfy 2 � gðvÞ � f ðvÞ for each
vertex v 2 V ðGÞ. Let G have a ðg; f Þ-factor F and put l ¼ minfgðvÞjv 2 V ðGÞg.
Suppose that among any three independent vertices of G there is at least one pair of
vertices with degree sum at least n� l. Then G has a matching M such that M and F
are edge disjoint and M [ F is a connected ðg; f þ 1Þ-factor of G.

An extension by spanning trees is proved by Tokuda, B. Xu and J. Wang.

Theorem 53 ([130]). Let G be a graph and g; f ; f 0 positive integer-valued functions
defined on V ðGÞ. Assume G has a ðg; f Þ-factor and an ð1; f 0Þ-factor F such that F is
a spanning tree for G. Then G contains a connected ðg; f þ f 0 � 1Þ-factor.

This implies that if G has a ðg; f Þ-factor and a k-tree then G has a connected
ðg; f þ k � 1Þ-factor.

Note that there are not so many works on connected ðg; f Þ-factors in which f
and g are not constants. Factorization into even, connected ½a; b�-factors has not
yet been considered. It might in some years be the subject of another survey.

Acknowledgments. We would to thank M. Kano, B. Jackson and the referees for their
helpfull remarks.
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