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Abstract. A set S of vertices in a graph G is a paired-dominating set of G if every vertex of
G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect
matching. The minimum cardinality of a paired-dominating set of G is the paired-domi-
nation number of G, denoted by cprðGÞ. If G does not contain a graph F as an induced
subgraph, then G is said to be F -free. In particular if F ¼ K1;3 or K4 � e, then we say that G
is claw-free or diamond-free, respectively. Let G be a connected cubic graph of order n. We
show that (i) if G is ðK1;3;K4 � e;C4Þ-free, then cprðGÞ � 3n=8; (ii) if G is claw-free and
diamond-free, then cprðGÞ � 2n=5; (iii) if G is claw-free, then cprðGÞ � n=2. In all three
cases, the extremal graphs are characterized.
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1. Introduction

Domination and its variations in graphs are now well studied. The literature on
this subject has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [7, 8]. In this paper we investigate paired-domination in
cubic claw-free graphs.

A matching in a graph G is a set of independent edges in G. The cardinality of a
maximum matching in G is denoted by b0ðGÞ. A perfect matching M in G is a
matching in G such that every vertex of G is incident to a vertex of M .

Paired-domination was introduced by Haynes and Slater [9]. A paired-domi-
nating set, denoted PDS, of a graph G is a set S of vertices of G such that every
vertex is adjacent to some vertex in S and the subgraph induced by S contains a
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perfect matching. Every graph without isolated vertices has a PDS since the end-
vertices of any maximal matching form such a set. The paired-domination number
of G, denoted by cprðGÞ, is the minimum cardinality of a TDS.

A total dominating set, denoted TDS, of a graph Gwith no isolated vertex is a set
S of vertices ofG such that every vertex is adjacent to a vertex in S (other than itself).
Every graph without isolated vertices has a TDS, since S ¼ V ðGÞ is such a set. The
total domination number of G, denoted by ctðGÞ, is the minimum cardinality of a
TDS. Clearly, ctðGÞ � cprðGÞ for every connected graph of order n � 2. Total
domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2].

For notation and graph theory terminology we in general follow [7]. Specifi-
cally, let G ¼ ðV ;EÞ be a graph with vertex set V of order n and edge set E. For a
set S � V , the subgraph induced by S is denoted by G½S�. A cycle on n vertices is
denoted by Cn and a path on n vertices by Pn. The minimum degree (resp.,
maximum degree) among the vertices of G is denoted by dðGÞ (resp., DðGÞ).

We call K1;3 a claw and K4 � e a diamond. If G does not contain a graph F as
an induced subgraph, then we say that G is F -free. In particular, we say a graph is
claw-free if it is K1;3-free and diamond-free if it is ðK4 � eÞ-free. An excellent survey
of claw-free graphs has been written by Faudree, Flandrin, and Ryjáček [4].

In this paper we show that if G is a connected ðK1;3;K4 � e;C4Þ-free cubic
graph of order n � 6, then cprðGÞ � 3n=8, while if G is a connected claw-free and
diamond-free cubic graph of order n � 6, then cprðGÞ � 2n=5. We show that if G
is a connected claw-free cubic graph of order n � 6 that contains k � 1 diamonds,
then cprðGÞ � 2ðnþ 2kÞ=5. Finally, we show that a connected claw-free cubic
graph has paired-domination number at most one-half its order. In all cases, the
extremal graphs attaining the upper bounds are characterized.

2. ðK1;3;K4 � e;C4Þ-free Cubic Graphs

To obtain sharp upper bounds on the paired-domination number of ðK1;3;
K4 � e;C4Þ-free cubic graphs, we shall need a result due to Hobbs and Schmei-
chel [11] who established a lower bound on the maximum number b0ðGÞ of
independent edges in a cubic graph having so-called super-hereditary properties.
As a consequence of this result, we have the following lower bound on b0ðGÞ when
G is a cubic graph.

Theorem 1 [11]. If G is a connected cubic graph of order n, then b0ðGÞ � 7n=16 with
equality if and only if G is the graph shown in Fig. 1.

Using Theorem 1, we show that the paired-domination number of a
ðK1;3;K4 � e;C4Þ-free cubic graph is at most three-eights its order.

Theorem 2. If G is a connected ðK1;3;K4 � e;C4Þ-free cubic graph of order n � 6,
then there exists a PDS of G of cardinality at most 3n=8 that contains at least one
vertex from each triangle of G. Furthermore, cprðGÞ ¼ 3n=8 if and only if G is the
graph shown in Fig. 2.

448 O. Favaron and M.A. Henning



Proof. Since G is ðK1;3;K4 � eÞ-free and cubic, every vertex of G belongs to a
unique triangle of G, and so n � 0ðmod3Þ. Let G0 be the graph of order n0 ¼ n=3
whose vertices correspond to the triangles in G and where two vertices of G0 are
adjacent if and only if the corresponding triangles in G are joined by at least one
edge. Then, since G is connected and C4-free, G0 is a connected cubic graph. Thus,
by Theorem 2, b0ðG0Þ � 7n0=16 with equality if and only if G0 is the graph shown
in Fig. 1. Let M 0 be a maximum matching in G0 (of cardinality b0ðG0Þ).

We now construct a PDS S of G as follows: For each edge u0v0 2 M 0, we select
an edge uv of G that joins a vertex u in the triangle corresponding to u0 and a
vertex v in the triangle corresponding to v0, and we add the vertices u and v to S,
while for each vertex of G0 that is not incident with any edge of M 0, we add two
vertices from the corresponding triangle in G. Then S is a PDS of G that contains
at least one vertex from each triangle of G. Thus, since jSj ¼
2jM 0j þ 2ðn0 � 2jM 0jÞ ¼ 2ðn0 � jM 0jÞ,

cprðGÞ � 2ðn0 � b0ðG0ÞÞ � 2 n0 � 7n0

16

� �
¼ 9n0

8
¼ 3n

8
:

Fig. 1. The unique connected cubic graph G with b0ðGÞ ¼ 7n=16

Fig. 2. The unique connected cubic ðK1;3;K4 � e;C4Þ-free graph G with cprðGÞ ¼ 3n=8
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Furthermore, if we have equality throughout this inequality chain, then
b0ðG0Þ ¼ 7n0=16 and G0 is the graph shown in Fig. 1. But then G must be the graph
shown in Fig. 2. Conversely, it can be checked that the graph G of Fig. 2 satisfies
n ¼ 48 and cprðGÞ ¼ 18. (

3. Claw-free Cubic Graphs

If we remove the restriction that G is C4-free in Theorem 2, then we show in this
subsection that the upper bound on the paired-domination number of G increases
from three-eights its order to two-fifths its order. For this purpose we first prove
the following result, our proof of which is along similar lines to the proof of
Hobbs and Schmeichel in [11].

Theorem 3. If G is a connected graph of order n with dðGÞ ¼ 2 and DðGÞ ¼ 3 such
that every vertex of degree 2 belongs to a path with an even number of internal
vertices of degree 2 between two not necessarily distinct end-vertices of degree 3,
then b0ðGÞ � 2n=5 with equality if and only if G is the graph shown in Fig. 3.

Proof. By a theorem of Berge [1], for any graph G

b0ðGÞ ¼ 1

2
n� max

S�V ðGÞ
foðG� SÞ � jSjg

� �
;

where oðG� SÞ denotes the number of odd components of G� S. Thus it suffices
to show that for the graph G satisfying the conditions of our theorem,

max
S�V ðGÞ

foðG� SÞ � jSjg � n

5
: ð1Þ

Let S be a smallest subset of V ðGÞ on which the maximum in ð1Þ is attained. If
S ¼ ;, then ð1Þ is satisfied. Hence we may assume jSj � 1. Let v 2 S and let
S0 ¼ S � fvg. Then, by our choice of S, oðG� S0Þ � oðG� SÞ � 2, implying that v
must be adjacent to three distinct odd components of G� S. Thus every vertex of
S is adjacent to three distinct odd components of G� S. Furthermore, since G is
connected and DðGÞ ¼ 3, every component of G� S is odd. In particular, we note
that no vertex of degree 2 is in S, and so each (odd) component of G� S contains
an odd number of vertices of degree 3 in G, plus possibly an even number of

Fig. 3. A graph G with b0ðGÞ ¼ 2n=5
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vertices of degree 2 in G. It follows that there are an odd number of edges joining
S and any component of G� S.

For k � 0, let c2kþ1 denote the number of components H of G� S that are
joined to S by exactly 2k þ 1 edges. If k ¼ 0, then since dðGÞ ¼ 2, H has order at
least 3. Furthermore, jV ðHÞj ¼ 3 if and only if H is a triangle consisting of two
adjacent vertices of degree 2 and their common neighbor of degree 3 in G. If
k � 1, then the sum of the degrees in H of the vertices of H is at
least 2ðjV ðHÞj � 1Þ since H is connected. On the other hand, this sum is equal to
3jV ðHÞj � d2 � ð2k þ 1Þ where d2 � 0 denotes the number of vertices of H of
degree 2 in G. Consequently, jV ðHÞj � 2k þ d2 � 1 � 2k � 1. Hence,

jV ðHÞj � 3 if k ¼ 0
2k � 1 if k � 1:

�

Proceeding now exactly as in the proof of Hobbs and Schmeichel in [11] we obtain
ð1Þ. Furthermore, their proof shows that if we have equality in ð1Þ, then each
component of G� S that is joined to S by exactly one edge has order exactly 3
(and is therefore a triangle consisting of two adjacent vertices of degree 2 and
their common neighbor of degree 3 in G) while c2kþ1 ¼ 0 for k � 1. Since G is
connected, G is therefore the graph shown in Fig. 3. (

Using Theorem 3, we present a sharp upper bound on the paired-domination
number of a claw-free cubic graph.

Theorem 4. If G is a connected claw-free cubic graph of order n � 6 that contains
k � 0 diamonds, then there exists a PDS of G of cardinality at most 2ðnþ 2kÞ=5
that contains at least one vertex from each triangle of G. Furthermore,
cprðGÞ ¼ 2ðnþ 2kÞ=5 if and only if G 2 fG0;G1;G2;G3g where G0, G1, G2, and G3

are the four graphs shown in Fig. 4.

Proof. If n ¼ 6, then G is the prism K3 � K2, k ¼ 0, and there exists a PDS of G of
cardinality 2 < 12=5 that contains one vertex from each triangle of G. Hence we
may assume that n � 8.

Since G is a claw-free and cubic, every vertex of G belongs to a unique triangle
or to a unique diamond of G. Let G0 be the graph of order n0 ¼ ðnþ 2kÞ=3 whose
vertices correspond to the triangles in G and where two vertices of G0 are adjacent
if and only if the corresponding triangles in G share a common edge or are joined
by at least one edge. Each triangle of G that belongs to no diamond is joined to
three other triangles by one edge each or to a triangle by one edge and to another
one by two edges. Therefore the triangles of G in no diamond that are joined to
only two other triangles can be gathered by pairs forming a subgraph shown in
Fig. 5(a) (where u and v are distinct but possibly adjacent). Each diamond in G
corresponds to two adjacent vertices of degree two in G0. Thus, G0 is either an even
cycle or satisfies the conditions of Theorem 3 (two vertices of degree 2 in G0

belong to a triangle of G0 if they correspond in G either to a subgraph shown in
Fig. 5(a) with uv 2 EðGÞ or to a subgraph shown in Fig. 5(b) with xy 2 EðGÞ).
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In both cases, b0ðG0Þ � 2n0=5 with equality if and only if G0 is the graph shown
in Fig. 3. Let M 0 be a maximum matching in G0 (of cardinality b0ðG0Þ) and let S be
a PDS of G as constructed in the proof of Theorem 2. Then S is a PDS of G that
contains at least one vertex from each triangle of G. Thus, since jSj ¼ 2ðn0 � jM 0jÞ,

cprðGÞ � 2ðn0 � b0ðG0ÞÞ � 2 n0 � 2n0

5

� �
¼ 6n0

5
¼ 2ðnþ 2kÞ

5
:

Furthermore, if we have equality throughout this inequality chain, then
b0ðG0Þ ¼ 2n0=5 and G0 is the graph shown in Fig. 3. But then k � 3 and G must be
one of the four graphs Gk shown in Fig. 4. Conversely, it can be checked that for
k 2 f0; 1; 2; 3g the graph Gk of Fig. 4 contains k diamonds and satisfies
cprðGkÞ ¼ 2ðnþ 2kÞ=5.

As an immediate consequence of Theorem 3, we have the following result.

(a) (b)

(c) (d)

Fig. 4. The four connected cubic claw-free graph Gk , 0 � k � 3, with k copies of K4 � e and
with cprðGkÞ ¼ 2ðnþ 2kÞ=5

(a) (b)

Fig. 5. Two subgraphs of G
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Theorem 5. If G is a connected claw-free and diamond-free cubic graph of
order n � 6, then there exists a PDS of G of cardinality at most 2n=5 that contains
at least one vertex from each triangle of G. Furthermore, cprðGÞ ¼ 2n=5 if and only
if G ¼ G0 where G0 is the graph shown in Fig. 4ðaÞ.

Haynes and Slater [9] showed that the paired-dominating set problem is NP-
complete. We remark that since the constructions of the graph G0 from G and of a
maximum matching M 0 of G0 in the proof of Theorems 2 and 4 are polynomial,
the proof of Theorems 2 and 3 provides a polynomial algorithm to construct a
PDS (and therefore a TDS) of G of order at most 3n=8 or 2n=5 or 2ðnþ 2kÞ=5 in
the considered classes.

As a further consequence of Theorem 4, we show that the paired-domination
number of a claw-free cubic graph is at most one-half its order and we charac-
terize the extremal graphs. For this purpose, we say that a diamond in a claw-free
cubic graph is of type-1 if the two vertices not in the diamond that are neighbors
of the degree two vertices of the diamond are not adjacent, and of type-2 other-
wise. Hence the diamond shown in Fig. 5 is of type-1 if xy =2 EðGÞ and of type-2 if
xy 2 EðGÞ.

Let F1, F2 and F3 be the three cubic claw-free graphs shown in Fig. 6.

Theorem 6. If G is a connected claw-free cubic graph of order n, then cprðGÞ � n=2
with equality if and only if G 2 fK4; F1; F2; F3;G3g where F1, F2 and F3 are the graphs
shown in Fig. 6 and G3 is the graph shown in Fig. 4(d).

Proof. We proceed by induction on the order n of a connected claw-free cubic
graph. If n ¼ 4, then G ¼ K4 and cprðGÞ ¼ 2 ¼ n=2, while if n ¼ 6, then
G ¼ K3 � K2 and cprðGÞ ¼ 2 < n=2. This establishes the bases cases. Suppose then
that n � 8 is even and that for every connected claw-free cubic graph G0 of
order n0 < n, cprðG0Þ � n0=2 with equality if and only if G0 2 fK4; F1; F2; F3;G3g.
Let G be a connected claw-free cubic graph of order n.

If G is diamond-free, then by Theorem 4, cprðGÞ � 2n=5. Hence we may
assume that G contains at least one diamond. Let F be the subgraph of G shown
in Fig. 7 where x and y are distinct but possibly adjacent.

Claim 1. If G has a diamond of type-1, then cprðGÞ � n=2 with equality if and only if
G 2 fF1; F2; F3g.

Proof. We may assume that the diamond G½fu; v;w; zg� is of type-1, and so
xy =2 EðGÞ. Let G0 be the connected claw-free cubic graph of order n0 ¼ n� 4
obtained from G by deleting the vertices u; v;w; z (and their incident edges) and
adding the edge xy. By the inductive hypothesis, cprðG0Þ � n0=2. Let S0 be a
minimum PDS of G0. If fx; yg � S0, let S ¼ S0 [ fu;wg if the edge xy belongs to a
perfect matching in G0½S0�, and let S ¼ S0 [ fu; vg otherwise. If x =2 S0, let
S ¼ S0 [ fu; vg. If x 2 S0 and y =2 S0, let S ¼ S0 [ fv;wg. In all cases, S is a PDS of
G, and so cprðGÞ � jSj � n=2. Furthermore, if cprðGÞ ¼ n=2, then cprðG0Þ ¼ n0=2
and so, by the inductive hypothesis, G0 2 fK4; F1; F2; F3;G3g. Unless G0 ¼ K4, the
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edge xy does not belong to a triangle of G0 for otherwise G would contain a claw.
If G0 2 fF2; F3g, then cprðGÞ < n=2 (irrespective of the choice of the edge xy), a
contradiction. Hence either G0 ¼ K4, in which case G ¼ F1, or G0 ¼ F1 in which
case G ¼ F2, or G0 ¼ G3, in which case G ¼ F3. (

Claim 2. If every diamond of G is of type-2, then cprðGÞ � n=2 with equality if and
only if G ¼ G3.

Proof. Note that xy 2 EðGÞ. Let a be the common neighbor of x and y, and let b
be the remaining neighbor of a. Let NðbÞ ¼ fa; c; dg. Since G is claw-free,
G½fb; c; dg� ¼ K3. Let c0 and d 0 be the neighbors of c and d, respectively, that do
not belong to the triangle G½fb; c; dg�. If c0 ¼ d 0, then G contains a diamond of
type-1, contrary to assumption. Hence, c0 6¼ d 0. If c0 and d 0 belong to a common
diamond, then n ¼ 14 and cprðGÞ ¼ 6. Hence we may assume that

(a) (b)

(c)

Fig. 6. Three connected cubic claw-free graphs

Fig. 7. A subgraph F
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Nðc0Þ \ Nðd 0Þ ¼ ;. Thus the triangle containing c0 is vertex-disjoint from that
containing d 0. Furthermore, these two triangles are not contained in a diamond
(for otherwise such a diamond would be of type-1). It follows that the only
vertices within distance 3 from b that belong to a diamond are u and w. Hence we
can uniquely associate the eight vertices of the set V ðF Þ [ fa; bg with the diamond
induced by fu; v;w; zg. Therefore if G has k diamonds, k � n=8. Thus, by
Theorem 4, cprðGÞ � 2ðnþ 2kÞ=5 � n=2. Furthermore, it follows that in this case
cprðGÞ ¼ n=2 if and only if G ¼ G3. (

The desired result of Theorem 6 now follows from Claims 1 and 2. (

We show next that the upper bound on the paired-domination number of a
claw-free cubic graph presented in Theorem 4 can be improved if we add the
restriction that the graph is 2-connected.

Theorem 7. If G is a 2-connected claw-free cubic graph of order n � 6 that contains
k � 0 diamonds, then cprðGÞ � ðnþ 2kÞ=3.

Proof. If n ¼ 6, then G ¼ K3 � K2, k ¼ 0, and so cprðGÞ ¼ 2 ¼ ðnþ 2kÞ=3. Hence
we may assume that n � 8. Let G0 be the graph of order n0 ¼ ðnþ 2kÞ=3 con-
structed in the proof of Theorem 4. Then, G0 is either an even cycle or satisfies the
conditions of Theorem 3. Since G is 2-connected, so too is G0.

We show that G0 has a perfect matching M 0. If G0 is an even cycle, this is
immediate. Assume then that DðG0Þ ¼ 3 and that every vertex of degree 2 belongs
to a path with an even number of internal vertices of degree 2 between two not
necessarily distinct end-vertices of degree 3 in G0. Hence the subgraph of G0

induced by its vertices of degree two contains a perfect matching M�. We now
transform G0 into a 2-connected cubic graph G00 by replacing each edge xy 2 M� in
G0 with a K4 � e (and so x and y are not adjacent in the resulting K4 � e). Let x0

and y0 denote the two new vertices of the resulting K4 � e. Since every 2-connected
cubic graph has a perfect matching, G00 has a perfect matching M 00. We now
construct a perfect matching M 0 of G0 from the matching M 00 as follows. For each
edge xy 2 M�, if x0y0 2 M 00, then we remove x0y0 from the matching, while if
fxx0; yy0g 	 M 0 (resp., fxy0; x0yg 	 M 0), then we replace the edges xx0 and yy0 (resp.,
xy 0 and x0y) with the edge xy. Hence, b0ðG0Þ ¼ n0=2.

Let S be a PDS of G as constructed from M 0 as in the proof of Theorem 2.
Then, cprðGÞ � jSj ¼ 2jM 0j ¼ n0 ¼ ðnþ 2kÞ=3. (

As an immediate consequence of Theorem 7, we have the following result.

Theorem 8. If G is a 2-connected claw-free and diamond-free cubic graph of
order n � 6, then cprðGÞ � n=3.

4. Total Domination

Since ctðGÞ � cprðGÞ for all graphs G, and since ctðGÞ ¼ cprðGÞ for the graph G of
Fig. 2 and for the graph G ¼ G0 of Fig. 4ðaÞ, we remark that the results of both
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Theorem 2 and Theorem 5 are still valid for total domination (i.e., in the state-
ment of these theorems we can replace ‘‘PDS’’ by ‘‘TDS’’ and ‘‘cprðGÞ" by
‘‘ctðGÞ"). However if G 2 fF2; F3;G3g where F2 and F3 are the graphs shown in
Fig. 6 and G3 is the graph shown in Fig. 4(d), then ctðGÞ < cprðGÞ. Hence we have
the following immediate consequence of Theorem 6.

Theorem 9. If G is a connected claw-free cubic graph of order n, then ctðGÞ � n=2
with equality if and only if G ¼ K4 or G ¼ F1 where F1 is the graph shown in Fig. 6.

The inequality of Theorem 9 was established in [3] but the graphs achieving
equality were not characterized. We also remark that the conjecture in [6] that
every connected graph with minimum degree at least three has total domination
number at most one-half its order is completely proved in several manuscripts. We
show in [5] that if G is a connected claw-free cubic graph of order at least ten, then
the upper bound of Theorem 9 can be improved.
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