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Abstract. A sign pattern matrix is a matrix whose entries are from the set fþ;�; 0g. The
purpose of this paper is to obtain bounds on the minimum rank of any symmetric sign
pattern matrix A whose graph is a tree T (possibly with loops). In the special case when
A is nonnegative with positive diagonal and the graph of A is ‘‘star-like’’, the exact value
of the minimum rank of A is obtained. As a result, it is shown that the gap between the
symmetric minimal and maximal ranks can be arbitrarily large for a symmetric tree sign
pattern A.
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1. Introduction

In qualitative and combinatorial matrix theory, we study properties of a matrix
based on combinatorial information, such as the signs of entries in the matrix. A
matrix whose entries are from the set fþ;�; 0g is called a sign pattern matrix (or
sign pattern, or pattern). We denote the set of all n� n sign pattern matrices by
Qn. For a real matrix B, sgnðBÞ is the sign pattern matrix obtained by replacing
each positive (respectively, negative, zero) entry of B by + (respectively, �, 0). If
A 2 Qn, then the sign pattern class of A is defined by

QðAÞ ¼ fB : sgnðBÞ ¼ Ag:

For a symmetric sign pattern A, we define smrðAÞ, the symmetric minimal rank of A
by

smrðAÞ ¼ minfrank B : B ¼ BT ; B 2 QðAÞg:
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Similarly, the symmetric maximal rank of A, SMRðAÞ, is

SMRðAÞ ¼ maxfrank B : B ¼ BT ; B 2 QðAÞg:

For A 2 Qn, the minimal rank of A, denoted as mrðAÞ, is defined by

mrðAÞ ¼ minfrank B : B 2 QðAÞg:

The maximal rank of A, MRðAÞ, is given by MRðAÞ ¼ maxfrank B : B 2 QðAÞg:
A key basic result of the paper [8] is that for a symmetric sign pattern A, we

always have SMRðAÞ ¼ MRðAÞ ¼ k, where k is the maximum number of nonzero
entries of A with no two of the nonzero entries in the same row or column (k is
the term rank of A as defined in [5]). On the other hand, mrðAÞ < smrðAÞ is
possible. Recall that for a real symmetric matrix B, the inertia of B, written
as iðBÞ, is the triple of integers iðBÞ ¼ ðiþðBÞ; i�ðBÞ; i0ðBÞÞ, where iþðBÞ
(respectively, i�ðBÞ; i0ðBÞÞ denotes the number of positive (respectively, negative,
zero) eigenvalues of matrix B counted with their algebraic multiplicities. In [8] it
was proved that a symmetric sign pattern A requires unique inertia (all the
real symmetric matrices in QðAÞ have the same inertia) if and only if
smrðAÞ ¼ SMRðAÞ.

For a symmetric n� n sign pattern A, by GðAÞ we mean the undirected graph
of A, with vertex set f1; . . . ; ng and ði; jÞ is an edge if and only if ai;j 6¼ 0, where
ði; jÞ and ðj; iÞ are regarded as the same edge. A sign pattern A is a symmetric tree
sign pattern if A is symmetric and GðAÞ is a tree, possibly with loops. The sym-
metric tree sign patterns which require unique inertia were characterized in [8].
These are precisely the symmetric tree sign patterns A which require fixed rank,
that is, all the matrices in QðAÞ have the same rank (mrðAÞ ¼ MRðAÞ). In partic-
ular, when a symmetric tree sign pattern A has zero diagonal (GðAÞ has no loops),
it is always the case that

mrðAÞ ¼ smrðAÞ ¼ SMRðAÞ ¼ MRðAÞ ¼ 2t

where t is the maximum number of independent edges in GðAÞ. When A has some
nonzero diagonal entries, MRðAÞ is the maximum of the numbers of the form
qþ 2t, where t is a number of independent edges in GðAÞ and q is the number of
loops nonadjacent to those edges (each of t or q can be zero). Hence, when there is
a loop at each vertex, MRðAÞ ¼ n when A is n� n.

Several questions arise regarding symmetric tree sign patterns. Although
SMRðAÞ is known as mentioned above, how can we find smrðAÞ, or at least bounds
on smrðAÞ, when A has some nonzero diagonal entries? In [7] examples of sym-
metric tree sign patterns A are given where SMRðAÞ � smrðAÞ ¼ 1. How large can
this difference be for an arbitrary symmetric tree sign pattern?

We note that for a symmetric tree sign pattern A, every matrix B 2 QðAÞ is
diagonally similar to a symmetric matrix in QðAÞ (that is to say, there exists a
nonsingular diagonal matrix D such that D�1BD is a symmetric matrix in QðAÞ).
This can be proved inductively by using an end vertex. Hence,
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mrðAÞ ¼ smrðAÞ

and determining mrðAÞ is a matter of determining smrðAÞ. Further, it can be
shown (also by induction) that there exist suitable nonsingular diagonal
matrices D1 and D2 with the same sign pattern such that D1BD2 has all the off-
diagonal nonzero entries equal to 1. Thus mrðAÞ can be achieved by a matrix
(with the same sign pattern as D1BD2) whose off-diagonal nonzero entries are
all equal to 1, and whose diagonal entries agree in sign with A. Finally, it
should be pointed out that for a non-symmetric tree sign pattern A ¼ A1S,
where A1 is a symmetric tree sign pattern and S is a nonsingular diagonal sign
pattern, we have

mrðAÞ ¼ mrðA1Þ ¼ smrðA1Þ:

Hence, the study of the minimum rank of a non-symmetric tree sign pattern
matrix reduces to the study of the minimum rank of a symmetric tree sign pattern
matrix.

In this paper we obtain bounds on mrðAÞ where A is any symmetric sign
pattern matrix whose graph is a tree T (possibly with loops). We also obtain the
exact value of mrðAÞ in the special case when A is nonnegative with positive
diagonal and GðAÞ is ‘‘star-like’’. As a result, we show that the gap between
SMRðAÞ and smrðAÞ can be arbitrarily large for a symmetric tree sign pattern A.

The work in this paper is related to that of [10, 13]. In [10, 13] the diagonal
entries are allowed to be free, and in [13] a recursive algorithm is given for
computing the free-diagonal minimum rank for a tree. In this paper, we work with
a tree sign pattern A (hence each of whose diagonal entries is of fixed sign) and
obtain bounds for mrðAÞ. The free-diagonal minimum rank obtained in [13] is a
lower bound for the minimum rank in our sense. More generally, extensive work
has been done on the ranks of matrices (especially the adjacency matrices) asso-
ciated with graphs. For example, see [1], [2], [3], [4], [6], [9], [11], [12], [14], [15], and
[16].

2. Some Bounds on the Minimum Rank of a Symmetric Tree Sign Pattern

We first give a path-loop bound on mrðAÞ. A collection of subsets of a graph is
said to be independent if the subsets are pairwise disjoint; it is said to be nonad-
jacent if no two vertices from two different subsets in the collection are adjacent.

Theorem 2.1. Let A be any symmetric sign pattern matrix, with graph G (possibly
with loops). Let fP1; . . . ; Pk; L1; . . . ; Lmg be any collection of independent and non-
adjacent paths and loops in G. Let the lengths of the paths P1; . . . ; Pk be l1; . . . ; lk,
respectively. Then

l1 þ � � � þ lk þ m � mrðAÞ:
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Proof. Performing a suitable permutational similarity on A if necessary, we may
assume that the vertices of L1; . . . ; Lm come first, followed by the vertices of
P1; . . . ; Pk. Thus A is permutationally similar to a sign pattern of the form

D1

. .
.

Dm �
A1

. .
.

Ak

� �

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

where each Di is a 1� 1 nonzero matrix and each Aj is an irreducible tri-diagonal
pattern of order lj þ 1. Clearly, mrðDiÞ ¼ 1 for all i. Note that the last lj rows of
every matrix in QðAjÞ are linearly independent. Hence, mrðAjÞ � lj for each j.
Then, since the upper left portion of the above partitioned matrix is block
diagonal, it follows that

mrðAÞ � mrðD1Þ þ � � � þ mrðDmÞ þ mrðA1Þ þ � � � þ mrðAkÞ � mþ l1 þ � � � þ lk:

(
The following example shows that the path-loop bound is tight.

Example 2.2. Let T1 be a path of length 4 with a loop at each vertex. Let T2 be
formed from the star K1;3 by subdividing each edge into a path of length 2, with a
loop at each vertex.

Let A be the nonnegative (tri-diagonal) sign pattern whose graph is T1. From
Theorem 2.1, mrðAÞ � 4. It follows from Proposition 3.2 in [7] that mrðAÞ ¼ 4
(and MRðAÞ ¼ 5). In particular,

Fig. 1
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2 1 0 0 0

2 2 1 0 0

0 1 2 1 0

0 0 1 2 2

0 0 0 1 2

0
BBBBB@

1
CCCCCA

is a matrix in QðAÞ that has rank 4. Similarly, for any path of length l with a loop
at each vertex, mrðAÞ ¼ l for the corresponding nonnegative sign pattern A.

Next, let A be the nonnegative sign pattern whose graph is T2, a ‘‘star-like’’
pattern. By considering a path of length 4 and a nonadjacent loop, it follows from
Theorem 2.1 that mrðAÞ � 5. By a result in section 3,

mrðAÞ ¼ 7� 3þ 1 ¼ 5;

which again shows the tightness of the path-loop bound. (

For a general path P , with only some (or none) of the vertices having loops,
Proposition 3.3 of [7] could be used to find the minimum rank of any symmetric
sign pattern whose graph is P . The conditions in this proposition are in terms of
the locations of the nonzero diagonal entries of the sign pattern. From this, a
sharper path-loop bound than the one given in Theorem 2.1 can be obtained.

For a tree T , there exists a unique path from any vertex to any other vertex.
Hence, the diameter of T equals to the maximum path length in T , and we obtain
the following weak bound.

Corollary 2.3. Let A be any symmetric sign pattern matrix whose graph is a tree T
(possibly with loops). Then diam T � mrðAÞ.

We note that if A is any symmetric sign pattern, then it can be proved that
diam GðAÞ � mrðAÞ.

Throughout the remainder of the paper, when we say an edge we mean an edge
between two distinct vertices.

We shall next obtain an edge-loop bound on mrðAÞ. The shorter notation xy
will be used for an edge ðx; yÞ of a graph, and dðxÞ denotes the degree of a vertex x.
Recall that a forest is a disjoint union of trees.

Lemma 2.4. If M is a (nonempty) maximum independent edge set of a forest F, then
there exists xy 2 M with dðxÞ ¼ 1, that is, xy is a leaf of F .

Proof. Let x1y1 be a leaf of F , with dðx1Þ ¼ 1. If x1y1 2 M , we are done. Assume
x1y1 =2M . By the maximality of M , there exists y1x2 2 M (otherwise, M [ fx1y1g is
an independent set, contradicting the maximality of M). If dðx2Þ ¼ 1, we are done.
Assume dðx2Þ � 2, and let x2y2 be an edge where y2 6¼ y1. Then x2y2 =2M since
y1x2 2 M . If y2 is not adjacent to any edge in M , then the independent edge set

M [ fx1y1; x2y2g � fy1x2g
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contradicts the maximality of M . So there exists x3 such that y2x3 2 M . Since F is
acyclic, x3 =2fx1; y1g. If dðx3Þ ¼ 1, we are done. Otherwise, we continue in the same
way, and obtain

x3y3 =2M ; y3x4 2 M ; x4y4 =2M ; . . . :

Since F is finite, this process must terminate. Thus we obtain yk�1xk 2 M , with
dðxkÞ ¼ 1, for some positive integer k. (

The proof of the following result should be clear.

Lemma 2.5. If M is a (nonempty) maximum independent edge set of a forest F, and
xy 2 M , then M � fxyg is a maximum independent edge set in F � fx; yg.

Theorem 2.6. Let A be any symmetric sign pattern matrix whose graph is a forest F
(possibly with loops). Let M be a maximum set of independent edges in F and l the
number of loops in F � V ðMÞ. Then

lþ jM j � mrðAÞ:

Proof. We proceed by complete induction on n. The result is trivial for n � 2.

Since the result is clear if F does not contain any edge, we may assume M 6¼ /.
By Lemma 2.4, there is an edge xy 2 M with dðxÞ ¼ 1. Performing a permutation
similarity on A if necessary, we assume that

A ¼

� a 0 . . . 0

a � � . . . �
0 �
..
. ..

.
A�

0 �

0
BBBBB@

1
CCCCCA
;

where a 6¼ 0.
Note that for any matrix in QðAÞ, the second row cannot be written as a linear

combination of the n� 2 rows below it. Thus,

mrðAÞ � 1þ mrðA�Þ:

Since M� ¼ M � fxyg is a maximal independent edge set in F � ¼ F � fx; yg by
Lemma 2.5, the induction hypothesis implies that mrðA�Þ � lþ jM�j. Hence,
mrðAÞ � 1þ mrðA�Þ � 1þ lþ jM�j ¼ 1þ lþ jM j � 1 ¼ lþ jM j. (

As with the path-loop bound, the edge-loop bound is also tight.

Example 2.7. Let F be a star K1;s (which has a vertex at the ‘‘center’’ and all the
other s vertices adjacent to the center vertex), with a loop at each vertex.

Let A be any symmetric sign pattern matrix whose graph is this star. Using one
edge and s� 1 loops, Theorem 2.6 says that mrðAÞ � s. The lower bound s is
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achieved by the following matrix of order sþ 1 (where we have the center vertex
listed last):

1 1
1 1

. .
. ..

.

1 1
1 1 . . . 1 s

0
BBBB@

1
CCCCA
:

(

Depending on the tree, each of the path-loop or edge-loop bound can be a
better bound.

Example 2.8. For the star in Example 2.7, but with the center vertex and one
other vertex without loops, the edge-loop bound is again s, while the path-loop
bound is s� 1.

Next, consider the star-like graph

Fig. 2

Fig. 3
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obtained from K1;s by inserting two vertices on each edge. In this case,
mrðAÞ ¼ 2sþ 2, the path loop bound is 2s, and the edge-loop bound is sþ 1. Note
that the diameter bound is only 6. (

Using the edge-loop bound we arrive at a loop bound.

Corollary 2.9. Let A be any symmetric sign pattern matrix whose graph is a tree T
with k loops. Then

k
2
� mrðAÞ:

Proof. We first consider the case where every vertex of T has a loop. Let A be
n� n, M be a maximum set of independent edges in T , and l be the number of
loops in T � V ðMÞ. Then 2jM j þ l ¼ n or jM j ¼ n�l

2 . From Theorem 2.6,

mrðAÞ � lþ jM j ¼ 2lþ ðn� lÞ
2

¼ nþ l
2
� n

2
;

that is, mrðAÞ � n
2.

Now, suppose k is the number of loops in T . Consider the principal submatrix
of A associated with the subgraph of T induced by the k vertices with loops. This
subgraph is a union of disjoint trees. Applying the above all loops result to the
diagonal sub-blocks associated with these disjoint trees, we obtain

k
2
� mrðAÞ: (

3. Star-Like Trees

A star-like graph is a tree that has exactly one vertex x (the center vertex) with
dðxÞ > 2.

Theorem 3.1. Let T be a star-like graph where every vertex has a loop, and suppose
there are k � 2 paths of lengths � 2 from the center vertex. Let A be an n� n
nonnegative symmetric sign pattern matrix whose graph is T . Then

mrðAÞ ¼ n� k þ 1:

Proof. First, we first construct a matrix B 2 QðAÞ such that B has k � 1 rows that
are linear combinations of the remaining rows of B. We then have
mrðAÞ � rank B � n� ðk � 1Þ ¼ n� k þ 1.

Let v0 be the center vertex of T and let w1;w2; . . . ;wt be the end-vertices
adjacent to v0. Label the vertices along the paths of lengths � 2 as v11; v12; . . . ; v1n1 ;
v21; v22; . . . ; v2n2 ; . . . ; vk1; vk2; . . . ; vknk .
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We order the vertices as v0, v11; v12; . . . ; v1n1 , v21; v22; . . . ; v2n2 , . . . ; vk1, vk2,
. . . ; vknk , w1;w2; . . . ;wt. Let A be the nonnegative sign pattern matrix whose graph
is T with the vertices ordered this way. Define a matrix B ¼ ðbijÞ 2 QðAÞ as
follows:

bij ¼
0 if aij ¼ 0, (that is, the corresponding vertices are nonadjacent);
2 if i ¼ j and the corresponding vertex is of degree 2 in T � v0;
1 otherwise.

(

Thus the matrix B has the form

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

v0 v11 v12 v13 . . . v1;n1�1 v1n1 v21 . . . v2n2 . . . vk1 . . . vknk w1 . . . wt

v0 1 1 0 0 . . . 0 0 1 . . . 0 . . . 1 . . . 0 1 . . . 1

v11 1 1 1 0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

v12 0 1 2 1 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

v13 0 0 1 2 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

...
.

v1;n1�1 0 0 0 0 . . . 2 1 0 . . . 0 . . . 0 . . . 0 0 . . . 0

v1n1 0 0 0 0 . . . 1 1 0 . . . 0 . . . 0 . . . 0 0 . . . 0

v21 1 0 0 0 . . . 0 0 1 . . . 0 . . . 0 . . . 0 0 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

v2n2 0 0 0 0 . . . 0 0 0 . . . 1 . . . 0 . . . 0 0 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

. ..
.

vk1 1 0 0 0 . . . 0 0 0 . . . 0 . . . 1 . . . 0 0 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
.

vknk 0 0 0 0 . . . 0 0 0 . . . 0 . . . 0 . . . 1 0 . . . 0

w1 1 0 0 0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 1 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

wt 1 0 0 0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 . . . 1

:

w
w

v
v

v
v

v1n1

k1

knk

k212

v

t
w2

11

0v

1

Fig. 4
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For each vertex vij, let Rij denote the corresponding row of B with label vij. Notice
that after deleting the first row, each column of B labeled by some vij contains
either two or three consecutive nonzero entries (of the forms 1; 1, or 1; 2; 1). It can
be seen that for each i ¼ 1; 2; . . . ; k,

Xni

j¼1
ð�1Þj�1Rij ¼ ð1; 0; 0; . . . ; 0Þ:

Thus, Ri;1 (i � 2) can be written as a linear combination of R11;R12; . . . ;R1n1 ,
Ri2; . . . ;Rini . Therefore, rank B � n� ðk � 1Þ ¼ n� k þ 1.

We now show that for every B 2 QðAÞ, rank B � n� k þ 1. Recall that,
without loss of generality, we may assume that all the nonzero off-diagonal entries
of B are equal to 1. Label the rows and columns of B as above. Consider the
submatrix of B obtained by deleting the rows with labels v31; v41; . . . ; vk1 and the
columns with labels v3n3 ; n4n4 ; . . . ; nknk . The resulting submatrix has the following
block form

B1 ¼

H � V

0 U 0

V T 0 D

0
BB@

1
CCA

where H is the submatrix whose graph is the path with vertices v0; v11; . . . ; v1n1 ,
v21; . . . ; v2n2 , U is an upper triagular matrix with all diagonal entries equal to 1, D
is a nonsingular diagonal matrix of order t, and V is a matrix whose first row
consists of 1’s and all other entries are 0. Using the last t nonzero diagonal entries
of B1 as pivot elements, we can perform elementary row/column operations on B1

to eliminate the nonzero entries of V and V T . The only other entry that may be
affected is the (1, 1) entry. The modified upper left block of order n1 þ n2 þ 1 still
has the path of length n1 þ n2 (with at least n1 þ n2 loops) as its graph, and hence
(by Theorem 2.1 say), its rank is at least n1 þ n2. Thus the resulting block upper
triangular matrix has rank at least n� 1� ðk � 2Þ ¼ n� k þ 1. It follows that
mrðAÞ � n� k þ 1. (

We can now show that the difference SMRðAÞ � smrðAÞ may be arbitrarily
large.

Example 3.2. This graph is star-like, with k paths (of length 2) adjacent to the
center vertex, with a loop at each vertex. Let A be any nonnegative symmetric sign
pattern matrix of order 2k þ 1 whose graph is this tree. Since A has no zero
diagonal entries, we have

SMRðAÞ ¼ MRðAÞ ¼ 2k þ 1:

By Theorem 3.1,

smrðAÞ ¼ mrðAÞ ¼ ð2k þ 1Þ � k þ 1 ¼ k þ 2:
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Clearly, by taking k to be arbitrarily large, we can make SMRðAÞ � smrðAÞ as large
as desired. (
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