
Robust Algorithms for the Stable Set Problem

Michael U. Gerber1 and Vadim V. Lozin2

1 Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne,
Switzerland. e-mail: michael.gerber@epfl.ch
2 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003,
USA. e-mail: lozin@rutcor.rutgers.edu

Abstract. The stable set problem is to find in a simple graph a maximum subset of pairwise
non-adjacent vertices. The problem is known to be NP-hard in general and can be solved in
polynomial time on some special classes, like cographs or claw-free graphs. Usually, effi-
cient algorithms assume membership of a given graph in a special class. Robust algorithms
apply to any graph G and either solve the problem for G or find in it special forbidden
configurations. In the present paper we describe several efficient robust algorithms,
extending some known results.

Key words. Stable set, Stability number, Polynomial algorithm

1. Introduction

In [7], J. Spinrad proposed to call an algorithm solving a problem
Q

on a special
graph class C robust if the algorithm on the input graph G either solves

Q

correctly or gives a witness for G 62 C. Hence, before applying a robust algorithm
to a graph G, there is no need to check if G is in C. This can considerably reduce
the computational effort if the time to recognize graphs in the class C is worse the
time to solve the problem

Q
. Furthermore, a robust algorithm might solve the

problem correctly even if G is not in C. In the present paper, we develop efficient
robust algorithms for the stable set problem on several classes of graphs,
extending some previously studied cases.

All graphs G ¼ ðV ;EÞ considered are undirected, without loops and multiple
edges. By NðvÞ ¼ fu : uv 2 Eg we denote the neighbourhood of a vertex v 2 V . The
subgraph of G induced by a set of vertices U is denoted G½U �.

As usual, Pn (Cn) is the chordless path (cycle) on n vertices. We denote a path
by p1p2 . . . pn, and a cycle by ðc1c2 . . . cnÞ. The graph P4 is of particular interest in
this paper. In a P4 ¼ abcd, we call a and d the endpoints, and b and c the midpoints
of the P4. Graph Ti;j;k is a tree with exactly three vertices of degree 1 being at
distance i; j; k from the only vertex of degree 3. When i ¼ j ¼ k ¼ 1, the graph is
called a claw, and is denoted by afb; c; dg, where a is the vertex of degree 3. When

Graphs and Combinatorics (2003) 19:347–356
Digital Object Identifier (DOI) 10.1007/s00373-002-0517-5 Graphs and

Combinatorics
� Springer-Verlag 2003

i ¼ j ¼ 1 and k ¼ 2, the graph is called a chair and is denoted by fa; bgcde, where
c is the vertex of degree 3, and d the vertex of degree 2, and e is adjacent to d. A
banner is the graph with vertices a; b; c; d; e and edges ab; ac; bd; cd and de. Such a
banner is denoted by afb; cgde. Some of the above graphs are shown in Fig. 1.

A stable set in a graph is a subset of vertices no two of which are adjacent. The
maximum size of a stable set in a graph G is denoted aðGÞ and is called the
stability number of G. The problem of finding a maximum stable set in a graph is
known to be NP-hard in general. However, on special classes, like cographs [2],
chordal [8] or claw-free graphs [5, 6] it can be solved in polynomial time. Efficient
algorithms for the listed classes are not robust in the sense defined above. But it
should be noticed that the recognition time for these classes coincides with the
solution time. For such classes, the development of robust algorithms is not an
actual task, and one can be satisfied by pseudo-robust ones consisting of two
general steps: first, determining whether the input graph is in C, and second,
solving the problem. Consider, for example, cographs, i.e. graphs containing no
induced path on four vertices P4. Both recognizing cographs and solving the stable
set problem for them can be realized in linear time [2]. This gives a natural
pseudo-robust algorithm which, given a graph G, either solves the stable set
problem for G or finds a P4 in it. In the following, we shall refer to this algorithm
as Algorithm A.

In [1], the pseudo-robust algorithm for cographs became a base for the con-
struction of a (strictly) robust one for the class of P5 and banner-free graphs. The
latter algorithm has been extended then to the class of P5, K3;3 � e and twin-house-
free graphs. In Section 4 we consider another extension of P5 and banner-free
graphs defined by two forbidden induced subgraphs: T2;2;2 and a banner. In
addition to ðP5,banner)-free graphs, this class includes also all claw-free graphs
that makes the problem much more difficult. The robust algorithm for
(T2;2;2,banner)-free graphs is based on the corresponding algorithm for (P5,ban-
ner)-free graphs and uses, as an intermediate step, a pseudo-robust algorithm for
the banner and chair-free graphs. The latter class also includes all claw-free
graphs. A polynomial algorithm for the stable set problem in claw-free graphs is
referred in the paper as Algorithm B.

Another example of a robust algorithm can be found in [4]. It deals with
(banner, K2;3, C5, C6; . . .)-free graphs which are an extension of chordal graphs. In
Section 5, we generalize this result to (banner, C5,C6; . . .)-free graphs including
also all cographs. A diagram describing the inclusion relationship between classes
under consideration is represented in Fig. 2.

Fig. 1. Banner afb; cgde, claw afb; c; dg, chair fa; bgcde and T2;2;2

348 M.U. Gerber and V.V. Lozin

2. Algorithm a

In order to make the paper self-contained, we describe in this section the robust
algorithm presented in [1]. It either solves the stable set problem or finds an
induced banner or an induced P5 in a graph.
Algorithm a
Input: A graph G.
Output: A maximum stable set or a banner or a P5 in G.

(1) Apply Algorithm A to G.
(2) If the output of Algorithm A is a stable set S, then let S be the output of

Algorithm a and STOP; else let abcd be a P4 in G found by Algorithm A.
(3) If there is a vertex x adjacent to a and c but not to b and d, then set the banner

afb; xgcd as the output of the algorithm and STOP.
(4) If there are non-adjacent vertices x; x0 adjacent to a and d but not to b, then set

the banner dfx; x0gab as the output of the algorithm and STOP.
(5) If there is a vertex x adjacent to a but not to b, c and d, then set the P5 xabcd as

the output of the algorithm and STOP.
(6) If there are non-adjacent vertices x and y such that x is adjacent to a and d but

not to b, and y is adjacent to d but not to a and b, then set the P5 ydxab as the
output of the algorithm and STOP.

(7) Let G ¼ G� b and go to (1).

To prove correctness of the algorithm we state the following lemma.

Lemma 1. Let abcd be an induced P4 in the graph G and assume that
x; x0 2 NðaÞnNðbÞ and y 2 NðdÞnNðbÞ. If G contains no induced banner afb; xgcd,
dfx; x0gab, and no induced P5 xabcd, ydxab, then aðG� bÞ ¼ aðGÞ.

Proof. Let S be a stable set in G with b 2 S, and let A denote the subset of vertices
in S adjacent to a and different from b. We will show that G contains a stable set
of the same size as S, but not containing b.

Fig. 2. Inclusion relationships between graph classes

Robust Algorithms for the Stable Set Problem 349

If A ¼ ;, then obviously S1 :¼ ðSnfbgÞ [fag is a stable set in G. Assume now
that x 2 A. Then x must be adjacent to d, since otherwise G contains either a
banner afb; xgcd (if x is adjacent to c), or a P5 xabcd (if x is not adjacent to c). This
implies that d does not belong to S (see Fig. 3). We claim now that

(1) x is the only neighbor of a in A, and
(2) x is the only neighbor of d in S.

To prove (1), suppose that x0 is another vertex in A. Then, similarly, x0 is adjacent
to d, but then dfx; x0gab is a banner in G. To show (2), assume that d has a
neighbor y 6¼ x in S. Since ydxab is not permitted to induce a P5 in G, it follows
that ya 2 E. But now a has a second neighbor in S, a contradiction to (1). From
(1) and (2) it follows that S2 :¼ ðSnfb; xgÞ [fa; dg is a stable set in G. (

Theorem 1. Given a graph G ¼ ðV ;EÞ, Algorithm a terminates in OðjV jjEjÞ steps,
and if the output of the algorithm is a stable set S, then jSj ¼ aðGÞ.

Proof. Algorithm A has time complexity OðjV j þ jEjÞ ½2�. Verifying the condi-
tions in steps (3) to (6) can be done in time OðjEjÞ. Algorithm a loops at most jV j
times through steps (1) to (7), hence its total time complexity is OðjV jjEjÞ.

The proof of the second part of the theorem is a consequence of Lemma 1.
(

3. Algorithm b

In this section we describe an algorithm which, for a given graph G, either finds an
induced banner or an induced chair, or solves the stable set problem in G. This
algorithm is pseudo-robust in the sense that it has a special stage for recognition
of (banner,chair)-freeness (steps 1 and 2 of the algorithm). However, this stage
does not have higher complexity than the solution stage (steps 3–9) in its present
form. This gives us a reason to separate the recognition stage from the solution
one in order to simplify the description of the algorithm.
Algorithm b
Input: A graph G.
Output: A maximum stable set or a banner or a chair in G.

Fig. 3. Induced P4 ¼ abcd, with b; x 2 S

350 M.U. Gerber and V.V. Lozin

(1) If G contains an induced banner, then set the banner as the output of the
algorithm and STOP.

(2) If G contains an induced chair, then set the chair as the output of the algo-
rithm and STOP.

(3) Apply Algorithm a to G.
(4) If the output of Algorithm a is a stable set S, then let S be the output of

Algorithm b and STOP; else let abcde be a P5 in G found by Algorithm a.
(5) Let A be the subset of vertices in G adjacent to every vertex of the found P5,

and B, the subset of vertices in G adjacent to every vertex in A (clearly
fa; b; c; d; eg � B).

(6) In the subgraph G½B� find the connected component H containing the P5.
(7) Apply Algorithm B to graph H .
(8) Let S0 be a maximum stable set in H found in step (7), and let D ¼ VHnS0,

where VH is the set of vertices inducing H in G.
(9) Let G ¼ G� D and go to (3).

In the following, we state two lemmas and two corollaries which will help us to
prove in Theorem 2 that if Algorithm b produces S as an output, then S is a
maximum stable set. We start by proving the claim below, which will be applied in
the proof of Lemma 2.

Claim 1. Let G ¼ ðV ;EÞ be a (banner,chair)-free graph that contains an induced
claw C. If a vertex x 2 V is not adjacent to the center of C, then x is either adjacent
to no vertex in C, or to all vertices of degree 1 in C.

Proof. Indeed, if x is adjacent to exactly one vertex in C, then vertices of C
together with x induce a chair in G. And if x is adjacent to exactly two vertices in
C, then C and x induce a banner. Hence the claim. (

Lemma 2. Let G ¼ ðV ;EÞ be a connected (banner,chair)-free graph that contains an
induced P5. If in addition G contains an induced claw, then there is a vertex in G
adjacent to every vertex of the P5.

Fig. 4. Induced chair fa; bgcde, with c; x 2 S

Robust Algorithms for the Stable Set Problem 351

Proof. The set of vertices of the P5 will be denoted along the proof by
P ¼ p1p2p3p4p5, and an induced claw will be denoted by C ¼ c0fc1; c2; c3g, where
c0 is the center of the claw, i.e. the vertex of degree three.

From now on, we shall assume, without loss of generality, that C is a closest
possible claw to P . Under this assumption C has a common vertex with P . To
prove this, assume the contrary: let x1; . . . ; xn be a shortest path connecting P to C
in G, where x1 2 P and xn is a vertex of C.

First we claim that xn�1 has at most two neighbors in set fc1; c2; c3g, else
xn�1fc1; c2; c3g is an induced claw that is closer to P than C. Together with
Claim 1 it implies that xn�1 is adjacent to c0. Suppose now that xn�1 has two non-
neighbors in fc1; c2; c3g, say c2 and c3. Then c0fxn�1; c2; c3g is an induced claw
that is closer to P than C. Hence xn�1 has exactly two neighbors in set fc1; c2; c3g,
say c1 and c2. It follows that xn�1 2 P , otherwise xn�1fc1; c2; xn�2g is an induced
claw that is closer to P than C. Now let y be a neighbor of xn�1 along the P5. We
have yc1 or yc2 in E, otherwise xn�1fy; c1; c2g is an induced claw that has a
common vertex with P . By symmetry, we can suppose that yc1 2 E. Thus, ðy; c1Þ is
another shortest path connecting P to C. Hence, like above, yc0 2 E. In a similar
way we obtain that every vertex of P is adjacent to c0. But then c0fp1; p3; p5g is an
induced claw that is closer to P than C. This contradiction proves that C and P
have a common vertex.

Without loss of generality we may assume that c0 2 P . Indeed, if c0 62 P , then
there must exist two adjacent vertices pi and piþ1 of the path such that c0 is
adjacent to pi but not to piþ1 (otherwise c0 is adjacent to all vertices of the path
proving the lemma). If piþ1 is adjacent to one of c1, c2 and c3, then, by Claim 1,
piþ1fc1; c2; c3g is a claw with the center on the path. Suppose that piþ1 is adjacent
to no vertex in C. In this case, if pi has at least two non-neighbors in fc1; c2; c3g,
say c1 and c2, then the claw c0fpi; c1; c2g and the vertex piþ1 contradict Claim 1. If
pi has at least two neighbors in fc1; c2; c3g, say c1 and c2, then pifpiþ1; c1; c2g is a
claw with the center in P . Thus, from now on we have c0 2 P . Up to the sym-
metry, we have to analyze the following cases: c0 ¼ p1, c0 ¼ p2 and c0 ¼ p3.

Assume c0 ¼ pi with i 2 f1; 2g, and let first c1 ¼ piþ1. Then, by Claim 1, piþ2 is
adjacent to c2 and c3, while piþ3 has no neighbors in fc1; c2; c3g. But then
pifc2; c3gpiþ2piþ3 is a banner. Therefore, there is no claw centered at c0 ¼ pi with
i 2 f1; 2g such that c1 ¼ piþ1. Consequently, piþ1 has at least two neighbors in
fc1; c2; c3g, say c2 and c3. Now to avoid a fork fc2; c3gpiþ1piþ2piþ3 and a banner
pifc2; c3gpiþ2piþ3 and a banner pifc2; c3gpiþ3piþ2 we must have that vertices piþ2
and piþ3 are adjacent both to c2 and c3 (by Claim 1). But then either c2 or c3 is
adjacent to every vertex in P , otherwise ðP � fpiþ1; piþ2gÞ [fc2; c3g induce a
banner.

To complete the proof, we let c0 ¼ p3 and assume there is no claw centered at
pi with i 2 f1; 2g. Under this assumption, p1 has no neighbors in fc1; c2; c3g (else
p1fc1; c2; c3g is a claw by Claim 1), and p2 has at most one neighbor in fc1; c2; c3g
(else p2fp1; c1; c2g is a claw, assuming that c1 and c2 are adjacent to p2). But now 2
non-neighbors of p2 in fc1; c2; c3g together with p1; p2 and p3 induce a fork. (

352 M.U. Gerber and V.V. Lozin

Corollary 1. Let A be the subset of vertices in G adjacent to every vertex of the P5,
and B, the subset of vertices in G adjacent to every vertex in A, and H , the connected
component of G½B� containing the P5, then H is a claw-free graph.

Proof. Suppose that H is not claw-free. Then, by Lemma 3, there exists a vertex x
in H that is adjacent to every vertex of the P5, hence x 2 A, a contradiction. (

Lemma 3. Let G ¼ ðV ;EÞ be a connected (banner,chair)-free graph with an induced
P5, and A and B, the subsets of V as defined in Corollary 1, then there are no edges in
G of form xy with x 2 B and y 2 V nðA [BÞ.

Proof. Assume, to the contrary, vertices x 2 B and y 2 V nðA [BÞ form an edge in
the graph. Note that y has a non-neighbor z in A by definition of A and B.

Suppose first x is a vertex of the P5 ¼ abcde. If x ¼ b, then y has a neighbor in
fa; cg, otherwise G would contain either an induced banner dfy; cgba (if y is
adjacent to d) or an induced chair fa; ygbcd (if y is not adjacent to d). Similarly if
x ¼ d. Thus, in either case y has a neighbor in set fa; c; eg. It implies that y is
adjacent to every vertex in fa; c; eg, otherwise vertices a; c; e; y; z would induce in G
either a chair or a banner. Since y 62 A, it has a non-neighbor on the P5, say b. But
then G contains an induced banner bfa; cgye, a contradiction.

Now assume y has no neighbors in the P5, i.e. x 62 fa; b; c; d; eg. Clearly, x is not
adjacent to every vertex of the P5, otherwise x would belong to A. On the other
hand, x must have a neighbor on the P5, otherwise fa; cgzxy is an induced chair in
G. Hence, we can consider a pair of consecutive vertices of the P5 one of which is
adjacent to x, say p0, and another one which is not adjacent to x, say p00. Moreover,
there is a third vertex on the P5 which is not adjacent to both vertices of the pair
above, say p000. For any possible choice of p0; p00 and p000, we know that if x is
adjacent to p000, then G contains an induced chair fp000; ygxp0p00, and if x is not
adjacent to p000, then G contains an induced chair fp00; p000gzxy. (

Corollary 2. If H is the connected component of G½B� containing the P5, and S0 is a
maximum stable set in H , then aðGÞ ¼ aðG� ðVH � S0ÞÞ, where VH is the set of
vertices inducing H in G.

Proof. Let R denote the set of vertices V nðA [BÞ. Since every vertex in A is
adjacent to every vertex in B, we have aðGÞ ¼ maxðaðG½A [R�Þ; aðG½B [R�ÞÞ.
Furthermore, by Lemma 3, we have aðGÞ ¼ maxðaðG½A [R�Þ; aðG½B�Þ þ aðG½R�ÞÞ.
Hence, it is possible to find a stable set in G� ðVH � S0Þ that has the same size as a
maximum stable set in G. (

Now, we can state the main result of this section:

Theorem 2. Given a graph G ¼ ðV ;EÞ, Algorithm b terminates in OðjV j5Þ steps, and
if the output of the algorithm is a stable set S, then jSj ¼ aðGÞ.

Robust Algorithms for the Stable Set Problem 353

Proof. Determining if G contains an induced banner or an induced chair can be
done in time complexity OðjV j5Þ, since both graphs have 5 vertices. Algorithm b
loops at most jV j times through steps (3) to (9). Algorithm B can be implemented
with time complexity OðjV j4Þ [3], and all other steps from (3) to (9) have lower
time complexity. Hence, Algorithm b has total time complexity OðjV j5Þ.

By Corollaries 1 and 2, we conclude that S is a maximum stable set. (

4. Algorithm c

The algorithm presented in this section either solves the stable set problem in a
graph G or finds an induced banner or an induced T2;2;2.
Algorithm c
Input: A graph G.
Output: A maximum stable set or a banner or a T2;2;2 in G.

(1) Apply Algorithm b to G.
(2) If the output of Algorithm b is a stable set S, then let S be the output of

Algorithm c and STOP.
(3) If the output of Algorithm b is an induced banner, then let the banner be the

output of Algorithm c and STOP else let fa; bgcde be an induced chair in G
found by Algorithm b.

(4) If there is a T2;2;2 in G induced by vertices a; b; c; d; x; y; z with x 2 NðaÞn
ðNðbÞ [NðcÞ [NðdÞÞ, y 2 NðbÞnðNðaÞ [NðcÞ [NðdÞÞ and z 2 NðdÞn
ðNðaÞ [NðcÞ [NðbÞÞ, then let the T2;2;2 be the output of the algorithm and
STOP.

(5) Let G ¼ G� c and go to (1).

We now state a lemma that will help us prove that Algorithm c provides a
maximum stable set S.

Lemma 4. Let fa; bgcde be an induced chair in a banner-free graph G. If G does not
contain a T2;2;2 induced by vertices a; b; c; d; x; y; z with x 2 NðaÞn
ðNðbÞ [NðcÞ [NðdÞÞ and y 2 NðbÞnðNðaÞ [NðcÞ [NðdÞÞ and z 2 NðdÞn
ðNðaÞ [NðcÞ [NðbÞÞ, then aðGÞ ¼ aðG� cÞ.

Proof. Let S be a stable set in G containing vertex c. We shall show that there is a
stable set S0 in G such that S0 does not contain c and jS0j ¼ jSj.

If S does not contain vertices adjacent to a, except c, then S0 ¼ ðSnfcgÞ [fag is
a required set. Assume now that x is a vertex in S adjacent to a (x 6¼ c). Then x is
not adjacent to b. Indeed, if x is adjacent to b, then x is adjacent to d, otherwise G
contains an induced banner xfa; bgcd, and hence x is adjacent to e else G contains
an induced banner afx; cgde, but then G contains an induced banner cfa; bgxe. As
a consequence, x is not adjacent to d, otherwise G contains an induced banner
xfa; dgcb, see Fig. 4.

354 M.U. Gerber and V.V. Lozin

If S does not contain vertices adjacent to b, except c, then S0 ¼ ðSnfcgÞ [fbg is
a required set. Suppose y is a vertex in S adjacent to b (y 6¼ c). Just as above, y is
neither adjacent to a nor to d. We can state now that c is the only neighbor of d in
S. Indeed, if z is another vertex in S adjacent to d, then z is adjacent neither to a
nor to b by the arguments above. But then vertices a; b; c; d; x; y; z induce a T2;2;2

that contradicts the assumption. Thus S0 ¼ ðSnfcgÞ [fdg is a stable set as
required. (

Theorem 3. Given a graph G ¼ ðV ;EÞ, Algorithm c terminates in OðjV j6Þ steps, and
if the output of the algorithm is a stable set S, then jSj ¼ aðGÞ.

Proof. By Theorem 3, step (1) is of complexity OðjV j5Þ. Step (4) takes at worst
OðjV j3Þ time. And the loop (1)-(5) is carried out at most jV j times. Hence the total
time complexity of the algorithm is OðjV j6Þ. By Lemma 4, we conclude that S is a
maximum stable set. (

5. Algorithm d

The algorithm of this section either solves the stable set problem in a graph G, or
finds an induced banner or an induced cycle Ck of length k � 5. This graph class
extends the class of ðbanner;K2;3;C5;C6; . . .Þ-free graphs studied by Mahadev [4].
Algorithm d
Input: A graph G ¼ ðV ;EÞ.
Output: A maximum stable set or a banner or a Ck ðk � 5Þ in G.

(1) Apply Algorithm A to G.
(2) If the output of Algorithm A is a stable set S, then let S be the output of

Algorithm d and STOP; else let abcd be an induced P4 in G found by Algo-
rithm A.

(3) Extend abcd to a maximal induced path Pr ¼ p1p2 . . . pr, i.e. find in G a
maximal (with respect to inclusion) induced path Pr containing the P4 ¼ abcd.

(4) If there is a vertex x adjacent to p1 and p3 but not to p2 and p4, then set the
banner p1fp2; xgp3p4 as the output of the algorithm and STOP.

(5) If there are non-adjacent vertices x; x0 adjacent to p1 and p4 but not to p2, then
set the banner p4fx; x0gp1p2 as the output of the algorithm and STOP.

(6) If there are non-adjacent vertices x and y such that xp1; xp3; yp3 2 E and
xp2; yp1, yp2 =2E, then set the banner p1fx; p2gp3y as the output of the algorithm
and STOP.

(7) If there is a vertex x adjacent to p1 and pk (k � 4), but not to p2; . . . ; pk�1 then
set the cycle ðxp1p2 . . . pkÞ as the output of the algorithm and STOP.

(8) Let G ¼ G� p2 and go to (1).

Lemma 5. Let p1p2 . . . pr ðr � 4Þ be a maximal inclusion-wise induced path Pr in the
graph G ¼ ðV ;EÞ and assume that x; x0 2 Nðp1ÞnNðp2Þ and y 2 Nðp3ÞnNðp2Þ. If G
contains no induced banner p1fp2; xgp3p4, p4fx; x0gp1p2, p1fx; p2gp3y, and no induced
cycle ðxp1p2 . . . pkÞ ðk � 4Þ, then aðG� p2Þ ¼ aðGÞ.

Robust Algorithms for the Stable Set Problem 355

Proof. Let S be a stable set in G with p2 2 S, and let A denote the subset of vertices
in S adjacent to p1 and different from p2. We will show that G contains a stable set
of the same size as S, but not containing p2.

If A ¼ ;, then obviously S1 :¼ ðSnfp2gÞ [fp1g is a stable set in G.
Assume now that x 2 A. By maximality of Pr, x has a neighbor in fp3; . . . ; prg.

Since G has no induced cycle ðxp1p2 . . . pkÞ with k � 4, x is adjacent to p3. Fur-
thermore, x is adjacent to p4, otherwise G contains a banner p1fp2; xgp3p4.
Obviously, p3 does not belong to S. We claim now that

(1) x is the only neighbor of p1 in A, and
(2) x is the only neighbor of p3 in S.

To prove (1), suppose that x0 is another vertex in A. Then, similarly, x0 is adjacent
to p3 and p4, but p4fx; x0gp1p2 is a banner in G, a contradiction. To show (2)
assume that p3 has a neighbor y 6¼ x in S. To avoid an induced banner
p1fx; p2gp3y, we have yp1 2 E that contradicts (1). From (1) and (2) it follows that
S2 :¼ ðSnfp2; xgÞ [fp1; p3g is a stable set in G. (

Theorem 4. Given a graph G ¼ ðV ;EÞ, Algorithm d terminates in OðjV j2jEjÞ steps,
and if the output of the algorithm is a stable set S, then jSj ¼ aðGÞ.

Proof. Algorithm A has time complexity OðjV j þ jEjÞ. Step (3) can be executed in
OðjV jjEjÞ, while Steps (4)–(7) need OðjV j2Þ. Since the algorithm loops at most jV j
times through steps (1)–(8), we have a total time complexity of OðjV j2jEjÞ for
Algorithm d.

The proof of the second part of this Theorem is a consequence of Lemma 5.
(

References

1. Brandstädt, A., Lozin, V.V.: A note on a-redundant vertices in graphs. Discrete Appl.
Math. 108, 301–308 (2001)

2. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. Comput. 14, 926–934 (1985)

3. Lovász, L., Plummer, M.D.: Matching theory. Ann. Discrete Math. 29, (1986)
4. Mahadev, N.V.R.: Vertex deletion and stability number, OR WR 90/2, Department of

Mathematics, Swiss Federal Institute of Technology (1990)
5. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.

Theory, Ser. B 28, 284–304 (1980)
6. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe

sans étoile. Discrete Math. 29, 53–76 (1980)
7. Spinrad, J.P.: Representations of graphs, Book Manuscript, Vanderbilt University

Nashville (TN) 1997
8. Gavril, F.: Algorithms for the minimum coloring, maximum clique, minimum covering by

cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1, 180–187
(1972)

Received: October 2, 2001
Final version received: August 20, 2002

356 M.U. Gerber and V.V. Lozin

