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Abstract. Nešetřil and Sopena introduced the concept of oriented game chromatic number.
They asked whether the oriented game chromatic number of partial k-trees was bounded.
Here we answer their question positively.

1. Introduction

Let G ¼ ðV ;EÞ be a graph and let C be a set of t colors. A proper C-coloring of G
is a function c : V ! C such that cðuÞ 6¼ cðvÞ for every edge uv 2 E. The coloring
game is played by two players, Alice and Bob. The players take turns playing
with Alice playing first. Alice’s goal is to provide a proper C-coloring of G and
Bob’s goal is to prevent her from doing so. A play by either player consists of
choosing a vertex v 2 V that has not yet been colored, and then coloring v
properly with a color from C, i.e., with a color that is different from any color
already assigned to a neighbor of v. If at some time all t colors in C have been
assigned to the neighbors of some uncolored vertex, then Bob wins; otherwise
Alice wins when all the vertices are properly C-colored. The game chromatic
number of G, denoted vgðGÞ, is the least t such that Alice has a winning strategy
when the coloring game is played on G with a set of colors C of size t. The game
chromatic number of a class of graphs is the maximum game chromatic number
of any graph in the class.

Faigle et al. [6] showed that the game chromatic number of the class of forests
is 4 and the game chromatic number of the class of interval graphs with clique
number x is between 2x � 2 and 3x � 2, where x denotes clique number. Kier-
stead and Trotter [13] showed that the game chromatic number of the class of
planar graphs is between 7 and 33. This upper bound was improved by Dinski and
Zhu in [5] to 30. We will mention further improvements based on marking games
in the next section. Game chromatic number is closely related to the concept of
precoloring extension, which was studied by Biró, Hujter, and Tuza in [1] and
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Hujter and Tuza in [10] and [11]. A similar game was considered by Harary and
Tuza in [9].

In this article we study games played on partial k-trees. Recall that a chordal
graph is a graphG such that every cycle C of length greater than 3 has a chord inG.
A subgraph H of a chordal graph G is a partial k-tree if xðGÞ � k þ 1, where xðGÞ
denotes the clique number of G. For example, interval graphs are chordal graphs
and outerplanar graphs are partial 2-trees. A graph is said to have tree width k if it
is a partial k-tree, but not a partial ðk � 1Þ-tree.

Very recently Nešetřil and Sopena [16] introduced the oriented version of the
coloring game. Let ~GG ¼ ðV ;AÞ be an oriented graph. By this we mean that A is a
set of directed edges and if uv!2 A, then vu! =2 A. A function c from V ð~GGÞ to a set of
colors C is an oriented C-coloring of ~GG if ðiÞ cðuÞ 6¼ cðvÞ for every arc uv! and ðiiÞ
cðuÞ ¼ cðxÞ implies that cðvÞ 6¼ cðwÞ for all arcs uv! and wx�! (v and w not necessarily
distinct). It follows easily that c is an oriented C-coloring of ~GG if and only if there
exists a tournament ~TT ¼ ðC;DÞ on C such that if uv!2 A, then cðuÞcðvÞ

�����!
2 D, i.e. c is

a homomorphism from ~GG to ~TT . The oriented chromatic number,~vvð~GGÞ, of ~GG is the
least t such that ~GG has an oriented coloring with t colors.

The oriented version of the coloring game is played on a fixed oriented
graph ~GG with a fixed tournament ~TT ¼ ðC;DÞ. Again the two players Alice and
Bob take turns playing with Alice going first. Now Alice’s goal is to provide a
homomorphism from ~GG to ~TT and Bob’s goal is to prevent her from doing so.
A play by either player consists of choosing a vertex v 2 V that has not yet
been colored, and then coloring v properly (with respect to the orientation D)
with a color from C. This means that if v is to be colored a and w has already
been colored b, then vw�! 2 A implies ab

�! 2 D and wv�! 2 A implies ba
�! 2 D. If

this were the only requirement, then Bob would have an easy winning strategy.
He would play so that the two endpoints of a directed path P of length two
are colored with the same color before the middle vertex u of P is colored. It is
easy to see that then there would be no way to properly color u. To prevent
this triviality, we also require that v be colored with a color that is different
from the color of any other vertex connected to v by a directed path (in either
direction) of length two. Bob wins if at some point before all the vertices of
V are colored one of the players does not have a legal move; otherwise
Alice wins after all the vertices have been properly colored. The oriented
game chromatic number, ogcnð~GGÞ, is the least t for which there exists a
tournament ~TT on t vertices such that Alice can win the oriented coloring game
on ~GG with ~TT .

Nešetřil and Sopena [16] showed that the oriented game chromatic number
of a graph G is at most D2ðGÞ. They also showed that there exists a constant
upper bound on the oriented game chromatic number of outerplanar graphs.
They asked ðiÞ whether there exists a constant upper bound on the oriented
game chromatic number of planar graphs, and ðiiÞ whether for fixed k there
exists a constant upper bound on the oriented game chromatic number of
partial k-trees. The first question was answered positively by Kierstead and
Trotter [14]. The main result of this article provides a positive answer to the
second question.
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2. Marking Games

Marking games are simplified versions of coloring games that have proved
useful in bounding game and oriented game chromatic numbers. A marking
game is played by two players Alice and Bob with Alice playing first. At the
start of the game all vertices are unmarked. A play by either player consists of
marking an unmarked vertex. The game ends when all the vertices have been
marked. Different versions of the game differ in the way the score of the game is
computed. For any t 2 f1; . . . ; jV jg, let Mt denote the set of marked vertices
after t plays and Ut ¼ V �Mt denote the set of unmarked vertices after t plays.
So jMtj ¼ t. For i a positive integer and any vertices u and v, we say that u and v
are i-close after t plays, denoted u 
t

i v, if there exists a u� v path of length
at most i all of whose internal vertices are unmarked after t plays. For an
unmarked vertex u let

Sti ðuÞ ¼ fv 2 Mt : u 
t
i vg:

The score of the i-marking game is

maxfjSti ðuÞj : 1 � t � jV j ^ u 2 Utg:

Extending the notation and terminology of [16] we define the i-Go number,
GoiðGÞ, of G to be the least s such that Alice has a strategy that results in a
score of at most s in the i-marking game. When i ¼ 1 we refer to the Go number
of G and when i � jV j we refer to the complete Go number, cGoðGÞ. In this case
Sti ðuÞ is the number of marked vertices connected to u by paths of any length
whose internal vertices are unmarked. We set StðuÞ ¼ StjV jðuÞ. If t is clear from
the context we may simply write M , U , and SðuÞ. Zhu [18] defined the game
coloring number, colgðGÞ, of G to be one more than what we are calling the Go
number of G.

A play of a marking game determines a linear ordering on the vertices of G
by x < y if x is marked before y. The importance of the Go number of G is
that if Alice uses the strategy for the 1-marking game on G that guarantees a
score of GoðGÞ to choose vertices to color, then she can win the coloring game
using a set of GoðGÞ þ 1 colors just by coloring with First-Fit. It follows easily
that

vgðGÞ � colgðGÞ ¼ GoðGÞ þ 1 � GoiðGÞ þ 1 � cGoðGÞ þ 1:

Faigle et al. [6] actually bounded the game chromatic number of forests by
showing that the Go number of a forest is at most 3. The present authors [15]
extended this result to vgðGÞ � 6k � 2 for all partial k-trees G. Guan and Zhu [8]
proved that GoðGÞ � 6, for all outerplanar graphs G. Zhu [18] showed that
GoðGÞ � 18 for all planar graphs G and [19] that GoðGÞ � 3k þ 1 for all partial
k-trees G. Kierstead [12] showed that GoðGÞ � 17 and thus vgðGÞ � 18, for
all planar graphs G. The fundamental result on oriented game chromatic number
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of Nešetřil and Sopena [16] depends on another parameter, the eGo number. We
will not define this parameter here. Rather, it suffices to note that
GoðGÞ � eGoð~GGÞ � Go2ðGÞ � cGoðGÞ, where ~GG is any orientation of the simple
graph G. Nešetřil and Sopena proved that there is an exponential upper bound on
ogcnð~GGÞ in terms of eGoð~GGÞ. Kierstead and Trotter [14] showed that Go2ðGÞ is
bounded for any planar graph, thus establishing an upper bound for the oriented
game chromatic number of any planar graph. The following theorem is the main
result of this paper.

Theorem 1. For every partial k-tree G, cGoðGÞ � 6k � 3.

Corollary 2. For a fixed positive integer k there exists a constant upper bound on
the oriented game chromatic number of any partial k-tree.

Corollary 3. For every partial k-tree G, vgðGÞ � 6k � 2.

As noted above Zhu proved the stronger bound of vgðGÞ � GoðGÞþ
1 � 3k þ 2 for partial k-trees. In the proof of Theorem 1 we expend considerable
effort to get the tightest upper bound that we can. If we were only interested in a
bound of the form 6k þ Oð1Þ we would not need to deal with secondary separa-
tors in the proof.

For a fixed graph G ¼ ðV ;EÞ and S � V , let NðSÞ ¼ fv 2 V : vs 2 E, for some
s 2 Sg.

3. Special Properties of Chordal Graphs

In this section we review some important properties of chordal graphs. An
intersection representation of a graph G ¼ ðV ;EÞ is a collection F ¼ fSv : v 2 V g of
sets such that xy 2 E if and only if Sx \ Sy 6¼ ;. The collection F is a subtree
representation of G if each of the sets in F is the vertex set of a subtree of some
fixed tree T ¼ ðU ;DÞ. The following characterization of interval graphs was
discovered independently by Buneman [3], Gavril [7], and Walter [17]. (Actually
W. T. Trotter discovered this result before any of the published versions, but a
referee decided that it was trivial and useless.)

Proposition 4. A graph is chordal if and only if it has a subtree representation. (

Suppose that w : V ! N is a weight function from the vertices of G to the
non-negative integers. If S � V , then the weight wðSÞ of S is defined by wðSÞ ¼P

v2S wðvÞ. The following proposition is an easy exercise.

Proposition 5. Let w : U ! N be a weight function on a tree T ¼ ðU ;DÞ. Then
there exists a vertex u 2 U such that each component of T � u has weight at most
1
2wðUÞ. (
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Using Propositions 4 and 5 it is easy to obtain the following extension of
Proposition 5 to chordal graphs.

Proposition 6. Let w : V ! N be a weight function on a chordal graph G ¼ ðV ;EÞ
with xðGÞ ¼ k þ 1. Then G has a separating set W � V such that jW j � k þ 1 and
for every component C of G� W both:

1. wðCÞ � 1
2wðV Þ and

2. there exists WC � W such that jWCj � k and C is a component of G� WC.

Proof. Let fSv : v 2 V g be a subtree representation of G, where each Sv is a
subtree of the tree T ¼ ðU ;DÞ. Moreover assume that T is the smallest tree in
which G has a subtree representation. For each subtree Sv arbitrarily pick a root
rv. Define a weight function w0 : U ! N by w0ðuÞ ¼

P
rv¼u wðvÞ. Then

w0ðUÞ ¼ wðV Þ. By Proposition 5 there exists a vertex u 2 U such that each com-
ponent of T � u has weight at most 1

2w
0ðUÞ ¼ 1

2wðV Þ. Let W ¼ fv 2 V : u 2 Svg.
Clearly W is a clique, and so jW j � k þ 1. For each component C � G� W , there
exists a component C0 � T � u such that for every v 2 C, Sv � C0. Thus each
component of G� W has weight at most 1

2wðV Þ. This proves (1). For (2) we use
the minimality of T . Let u0 2 C0 such that uu0 2 D and W 0 ¼ fv 2 V : u0 2 Svg. By
the minimality of T , W 6¼ W 0, and so jW \ W 0j � k. It is easy to check that C is a
component of G� WC for WC ¼ W \ W 0. (

We shall refer to the separator W of Proposition 6 as a primary separator. The
separators WC are called secondary separators. Finally we will need:

Proposition 7. If G ¼ ðV ;EÞ is a chordal graph with a minimal cutset S � V , then S
is a clique. (

4. Marking Games on Partial k-Trees

In this section we prove Theorem 1. Let H be a partial k-tree. Then there
exists a chordal graph G such that H is a subgraph of G and xðGÞ ¼ k þ 1.
Since cGoðHÞ � cGoðGÞ, it suffices to show that cGoðGÞ � 6k � 3. We may
assume that k > 1, since otherwise G is a forest and cGoðGÞ � 3. At a given
stage in the marking game, the components of the subgraph G½U � of G induced
by the set U of unmarked vertices are called unmarked components. Let
Ct ¼ fD : D is an unmarked component at the end of play tg be the partition
of Ut into unmarked components. For S � V , let MtðSÞ ¼ Mt \ ðS [ NðSÞÞ be
the closed marked neighborhood of S. We must provide Alice with a strategy
such that after any play t of the marking game, for any unmarked component
D 2 Ct, jMtðDÞj � 6k � 3.

Suppose that on play t one of the players marks a vertex v 2 D, where D is an
unmarked component in Ct�1. Then Ut ¼ Ut�1 � fvg. Let N ¼ fD1; . . . ;Dsg be
the set of components of G½D� fvg�. Then
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Ct ¼ ðCt�1 � fDgÞ [ N :

For each old unmarked component D� 2 Ct�1 � fDg, jMtðD�Þj ¼ jMt�1ðD�Þj. For
each new unmarked component D0 2 N , jMtðD0Þj � jMt�1ðDÞj þ 1. Moreover if D0,
D00 2 N are distinct, then

jMtðD0Þj þ jMtðD00Þj � jMt�1ðDÞj þ k þ 2:

To see this, note that MtðD�Þ � Mt�1ðDÞ [ fvg, for all D� 2 N . Also
MtðD0Þ \MtðD00Þ is contained in a minimal cut set S separating D0 from D00. Since
G is chordal, S is a clique, and so

jMtðD0Þ \MtðD00Þj � jSj � xðGÞ � k þ 1:

It now follows, using the assumption that k > 1, that if jMt�1ðDÞj � 6k � 3, then
there is at most one new unmarked component D0 2 N such that jMtðD0Þj �
4k � 1. If there is such a component D0, we say that D0 is the heir of D; otherwise
we say that D is heirless. Further, we interpret the notion of heir transitively. So
if D0 is an heir of D and D00 is an heir of D0, then we say that D00 is an heir of D.

We shall say that an unmarked component D 2 Ct is dangerous if
jMtðDÞj � 4k � 1 or jMtðDÞj ¼ 4k � 2 and Alice chooses D (decides to mark one
of the vertices of D) on play t þ 1. We say that D0 is a progenitor if D0 is dan-
gerous, but D0 is not the heir of a dangerous unmarked component. In this case,
if D0 2 Cs is an heir of D0, then D0 is the progenitor of D0. If in addition
i ¼ jMs \ D0j, i.e., i vertices of D0 have been marked after play s, then D0 is an i-th
generation heir of D0. Finally, D0 is heirless after i generations if D0 does not have
an i-th generation heir.

Alice will use the following general strategy. Whenever Bob marks a vertex in
a component D 2 Ct�1, which has an heir D0 2 Ct, Alice will respond by marking a
vertex in D0. Her plan is to leave the progenitor D0 of D0, (or D0 if D0 is
a progenitor) heirless after 2k þ 1 generations by marking the vertices of an
appropriate separator of D0. In the mean time she will make sure that
MðD�Þ � 6k � 3 for any heir D� of D0.

We are now prepared to state Alice’s strategy. At the start of the game she
partitions G into connected components C0 and marks any vertex. Now suppose
that it is Alice’s turn to play after Bob has just made play t by marking the vertex v
in the unmarked component D 2 Ct�1. If D is heirless then Alice chooses any
unmarked component D� 2 Ct. Otherwise Alice chooses the heir D� of D in Ct.

Case 1. D� is not dangerous. Alice marks any vertex in Ut \ D�.

Case 2. D� is a progenitor. Alice sets L ¼ LðD�Þ ¼ D� [MtðD�Þ and assigns a
weight of 1 to every marked vertex of L and a weight of 0 to every unmarked
vertex of L. Thus the weight of L is jMtðD�Þj. Alice then chooses a ðk þ 1Þ-
separator W � LðD�Þ as in Proposition 6. So, setting I ¼ IðD�Þ ¼ fF : F is a
component of G½L� W �g, for every F 2 I , jMt \ F j � 2k � 1. Moreover Ut \ F
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can be separated from the rest of D� by a subset WF � Ut \ W of size at most k. If
jUt \ W j � k, then we let WF ¼ Ut \ W ; otherwise we let WF be an appropriate
k-subset of Ut \ W separating F from G½L� F � NðF Þ�. We call W the primary
separator of D�.

Subcase 2a. jUt \ W j � k. Alice assigns D� the secondary separator S ¼ Ut \ W .
In this case S ¼ WF for each F 2 I . Alice marks any vertex in S.

Subcase 2b. Not Subcase 2a and jMt \ F j � 2k � 2, for every F 2 I . Since not
Subcase 2a, Mt \ W ¼ ;. Thus

4k � 2 � jMtðD�Þj ¼
X
F2I

jMt \ F j ¼
X
S�W

X
WF¼S

jMt \ F j
 !

;

and so there exists a k-set S � W such that
P

WF¼S jMt \ F j � 4k�2
kþ1

l m
� 2. Alice

assigns D� the secondary separator S and marks a vertex v 2 Ut \ S.

Subcase 2c. Not Subcase 2a and there exists F 2 I such that jMt \ F j ¼ 2k � 1.
Then jWF j ¼ k and so for any F ; F 0 2 I , WF \ WF 0 6¼ ;. Since jMtðD�Þj � 4k � 1,
there is at most one other set F 0 2 I such that jMt \ F 0j ¼ 2k � 1. Thus

T
fWF : jMt \ F j ¼ 2k � 1g 6¼ ;. Alice marks a vertex in this intersection, but puts
off the assignment of a secondary separator.

Case 3. D� is an heir of a progenitor D0 2 Cs. Then D� inherits a primary se-
parator W from D0. If D0 or an heir has been assigned a secondary separator S,
then D� inherits S. Otherwise D0 was treated in Subcase 2c after play s by Bob,
Alice has marked exactly one vertex in D0 (more specifically, in W ), and Bob has
marked at most one vertex in D0. Choose F 2 IðD0Þ such that
ðiÞjMs \ F j ¼ 2k � 1 and, if possible, ðiiÞjMt \ F j ¼ 2k. Note that if ðiiÞ holds then
Bob has just marked a vertex in F and so there is at most one such F . Let S ¼ WF

be the secondary separator of D�. In either case, Alice marks a vertex in D�,
preferring one in Ut \ W , and preferring still one that is also in Ut \ S.

This completes our description of Alice’s strategy. We must show that this is a
winning strategy. Let D0 2 Ct0 be any progenitor. Suppose that D0 was assigned
the primary separator W and D0 or some heir of D0 was assigned the secondary
separator S. Let Di 2 Cti be the heir, if any, of D0 in the i-th generation and let vi
be the vertex in Di�1 that is marked to form Di. Note that

jMtiðDiÞj � jMti�1ðDi�1Þj þ 1 � 4k � 1þ i: ð�Þ

It suffices to prove the following lemma.

Lemma 8. If Alice follows the above strategy then:

1. v1 2 S.
2. jMtiðDiÞj � 4k � 1þ i � 6k � 3, if Di exists and i � 2k � 2.
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3. jMt2k�1ðD2k�1Þj � 6k � 4, if D2k�1 exists.
4. jMt2k ðD2kÞj � 6k � 3, if D2k exists.
5. D0 is heirless after 2k þ 1 generations.

Proof. (1) In all cases, except Subcase 2c, the secondary separator S is picked
before v1 is chosen and then v1 is chosen from S. In Subcase 2c there are at most two
possibilities for S and v1 is chosen from the intersection of the possibilities for S.

(2) This is immediate from ð�Þ.
(3) Assume that Alice has a ð2k � 1Þ-st generation heir D2k�1. Then after play

t2k�1 Alice has marked all k vertices in the secondary separator S � D0, since she
marked a vertex of S on play t1 ¼ t0 þ 1 and after any play ti that Bob marked a
vertex in D0, Alice made play tiþ1 by marking another vertex of S. First consider F
such that WF ¼ S.

jMðUt2k�1 \ F Þj � 2k � 1þ 2k � 1 � 4k � 2:

So Ut2k�1 \ F contains uncolored components that are not heirs. Also, regardless
of the case in which D0 was treated,

P
WF¼S jMt0 \ F j � 2. It follows that

jMt2k�1ðD2k�1Þj �
X
WF 6¼S

jMt0 \ F j þ 2k � 1 � ð4k � 1Þ � 2þ ð2k � 1Þ � 6k � 4:

(4) This is immediate from (3) and ð�Þ.
(5) Recall that D0 � W [

S
F2I F . After 2k þ 1 vertices of D0 have been

marked, all the vertices of the separator W are marked. Thus any heir of D0 is
contained in some F 2 I . We have already seen that if WF ¼ S then F does not
contain an heir of D0 even after play t2k�1. So if D0 was treated in Subcase 2a we
are done. So suppose that WF 6¼ S. Then jSj ¼ k ¼ jWF j. So there is a vertex
v 2 S � WF . It follows that v is not adjacent to any vertex in F . If D0 was treated in
Subcase 2b, then

jMðUt2kþ1 \ F Þj � ð2k � 2Þ þ 2k ¼ 4k � 2:

If D0 was treated in Subcase 2c, then jMt2 \ F j � 2k � 1. So

jMðUt2kþ1 \ F Þj � ð2k � 1Þ þ 2k � 1 ¼ 4k � 2: (

This completes the proof of Theorem 1.

References
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16. Nešetřil, J., Sopena, E.: On the oriented game chromatic number. In honor of Aviezri
Fraenkel on the occasion of his 70th birthday. (Research Paper 14, 13 pp. (electronic))
Electron. J. Comb. 8, (2001)

17. Walter, J.R.: Representations of chordal graphs as subtrees of a tree. J. Graph Theory
2, 265–267 (1978)

18. Zhu, X.: Game coloring number of planar graphs. J. Comb. Theory, ser. B 75, 245–258
(1999)

19. Zhu, X.: Game coloring number of pseudo partial k-trees. Discrete Math. 215, 245–262
(2000)

Received: January 12, 2001
Final version received: February 25, 2002

Marking Games and the Oriented Game Chromatic Number of Partial k-Trees 129


