
The Visual Computer (1999) 15:21±35
� Springer-Verlag 1999 21

Hierarchical generalized
triangle strips

Luiz Velho1,
Luiz Henrique de Figueiredo2,
Jonas Gomes1

1 IMPA ± Instituto de Matemµtica Pura e Aplicada,
Estrada Dona Castorina, 110,
22460-320 Rio de Janeiro, RJ, Brazil
2 LNCC ± Laboratório Nacional de Computaç�o
Científica, Rua Lauro Müller 455,
22290-160 Rio de Janeiro, RJ, Brazil
E-mail: {lvelho/jonas}@visgraf.impa.br,lhf@lncc.br

This paper introduces a new refinement
method for computing the triangle se-
quences of a mesh. We apply the method
to construct a single generalized triangle
strip that completely covers a parametric
or implicit surface. A remarkable feature
of this application is that our method gener-
ates the triangulation and the triangle strip
simultaneously, using a mesh refinement
scheme. As a consequence, we are able to
produce a hierarchy of triangle strips de-
fined at each refinement level. This data
structure has many applications in geome-
try compression and rendering.

Key words: Geometric modeling ± Mesh
representation ± Sequential triangulations
± Hamiltionian paths ± Triangle strips ±
Accelerated rendering ± Geometry com-
pression

1 Introduction

Triangle meshes, or triangulations, are one of the
most widely used representations for geometric
models. A triangulation is a 2D simplicial com-
plex, a simple structure with nice combinatorial
properties. Moreover, surfaces of arbitrary topolo-
gy can be tessellated into a mesh of triangular
patches. Such triangles can be rendered very effi-
ciently in both software and hardware. For this rea-
son, they are the basic geometric primitive of the
graphics pipeline.
One of the main disadvantages of triangle meshes
is that, in general, they do not provide a compact
surface representation because a large number of
triangles is required to faithfully describe the ge-
ometry of a complex surface.
This problem motivated the search for encoding
schemes that could be used to represent triangle
meshes in a more compact and efficient way.
One such scheme is the triangle strip (and its
generalizations). The mesh encoding using trian-
gle strips exploits the spatial coherence of the si-
mplicial complex structure. It enumerates mesh
elements in a sequence of adjacent triangles to
avoid repeating the vertex coordinates of shared
edges.
In the traditional setting, the triangle strip encod-
ing leads to the problem of converting a given tri-
angle mesh into the minimal set of triangle strips
covering the mesh. This problem is (NP) complete
[6] and, thus, existing algorithms must rely on heu-
ristics to find suboptimal solutions.
Triangle meshes are often used to approximate
smooth surfaces or to interpolate data points. In
such cases, the mesh is generated, respectively,
from a surface description (in parametric or im-
plicit form) or from sparse samples. Considering
this observation, we noticed that triangle se-
quences can be constructed during the process
of generating the mesh. This reduces the com-
plexity of the problem and leads to a better solu-
tion.
In this paper we describe a method for constructing
a hierarchy of generalized triangle strips. The
method can be integrated into the mesh creation
process. In fact, with a small computational effort,
we are able to build triangle sequences that have
many good properties.
The remainder of the paper is organized as follows.
Section 2 gives definitions and some background
of triangle sequences, Sect. 3 discusses previous
work, Sect. 4 presents the basic method for gener-

Correspondence to: L. Velho



22

ating hierarchical triangle sequences using refine-
ment, Sect. 5 analyzes uniformly refinable sequen-
tial triangulations, Sect. 6 investigates the case of
adaptive refinement, Sect. 7 shows an application
of the method to obtain triangular strips that com-
pletely cover implicit and parametric surfaces, and
Sect. 8 concludes with final remarks and directions
for future work.

2 Definitions and background

In order to investigate the various ways of repre-
senting triangle meshes, we need to study their to-
pological structures, in terms of connectivity and
adjacency relations between the elements of the

meshes. For that purpose, it is convenient to look
at the dual graph of the mesh, which explicitly
gives the adjacency relations between the triangles
of the mesh. In the dual graph, nodes correspond to
triangles, and two nodes are connected when their
associated triangles have a common edge. Figure 1
shows a triangulation and its dual graph.
A generalized sequential triangulation, or Hamil-
tonian triangulation, is a triangulation for which
there is an ordering T1; . . . ; TN of all its triangles
such that two consecutive triangles Tj and Tj�1
share an edge. Such an ordering exists if and only
if the dual graph of the triangulation contains a Ha-
miltionian path. (A path in a graph is said to be
Hamiltonian when it visits all nodes in the graph
exactly once.)

T0
T1

T3

T4

T2 T5

T0
T1

T3

T4

T2 T5

j-1

j

i+1i

T
T

vv
j-1

j

i+1i

T
T

vv Fig. 1. Triangulation and its dual graph

Fig. 2a, b. Geometric representations of a
triangle sequence

Fig. 3. Two options for continuing a
triangle sequence

1

2a 2b

3



23

Notice that each triangle in a Hamiltonian triangu-
lation has an entry edge and an exit edge with re-
spect to the Hamiltonian ordering. The knowledge
of these edges completely characterizes the se-
quence. Geometrically, a generalized triangle se-
quence can be represented by drawing an oriented
path on the mesh domain that visits each triangle
crossing its entry and exit edges (Fig. 2a). This
path is called a sequential path. Another represen-
tation indicates the entry and exit edges with ar-
rows (Fig. 2b).

In a Hamiltonian triangulation, suppose that Tjÿ1 is
a triangle with a vertex vi that is shared with the
next triangle Tj (Fig. 3). Then, triangle Tj is com-
pletely determined by specifying:

l A new vertex vi�1 (i.e., a vertex distinct from
the vertices of triangle Tjÿ1)

l The edge shared by Tjÿ1 and Tj; which can be
the edge to the left (counterclockwise order)
or to the right (clockwise order) of the current
vertex vi

V2 V4 V6

V5V3V1

(V1,V2,V3,V4,V5,V6)

Fig. 4. A sequential triangulation and its triangle strip
encoding

Fig. 5. Partial ordering with two triangle sequences

Fig. 6. Hamiltonian triangulation obtained by
insertion of a Steiner point

4

5

6



24

It follows that a generalized sequential triangula-
tion with N triangles can be encoded by a sequence
of N+2 vertices, defining the geometric informa-
tion, and a sequence of N bits, defining the connec-
tivity information (i.e., left or right edge turn). This
encoding is called a generalized triangle strip.
A sequential triangulation is a particular kind of
generalized sequential triangulation in which the
shared edges follow an alternating left/right turn
order. Because of this implied restriction, the con-
nectivity does not need to be encoded explicitly,
and the representation is given only by the se-
quence of N+2 vertex coordinates or ids. This en-
coding is called a triangle strip. Figure 4 shows an
example of a sequential triangulation and its repre-
sentation as a triangle strip.
The triangle strip, as well as the generalized trian-
gle strip, are standard representations of triangle
meshes and are supported by most graphics sys-
tems, including the OpenGL graphics library [3,
8].
In this paper we shall use the term triangle se-
quence to designate a sequential triangulation, as
well as its generalizations.
A triangle sequence defines a total order relation
on the set of triangles of a mesh. It is always pos-
sible to partition a triangle mesh T into a collec-
tion of subtriangulations T 1; . . . T M; such that each
T k is a triangle sequence. (A trivial partitioning
can be obtained by using one triangle for each se-
quence T k:) The partition defines a partial order on
the triangulation T : Triangles in the same subtrian-
gulation are related according to their order in the
sequence; triangles in different subtriangulations
are not related. Figure 5 shows a partial order on
a mesh consisting of two triangle sequences.
A natural problem is how to obtain the optimal
partition of a mesh into triangle sequences
T 1; . . . T M; that is, a partition that minimizes M.
Clearly, minimizing M is related to maximizing
the length of each triangle sequence T k: Depend-
ing on the application, it may also be desirable to
optimize the sequences of left/right edge turns
within a sequence.
An optimal partition is the most compact represen-
tation of a triangle mesh among all possible sets of
triangle sequence encodings. Ideally, we should
have a total order among all of the triangles in a
mesh; that is, a single triangle strip covering the
mesh completely. However, this is not possible
in general because the dual graph is not always

Hamiltonian. For example, the triangle mesh of
Fig. 5 is not Hamiltonian.
However, the problem of finding the best collec-
tion of triangle sequences of a mesh is NP com-
plete [6]. Nonetheless, by adding new vertices
(called Steiner points), it is always possible to re-
fine a triangle mesh into a Hamiltonian triangula-
tion [2]. Figure 6 shows an example of the inser-
tion of a Steiner point to produce a Hamiltonian
triangulation.
Thus, it seems reasonable that triangulation meth-
ods based on the insertion of vertices, such as mesh
refinement schemes, could be used to generate
Hamiltonian triangulations. This paper focus on
this problem. In the next section, we review some
of the strategies that have been used to compute
good triangle sequences. In Sect. 4 we present a
new method that uses refinement to construct
Hamiltonian triangulations.

3 Previous work and applications

Previous work related to triangle strips falls into
three major categories: algorithms to generate tri-
angle strips for accelerated rendering, algorithms
to compute sequential triangulations for geometry
compression, and theoretical investigation of paths
on triangle meshes.
Triangle strips are important for accelerated ren-
dering because they can significantly increase the
throughput of the visualization pipeline. First, the
data rate is increased, since only N� 2 vertex co-
ordinates have to be sent to the graphics engine
for a sequence of N triangles. Second, viewing op-
erations, such as matrix transforms and clipping,
need to be applied only once to the elements of
the data stream, further increasing the rendering
performance.
Akeley et al. [1] develop a program to convert tri-
angle meshes into strips using a greedy algorithm.
They build a sequence by always choosing the next
triangle as the one adjacent to the least number of
neighbors. Speckmann and Snoeyink [10] build tri-
angle strips based on the dual graph of a triangula-
tion. Their algorithm computes a minimum span-
ning tree of the adjacency graph and segments it
with heuristics that tend to produce long strips.
Evans et al. [7] use a technique called patchficat-
ion that identifies rectangular regions of a mesh
consisting of quadrilaterals. Such regions can triv-



25

ially be encoded as triangle strips. This last strate-
gy is similar to the one employed in our method, in
the sense that it builds the triangle strip while cre-
ating a triangulation.
The properties of sequential triangulations can be
exploited in various ways for the compression of
geometric models. On the one hand, the sequential
structure reduces the connectivity information to
one bit, or even eliminates its explicit encoding.
On the other hand, the locality of reference inher-
ent in a triangle sequence makes it possible to en-
code geometry with fewer bits using prediction
schemes.
Deering [4] introduces the concept of geometry
compression based on generalized triangle se-
quences. His algorithm employs lossy compression
for the quantization of coordinate values, as well as
a vertex cache to take further advantage of spatial
coherence. Taubin and Rossignac [11] construct a
mesh representation using two interlocked trees: a
spanning tree of triangles for connectivity and a
spanning tree of vertices. The geometry informa-
tion is compressed by variable-length lossy encod-
ing.
The generation of paths on triangulations has been
studied in computational geometry. Dillencourt [5]
investigates the complexity of finding Hamiltonian
paths on the edges of Delaunay triangulations. Ar-
kin et al. [2] consider several issues related to
paths on the dual graph of general triangle meshes.
In particular, they show that the problem of finding
optimal triangle sequences is NP hard.

4 Triangle sequences from mesh
refinement

In this section we give an overview of our method
for constructing generalized triangle strips with
mesh refinement.
A refinable triangle sequence is a triangle se-
quence whose total order can be preserved when
its elements are subdivided. Note that this property
depends exclusively on the subdivision scheme
adopted.
A triangle subdivision scheme is called a sequen-
tial refinement if it is based on a subdivision tem-
plate that:

l Decomposes each triangle into a generalized se-
quential triangulation

l Leads to a refined subsequence within each tri-
angle that is compatible with the ordering of the
initial triangulation.

More precisely, if

T1; . . . ; Tjÿ1; Tj; Tj�1; . . . ; TM

is the initial triangle sequence, then each triangle
Tj has a refinement Tj1; . . . ; TjNj that is itself a tri-
angle sequence, and is such that the triangle mesh

T1; . . . ; Tjÿ1; Tj1; . . . ; TjNj|�������{z�������}
Tj

; Tj�1; . . . ; TM;

obtained by replacing triangle Tj by its refinement,
is still a triangle sequence.
The sequential refinement we describe in this pa-
per has two main parts:

1. Initialization. Generate a base mesh and an ini-
tial triangle sequence for it.

2. Refinement. Refine the base mesh, recursively
propagating the triangle sequence from coarse
to finer levels.

The construction of the initial triangle sequence
can (and should) take advantage of properties of
the base mesh. If the mesh has a regular structure,
then there is a natural order of its elements. Fig-
ure 7 shows a simple regular base mesh with a tri-
angle sequence following a serpentine path.
Even when no structural properties of the base
mesh can be exploited, just the fact that the base
mesh is coarse by construction makes it feasible
to compute the initial triangle sequence with con-
ventional algorithms, such as the ones described
in Sect. 3.
The second stage of the method takes an ordered
base mesh and refines the mesh, maintaining the
order as it moves from coarse to finer levels.
We now give a description of the refinement and
prove its correctness. We start from an initial trian-
gle sequence T k; with triangles ordered as:
Tk

1 ; . . . ; Tk
jÿ1; Tk

j ; Tk
j�1; . . . ; Tk

Mk
: We need to subdi-

vide each triangle Tk
j into a triangle sequence

T k�1
j � Tk�1

j1 ; . . . ; Tk�1
jNk

; such that the refined trian-
gle mesh

T k�1
1 ; T k�1

2 ; . . . ; T k�1
Mk

is, in this order, a triangle sequence.



26

Suppose, by induction, that we have accomplished
the task up to the jth triangle. We have thus con-
structed the refined triangle sequence

T k�1
1 ; T k�1

2 ; . . . ; T k�1
j :

To complete the induction, we must devise a meth-
od to refine the triangle Tk

j�1 into a triangle se-
quence T k�1

j�1 ; such that

T k�1
1 ; T k�1

2 ; . . . ; T k�1
j ; T k�1

j�1

is also a triangle sequence.
Note that the triangle Tk

j�1 has an entry edge and an
exit edge already determined by the original trian-
gle sequence T k: Furthermore the entry edge of
Tk

j�1 is the exit edge of Tk
j (edge CB in Fig. 8).

Therefore, by the induction hypothesis, this edge
has possibly been subdivided in the refinement

process of the triangle Tk
j ; and one of the subedges

of the refinement is the exit edge of the last trian-
gle of the sequence T k�1

j (subedge MC in Fig. 8).
The refinement of triangle Tk

j�1 subdivides its exit
edge, and one of the subedges must be chosen for
the exit edge of the last triangle in the refinement
sequence T k�1

j�1 of the triangle Tk
j�1 (subedge ND in

Fig. 8).
The induction step given shows that the accom-
plishment of our goal is completely localized:
we must devise a template for triangle refinement
that makes the induction step possible. The tem-
plate must be able to provide a sequence path
from the entry subedge to one of the exit subedg-
es. We have two strategies for the template con-
struction.

Uniform template. We construct a single template
that its used to subdivide every triangle, creating
a uniform sequential refinement of the mesh.

Fig. 7. Base mesh and serpentine triangle strip

Fig. 8. Propagating the triangle sequence during
refinement

7

8



27

Adaptive templates. We use different templates in
order to construct an adaptive sequential refine-
ment.

The core of the algorithm is the construction of the
triangle refinement template. In the next two sec-
tions, we discuss how to determine suitable subdi-
vision templates for both uniform and adaptive
mesh refinement.

5 Uniform sequential refinement

Uniform mesh refinement schemes recursively
subdivide all triangles of a mesh, using the same
template, until some resolution is obtained.

In the case of triangle meshes, the most common
refinement scheme splits all edges (usually at the
edge midpoint) into two parts and applies a subdi-
vision template to decompose each triangle into
subtriangles. In this case, there are two possible
subdivision templates for the uniform decomposi-
tion of a triangle. Both subdivide a triangle into
four subtriangles. These templates are shown in
Fig. 9.
Template 9a induces an isotropic decomposition. It
connects each new vertex mi; at the midpoint of an
edge, to vertex m i�1� �mod3; at the midpoint of the
subsequent edge.
Template 9b induces an anisotropic decomposi-
tion. It selects the midpoint mi of one edge, and
connects it to the opposite vertex of the triangle

m 1

m m
2

3

v
1

v
2 3v

m 1

m m
2

3

v
1

v
2 3v

S

oS

i S

oS

i

left exit right exit

9a 9b

10

Fig. 9a, b. Uniform decomposition of a triangle: a isotropic template; b anisotropic template

Fig. 10. Realization of the template of Fig. 9b compatible with the bottom left and bottom right orders



28

vi; as well as to the midpoints of the two adjacent
edges m iÿ1� �mod3j j and m i�1� �mod3j j: This decompo-
sition scheme can have three realizations, each
corresponding to the selection of one of three edge
midpoints. Note that the use of one of these partic-
ular configurations implies choosing a preferred
direction to split the triangle. We have exploited
this extra degree of freedom to conform the mesh
geometry to a surface (see Sect. 7).
Simple inspection reveals that template 9a does
not produce a generalized sequential triangulation,
whereas template 9b does. Therefore, only tem-
plate 9b is suitable for defining a sequential refine-
ment scheme. This result is summarized in the fol-
lowing.

Proposition 1. A triangle sequence is uniformly
refinable if all its elements are subdivided using
template 9b in a orientation compatible with the
sequence order.

Proof. From the discussions in the previous sec-
tion, we need to determine an exit subedge and
construct a sequence path from the entry subedge
to the exit subedge. There are two possible choices
for the exit subedge corresponding to the bottom
left and the bottom right. Figure 10 shows a tem-
plate subdivision and the sequence path for each
case. h
We remark that the solution shown is not unique.
In fact, template 9b gives two possible orientations
for the case where the exit edge is not adjacent to
the entry subedge. One alternative is shown in the
right side of Fig. 10; the other alternative would be
a configuration connecting the midpoint of the en-
try edge to the opposite vertex.

In the next section, we construct the templates for
adaptive sequential refinement.

6 Adaptive sequential refinement

Adaptive refinement schemes decompose the mesh
in a nonuniform manner.
In nonuniform subdivision, triangle edges are also
split into two parts (usually at the midpoint), but
unlike uniform schemes, not all three edges of a
triangle are subdivided. Mesh elements are subdi-
vided to different levels based on some local adap-
tation criteria. The recursive subdivision of a trian-
gle stops when all three edges satisfy the adapta-
tion criteria.
A consequence of the adaptive nature of nonuni-
form refinement is that the subdivision templates
are more complex. They must take into account
the cases of one, two, and three edges splitting.
Therefore, the templates consist of all simplicial
decompositions generated by internal edges con-
necting edge midpoints and/or triangle vertices.
Figure 11 shows the subdivision templates corre-
sponding to (a) a one-edge split, (b) a two-edge
split, and (c) a three-edge split. Note that the tem-
plate of Fig. 11c is the same one used for uniform
subdivision. Obviously, the realization of these
templates includes all permutations of different
edges splitting, as well as all configurations for
connecting them.
As for uniform refinement, in order to prove that
we can construct a refinable triangle sequence, it
is sufficient to show that the templates Fig-
s. 11a±c produce triangle sequences that are com-
patible with the parent triangle sequence order.

a b c

Fig. 11a±c. Templates for nonuniform subdivision



29

m n

qp

m

n q

m

n p

(b)

c c

Fig. 12a, b. Subdivision when entry edge does not split

Fig. 13a, b. Subdivision when adjacent edge splits

Fig. 14a, b. Subdivision when adjacent edge does not split and exit edge is not the adjacent edge

Fig. 15a, b. New templates for subdivision when adjacent edge does not split and exit edge is the adjacent edge

12a 12b

13a 13b

14a 14b

15a 15b



30

Since the cases involving the template of Fig. 11c
have already been analyzed in Sect. 5, there are
three cases remaining to be considered.

1. Entry edge does not split. This is the simplest
case. The triangle is subdivided by a main internal
edge, transversal to the sequence path. The exit
edge could be either to the left or to the right. This
configuration is illustrated in Fig. 12. Note that
there are two possible realizations for the configu-
ration shown in Fig. 12b, i.e., a subdivision of the
quadrilateral pmnq into the triangles pmn and pnq
or pmq and mng.
2. Entry edge splits, and the adjacent edge to the
entry subedge also splits. As shown in Fig. 13, in
this case, the internal edges mn and mp produce
a refinable triangle sequence that begins at the en-
try subedge and can exit at either one of the two
other edges.
3. Entry edge splits, and the adjacent edge of the
entry subedge does not split. This is the most dif-
ficult case, and we break it down in two subcases
depending on the exit edge:
3a. When the exit edge is not adjacent to the entry
subedge, the refined triangle sequence can be con-
structed easily, as shown in Fig. 14.
3b. When the exit edge is adjacent to the entry
subedge, it is impossible to produce a triangle se-
quence with the templates of Fig. 11 b, c. To
overcome this situation, we create two new tem-
plates, by inserting an extra vertex c in the inte-
rior of the triangle and connecting it to the other
vertices. These new templates are illustrated in
Fig. 15.

In summary, this case analysis demonstrated that
these five templates are sufficient to produce refin-
able nonuniform triangle sequences. They can be
used with any adaptive mesh refinement method
that is based on edge subdivision.
In the next section, we apply the adaptive sequen-
tial refinement to compute triangle strips for im-
plicit and parametric surfaces.

7 Examples

We have implemented an algorithm that employs
the sequential mesh refinement method described
in this paper to compute simultaneously both a hi-
erarchical triangulation and a hierarchy of triangle
sequences. The algorithm produces results superior

to methods that compute the triangle strip separate-
ly starting from a precomputed triangulation.
The first stage of the algorithm, as outlined in
Sect. 4, creates a base mesh that will be used in
the refinement stage. The second stage of the the
algorithm recursively refines the base mesh, using
the either the uniform or the nonuniform subdivi-
sion templates that we introduce in Sect. 5 and 6.
The algorithm performs adaptive refinement based
both on the error measure of the polygonal approx-
imation and on the aspect ratio of the triangles in
the mesh. Details of the implementation of this al-
gorithm can be found in [12].
We now present some examples of triangulations
and triangle sequences computed by the algorithm.

Unit square. Figure 16 shows the first three levels
of a hierarchy of triangle sequences generated by
uniform mesh refinement of the square
[0, 1]�[0, 1] of the plane.
The left part of the figure displays the triangle
meshes and the right part displays the correspond-
ing triangle sequences, shown as a polygonal path
connecting the midpoints of entry and exit edges.
The base mesh was a decomposition of the square
into two triangles along one diagonal. Note that the
refinement process produces a triangle sequence
that follows the path of a space-filling curve (a
Sierpinski-like curve).

Height field. Figure 17 shows a height field surface
given by the regular sampling of a terrain elevation
model. The base mesh was a 2�2 rectangular grid,
with the initial triangle sequence following a ser-
pentine path. The mesh was refined down to four
levels by uniform subdivision.

Sphere. Figure 18 shows the adaptive tessellation
of a sphere without the polar caps, which is de-
scribed parametrically by:

x� cosucosv; y� sinucosv; z� sinv;

u2 0; 2p� �; v2 p=2� 0:2; 3p=2ÿ 0:2� �:
Figure 18a, b displays the decomposition of the
parametric domain and the triangulation of the sur-
face in 3-space. Figure 18c, d displays the paths
corresponding to the triangle sequence in parame-
ter space and on the surface. Notice that the trian-
gulation forms a restricted structure, while the tri-
angle sequence follows the path of a space-filling
curve that is adapted to the surface.



31

level 1

 level 2 level 3

(a) (b)

(a) (b)

16

17a 17b

17c 17d

Fig. 16. Hierarchical mesh and triangle
sequences

Fig. 17a±d. Uniform tessellation of
terrain model



32

18a 18b

18c 18d

19a 19b

19c 19d

Fig. 18a±d. Sphere

Fig. 19a±d. Torus



33

Parametric torus. Figure 19 shows the adaptive
tessellation of a torus, which is described paramet-
rically by:

x� cosu r� cosv� �; y� sinu r� cosv� �;
z� sinv;

u2 0; 2p� �; v2 0; 2p� �; r� 1:6:

As in the previous example, the triangle sequence
also follows a space-filling path.

Trimmed BØzier patch. Figure 20 shows the poly-
gonization of a trimmed BØzier surface patch with
control points

ÿ1; 0; 0� � 0; 3; 0� � 3; 3; 0� � 4; 0; 0� �
1; 0; 1� � 1; ÿ3; 1� � 3; 3; 1� � 2; 0; 1� �
0; 0; 2� � 0; 3; 2� � 3; 3; 2� � 3; 0; 2� �
ÿ1; 0; 4� � 0; 3; 3� � 3; ÿ3; 3� � 4; 2; 3� �

2664
3775:

Despite of the complex topology of the parametric
domain, we were able to generate a well-adapted
mesh, as well as a triangle sequence that covers
the entire patch.

(a) (b)

Fig. 20a±d. BØzier surface

a b

c d



34

8 Conclusions and future work

We have presented a new method for constructing
generalized triangle strips from an initial, coarse
sequence. The method uses both uniform and
adaptive refinement schemes. We have also ap-
plied the method to obtain refinable generalized
triangle sequences that approximate parametric or
implicit surfaces.
The recursive nature of the process actually pro-
duces a hierarchy of triangle sequences, one for
each level of refinement. This structure can be em-
ployed to advantage in the compression of multi-
resolution models and in accelerated progressive
rendering.
As future work, we plan to investigate several is-
sues, including the properties of space-filling
curves on manifolds, the potential of locality of
reference to increase geometric compression, and
applications of triangle sequences to artistic ren-
dering of surfaces.

Acknowledgements. The figures in Sect. 7 were generated with
Geomview [9]. The authors are partially supported by research
grants from the Brazilian Council for Scientific and Technolog-
ical Development (CNPq) and Rio de Janeiro Research Founda-
tion (FAPERJ).

References

1. Akeley K, Haeberly P, Burns D (1990) tomesh.c: C program
on SGI developer's toolbox CD

2. Arkin E, Held M, Mitchel J, Skiena S (1994) Hamiltonian
triangulations for fast rendering. The 2nd Annual European
Symposium on Algorithms, (Lecture Notes in Computer
Science, vol 855). Springer, Berlin Heidelberg New York,
pp 36±47

3. Open GL Architecture Review Board (1993) OpenGL Ref-
erence Manual. Addison Wesley

4. Deering MF (1995) Geometry compression. In: Cook R (ed)
SIGGRAPH'95 Conference Proceedings, Annual Confer-
ence Series, pp 13±20

5. Dillencourt M (1992) Finding Hamiltonian cycles in Del-
aunay triangulations is NP-complete. Proceedings of the
4th Canadian Conference on Computational Geometry,
pp 223±228

6. Evans F, Skiena S, Varshney A (1996) Completing sequen-
tial triangulations is hard. Technical Report Department of
Computer Science, State University of New York, Stony
Brook, NY

7. Evans F, Skiena S, Vashney A (1996) Optimizing triangle
strips for fast rendering. IEEE Visualization'96

8. Kilgard MS (1997) Realizing OpenGL: two implementa-
tions of one architecture. In: Molnar S, Schneider B-O
(ed) 1997 SIGGRAPH/Eurographics Workshop on Graphics
Hardware, New York City, NY

9. Levy S, Munzner T, Phillips M Geomview. Software written
at the Geometry Center, University of Minnesota. Available
at http://www.geom.umn.edu/software/

10. Speckmann B, Snoeyink J (1997) Easy triangle strips for
TIN terrain models. Canadian Conference on Computational
Geometry, 239±244

11. Taubin G, Rossignac J (1998) Geometric compression
through topological surgery. ACM Transactions on Gra-
phics, Vol 17, No 2, pp. 84±115, April 1998

12. Velho L, Figueiredo LH de, Gomes J (1998) Hierarchical
adaptive polygonization of parametric and implicit surfaces:
Instituto de Matemµtica Pura e Aplicada, Rio de Janeiro,
preprint



35

LUIZ VELHO is an Associate
Researcher at the Instituto de
Matematica Pura e Aplicada
(IMPA) of CNPq, and a member
of the Visgraf project. He re-
ceived a BE in Industrial Design
from ESDI/UERJ in 1979, an MS
in Computer Graphics from the
MIT/Media Lab in 1985, and a
PhD in Computer Science in
1994 from the University of To-
ronto under the Graphics and Vi-
sion groups. His experience in
computer graphics spans the
fields of modeling, rendering,
imaging and animation. From

1987 to 1991 he was a Principal Engineer at Globo TV Network
in Brazil, where he created special effects and visual simulation
systems. In 1994 he was a visiting professor at the Courant In-
stitute of Mathematical Sciences of New York University.

LUIZ HENRIQUE de FIGUEI-
REDO has a BSc and an MSc
in Mathematics from PUC-Rio,
the Catholic University of Rio
de Janeiro, and he received a
PhD in Mathematics in 1992
from IMPA. His current research
interests include computational
geometry, geometric modeling,
and interval methods in computer
graphics. He is currently an As-
sociate Researcher at the Labo-
ratório Nacional de Computac�o
Cientifica (LNCC) and a collabo-
rator of the Visgraf project at IM-
PA.

JONAS GOMES is a full Profes-
sor at the Institute of Pure and
Applied Mathematics (IMPA) in
Rio de Janeiro, and he is a mem-
ber of the Brazilian Academy of
Sciences. He received a PhD in
Mathematics in 1984 from IM-
PA. From 1984 to 1988 he was
the R&D manager of the comput-
er graphics group at Globo TV
network. In 1990 he started the
Vision and Graphics Lab at IM-
PA (Visgraf Lab). The Lab is in-
volved with research and devel-
opment, and also supports a grad-
uate program in computer graph-

ics. He has published several books and research articles in com-
puter graphics. His current research interest include modeling,
imaging, animation, and mathematical methods of computer
graphics.


