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Abstract
Lane line detection becomes a challenging task in complex and dynamic driving scenarios. Addressing the limitations of
existing lane line detection algorithms, which struggle to balance accuracy and efficiency in complex and changing traffic
scenarios, a frequency channel fusion coordinate attention mechanism network (FFCANet) for lane detection is proposed.
A residual neural network (ResNet) is used as a feature extraction backbone network. We propose a feature enhancement
method with a frequency channel fusion coordinate attention mechanism (FFCA) that captures feature information from
different spatial orientations and then uses multiple frequency components to extract detail and texture features of lane
lines. A row-anchor-based prediction and classification method treats lane line detection as a problem of selecting lane
marking anchors within row-oriented cells predefined by global features, which greatly improves the detection speed and can
handle visionless driving scenarios. Additionally, an efficient channel attention (ECA) module is integrated into the auxiliary
segmentation branch to capture dynamic dependencies between channels, further enhancing feature extraction capabilities.
The performance of the model is evaluated on two publicly available datasets, TuSimple and CULane. Simulation results
demonstrate that the average processing time per image frame is 5.0 ms, with an accuracy of 96.09% on the TuSimple dataset
and an F1 score of 72.8% on the CULane dataset. The model exhibits excellent robustness in detecting complex scenes while
effectively balancing detection accuracy and speed. The source code is available at https://github.com/lsj1012/FFCANet/tree/
master

Keywords Lane line detection · Frequency channel · Attention mechanism · Autonomous driving · Row anchor

1 Introduction

With increasing urbanization [1] and significant economic
growth, the number of motor vehicles is rising rapidly. This
growth has brought serious challenges to urban transporta-
tion and has made traffic safety issues more prominent.
Consequently, autonomous vehicles (AVs) [2] and advanced
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driver assistance systems (ADAS) [3] have emerged as crit-
ical technological solutions to alleviate traffic problems and
enhance driving safety. AVs achieve the ability to drive
autonomouslywithout human intervention through a range of
sensors, algorithms, and computing systems. ADAS signifi-
cantly enhances the safety and convenience of conventional
vehicles by providing features such as lane keeping, auto-
matic emergency braking, and adaptive cruise control. Lane
line detection technology, one of the core components of
AVs and ADAS, plays a crucial role in vehicle positioning,
navigation, and path planning. As technology continues to
advance, AVs and ADAS will gradually become an integral
part of future transportation systems. The optimization and
improvement of lane line detection technology, as a core
technology of AVs and ADAS, is of great significance for
enhancing traffic safety, improving traffic flow, and promot-
ing the development of intelligent transportation systems.

Although many lane line detection methods have been
highly successful under certain conditions, vehicles face
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complex scenarios such as heavy occlusion, inclement
weather, and extreme lighting, as well as elongated fea-
tures of lane lines that are inherently difficult to detect. This
makes accurate and rapid detection of lane lines a chal-
lenging task. Currently, existing lane line detection methods
are mainly classified into two categories: traditional meth-
ods [4, 5] and deep learning methods [6–10]. Traditional
lane line detection methods primarily rely on image process-
ing and feature extraction. These methods usually extract
the color features [11–13] or edge features [14, 15] of the
lane lines, use the inverse perspective transform to obtain a
bird’s eye view of the image [16], and finally use the Hough
transform [17] or sliding window search [12, 13] to fit the
lane lines. Traditional methods can achieve better results
under simple conditions but often face greater limitations in
complex and changing driving scenarios. They exhibit poor
adaptability to environmental changes and complex road con-
ditions, require frequent parameter adjustments, have high
computational complexity, and offer poor real-time perfor-
mance. In recent years, deep learning methods have received
extensive attention and application in the field of lane line
detection, gradually becoming themainstreammethod. Deep
learning-based lane line detectionmethods extract and under-
stand features in images by learning autonomously from
large amounts of data, allowing for more robust detection
in different scenarios [18–21]. The mainstream deep learn-
ing methods fall into three categories: segmentation-based
methods, anchor-based methods, and parameter-based meth-
ods. Segmentation-based methods usually formulate the lane
line detection problem as a segmentation task to obtain a
pixel-by-pixel predicted segmentation map. This method has
higher detection accuracy but slower computation speed and
poorer real-time performance, making it difficult to meet
the real-time requirements of lane line detection in prac-
tice. Anchor-based methods generate candidate regions in
an image using predefined anchor frames, then classify and
regress these regions to detect and locate lane lines. This
method is more efficient in detection but less effective in
complex scenes. Parameter-based approaches achieve lane
line detection by modeling the lane curve and regressing the
model parameters.While parameter-based lane line detection
is computationally efficient, it is less accurate in complex and
non-regular road scenarios.

To effectively balance lane line detection accuracy and
efficiency in complex environments, this paper proposes
a frequency channel fusion coordinate attention mecha-
nism network (FFCANet) for lane detection. FFCANet uses
ResNet [22] as its backbone network. To enhance themodel’s
ability to extract lane features in complex road scenes,
we propose the FFCA module, which mitigates interfer-
ence from similar external features and improves detection
accuracy by capturing lane line details and texture infor-
mation from multiple spatial directions. Additionally, to

achieve faster detection and address the issue of vision loss,
a row-anchor-based prediction and classification method
is employed to circumvent the high computational com-
plexity of pixel-by-pixel segmentation. To further enhance
the feature extraction capability and capture the dynamic
dependencies between channels, the ECA module [23] is
incorporated into the auxiliary segmentation branch. Finally,
FFCANet was evaluated on the CULane [24] and Tusimple
[25] datasets. Compared to other methods, FFCANet signif-
icantly enhances detection performance in complex scenes
and achieves faster detection speeds while maintaining high
accuracy.

The main contributions of the work in this paper are as
follows:

• A feature enhancement method with a frequency channel
fusion coordinate attention mechanism (FFCA) is pro-
posed to increase feature diversity by capturing lane line
details and texture information frommultiple spatial direc-
tions.

• A row-anchor-based prediction and classification method
is employed to improve detection efficiency and address
the lack of visual cues.

• The ECA module is incorporated into the auxiliary seg-
mentation branch to capture the dynamic dependencies
between channels and further enhance feature extraction
capability.

• This approach demonstrates effectiveness and applicabil-
ity on publicly available benchmark datasets, achieving an
effective balance between lane line detection accuracy and
speed.

2 Related work

In recent years, lane line detection technology has attracted
significant attention from both academia and industry. Exist-
ing lane line detection methods are mainly classified into
traditional methods and deep learning-based methods.

2.1 Traditional methods

Traditional lane line detectionmethods primarily utilize algo-
rithms such as edge detection and the Hough transform
to identify and track lane lines through image processing
and feature extraction techniques. Li et al. [26] employed a
multi-channel threshold fusionmethod based on gradient and
background differences combined with HSV color features
of lane lines for lane line detection. However, the method
exhibits limited adaptability to environmental changes and
complex road conditions. Muthalagu et al. [27] utilized a
combination of HLS and Lab for color threshold segmen-
tation, applied the Sobel edge detection operator to extract
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edge features, fused the color and edge features, and subse-
quently conducted lane line detection using a sliding window
approach.However, thismethodnecessitates frequent param-
eter adjustments and is slow in detection. Feng et al. [28]
utilized enhanced gradient features to detect candidate edges
of lane lines, obtained a bird’s eye view through inverse per-
spective transformation, and finally employed an adaptive
sliding window approach. However, the method suffers from
high computational complexity and suboptimal real-time
performance. While traditional lane line detection methods
perform well under simple conditions, they exhibit signifi-
cant limitations in complex and dynamic driving scenarios.

2.2 Deep learningmethods

Deep learning-based lane line detection methods offer
the advantages of high accuracy and robustness, enabling
efficient lane line detection under various road condi-
tions through feature learning from large-scale datasets.
These methods can be categorized into three main types:
segmentation-based methods, anchor-based methods, and
parameter-based methods.

2.2.1 Segmentation-based methods

Segmentation-based methods typically frame the lane line
detection problem as a segmentation task, where lane lines
are identified through a segmentation map predicted pixel
by pixel. Pan et al. [24] introduced a Spatial Convolutional
Neural Network (SCNN), employing a layer-by-layer convo-
lutional structure facilitating efficient information exchange
between pixels across rows and columns of different lay-
ers, thereby enhancing feature capture in images. However,
this method exhibits high computational complexity and
slow detection speed. Hou et al. [29] proposed the Self
Attention Distillation (SAD) module, enabling the network
to self-learn and achieve substantial improvements with-
out additional supervision or labeling. However, the method
merely enhances the interlayer information flow within the
lane area without offering additional monitoring signals for
occlusion handling. Xu et al. [30] utilized Neural Architec-
ture Search (NAS) to discover a more effective backbone
network for capturing more accurate information to enhance
curve lane detection. However, NAS entails extremely high
computational expense [31], inefficiency, and time con-
sumption. While segmentation-based methods can attain
high-precision detection, they suffer from elevated compu-
tational complexity and reduced detection efficiency.

2.2.2 Anchor-based methods

Anchor-based methods utilize predefined anchor frames to
generate candidate regions in an image, which are subse-
quently classified and regressed to detect and locate lane
lines. Su et al. [32] introduced a novel vanishing point-guided
anchor generator, leveraging multiple structural information
related to lane lines to enhance performance. However, the
performance of this method may be limited in complex
environments. Qin et al. [33] proposed a lane line detec-
tion method based on row anchors, treating the lane line
detection process as a row-based selection problem using
global features, significantly reducing computational cost
and addressing the visionless problem. The method strug-
gles to accurately determine the shape of the lanes. Liu
et al. [34] proposed a conditional lane line detection strat-
egy employing conditional convolution and row anchors,
where the conditional convolution module adaptively adjusts
the convolution kernel size, locates the starting point of the
lane line, and performs row anchor-based lane line detec-
tion. However, the method struggles to recognize the starting
point in certain complex scenes, leading to diminishedperfor-
mance. Anchor-based methods offer real-time performance
advantages; however, their performance may not be optimal
in more complex scenarios.

2.2.3 Parameter-based methods

The parameter-based approach models lane curves with
parameters and regresses these parameters to detect lane
lines. PolyLaneNet [35] proposed predicting the polynomial
coefficients of lane lines via deep polynomial regression,
where the output represents the polynomial of each lane
line in the image. Despite its computational efficiency, this
method lacks accuracy. Liu et al. [36] introduced the appli-
cation of Transformer to predict the parameters of the lane
shape model for each lane line, taking into account road
structure and camera pose. However, the method is highly
sensitive to prediction parameters, and errors in higher-order
coefficients may result in alterations to lane shape. Feng et al.
[37] utilized parametric Bezier curves to represent lane lines
as parametric curves through curve modeling and employed
deep learning networks to directly predict these curve param-
eters for more efficient and accurate lane line detection.
However, in extremely curved road scenarios, cubic curves
may inadequately represent lane lines. Although increasing
the curve’s order partially addresses this issue, higher-order
terms become challenging to predict, as small prediction
errors can significantly alter lane line shapes. Consequently,
the parameter-based method fails to surpass other lane detec-
tion methods in accuracy.

The aforementioned methods struggle to detect lane
lines accurately and swiftly in complex environments, and
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achieving both accuracy and speed simultaneously remains
challenging. Consequently, we introduce a novel lane line
detection network to address this issue. The proposedmethod
is also anchor-based but successfully handles complex lanes
and improves lane line detection accuracy by employing a
frequency channel fusion coordinate attention mechanism.

3 Method

In this section, the lane line detection network proposed in
this article is detailed. The network structure comprises a
feature extraction backbone network (ResNet), a frequency
channel fusion coordinate attention module (FFCA), an aux-
iliary segmentation branch, and a predictive classification
branch.

3.1 FFCANet architecture

The overall architecture of FFCANet is shown in Fig. 1.
Initially, image preprocessing techniques are employed to
mitigate overfitting, and operations such as translation and
rotation [38] are applied to the input lane image to obtain
an RGB lane line image of size 288 × 800. Subsequently,
the ResNet backbone network extracts the preliminary fea-
tures of the image. In this study, primarily ResNet-18 and
ResNet-34 are utilized as the feature extraction networks,
and the resulting preliminary feature map serves as the input
for FFCA.TheFFCAmodule processes the features indepen-
dently in various spatial directions to capture lane line feature
information diversely. It employsmultiple frequency compo-
nents to extract additional lane line information, enhancing
feature diversity. This enables the model to more accurately
detect and identify lane line features, thus capturing more
lane line details and texture information and improving the
model’s feature extraction capability. The enriched feature
map is then fed into the cell prediction classification branch.
Here, lane marking anchors are selected in predefined row-
oriented cells, and the probability of cells in different rows
belonging to a lane line is predicted. With the potential exis-
tence of up to four lane lines, cells belonging to the same
lane line are classified as one class. Three features are out-
put through scales 2–4 of the ResNet network, serving as
inputs for the auxiliary segmentation. The ECA module is
integrated into the auxiliary segmentation to precisely high-
light the more critical lane line features in the current task,
further enhancing feature extraction capability. The auxiliary
segmentation branch only functions during the training phase
and is removed during the testing phase, thus not affecting
runtime speed.

3.2 Frequency channel fusion coordinate attention
mechanism

Due to the thin and sparse appearance of the lane lines, they
lack distinctive features and are susceptible to interference
from other objects with a similar localized appearance. To
leverage the shape a priori information of lane lines fully
and enhance the model’s feature extraction capability, a
frequency channel fusion coordinate attention mechanism
(FFCA) approach is proposed. By utilizing multiple fre-
quency components to extract more feature information,
feature diversity is enhanced, enabling the model to more
accurately capture lane line details and texture information.
Incorporating both channel information and direction-related
position information aids in better locating and identifying
lane line features, thereby improving model detection.

3.2.1 Frequency channel attention

Frequency channel attention networks (FcaNet) is a channel
attention mechanism based on the discrete cosine trans-
form, which captures subtle texture variations and increases
feature diversity by operating on features directly in the fre-
quency domain [39]. Initially, FcaNet utilizes the discrete
cosine transform (DCT) to convert the input feature maps
into the frequency domain, allowing the network to learn
and represent frequency-level information directly. The fre-
quency channel attention module automatically learns and
emphasizes the more crucial frequency components, thereby
focusingmore effectively on the frequency features pertinent
to the classification task. Subsequently, the weighted fre-
quency features are mapped back to the spatial domain using
the inverse discrete cosine transform (IDCT), and the fea-
tures are further refined by convolutional layers, ultimately
producing a feature representation for classification.

The discrete cosine transform (DCT) is a commonly
employed signal processing technique utilized to convert
1D or 2D signals from the spatial domain to the frequency
domain. In image processing, DCT finds widespread appli-
cation in tasks such as image compression and feature
extraction. The basis function of the 2D DCT is:
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h,w � cos
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(
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2
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The 2D DCT can be written as:

f 2dh,w �
H−1∑
i�0

W−1∑
j�0

x2di , j B
i , j
h,w (2)

where h, i ∈ {0, 1, · · · , H − 1}, j , w ∈ {0, 1, · · · , W − 1},
H is the height of x2d , W is the width of x2d , f 2d ∈ RH×W

is the spectrum of the 2D DCT, x2d ∈ RH×W is the input. In
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contrast, the 2D IDCT can be written as:

x2dh, j �
H−1∑
h�0

W−1∑
w�0

f 2dh,wBi , j
h,w (3)

Dividing the input feature X into n parts along the channel
dimension, the split part is denoted as [X0, X1, · · · , Xn−1],
and Xi ∈ RC ′×H×W , i ∈ {0, 1, · · · , n − 1}, C ′ � C/n, C is
divisible by n. For each section, assigning the corresponding
2D DCT frequency components, 2D DCT results as Freq
vectors for each part, the expression is:

Freqi � 2DDCT ui , vi (Xi ) �
H−1∑
h�0

W−1∑
w�0

Xi
:, h,wB

ui , vi
h,w (4)

where i ∈ {0, 1, · · · , n − 1}, [ui , vi ] is the 2D index cor-
responding to the frequency component of Xi , Freqi ∈ RC ′

is the compressed C ′− dimensional vector, the entire com-
pression vector can be obtained by concatenating, denoted
by:

Freq � compress(X ) � cat([Freq0, Freq1, · · · , Freq(n−1)])
(5)

where Freq ∈ RC is a multispectral vector, the entire multi-
spectral channel attention framework can be written as:

ms_att � sigmoid( f c(Freq)) (6)

From Eqs. (5 and 6), it is evident that the frequency
channel attention module extends the original global aver-
age pooling method to frameworks with multiple frequency
components, effectively representing compressed channel
information. The frequency channel attention is depicted in
Fig. 2.

3.2.2 Coordinate attention

Since FcaNet lacks understanding and application of the spa-
tial domain of the feature map, the coordinate attention (CA)
mechanism is incorporated to enhance the model’s compre-
hension of the spatial structure [40]. CA leverages the spatial
structure of an image fully and processes features separately
in various spatial directions to better capture information in
different orientations. By decomposing the channel attention
into two feature codes and aggregating the features along
different spatial directions, the model can focus on the rows
and columns of the image individually. Thus, it can efficiently
capture long-range dependence of features in one direction
while preserving precise positional information in the other
direction. The coordinate attention mechanism is illustrated
in Fig. 3.

Firstly, each channel of the input feature x is encoded
along the x-axis and y-axis using two spatially scoped pool-
ing kernels, (H , 1) and (1, W ), respectively. The coding of
the cth channel with height h and the coding of the cth chan-
nel with width w are shown in Eqs. (7) and (8), respectively.

zhc (h) � 1

W

∑
0≤i<W

xc(h, i) (7)

zwc (w) � 1

H

∑
0≤ j<H

xc( j , w) (8)

where W and H are the width and height of the input fea-
tures, respectively; i , j are feature calculation coordinates,
respectively; xc is the feature of the input cth channel.

The two formulas above encode each channel along
the x-axis coordinates and y-axis coordinates, respectively,
resulting in a pair of orientation-aware feature maps that
preserve the positional information of each channel of the
feature map. Simultaneously capturing a long-range depen-
dency along the coordinate direction for the attentionmodule
and maintaining precise positional information along the
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Fig. 2 Frequency channel
attention
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Fig. 3 Coordinate attention mechanism

other coordinate direction helps the network more accurately
localize and identify important features.

The feature map is obtained from the embedding stage
of coordinate information, which needs to be processed by
splicing operation, followed by 1 × 1 convolution and non-
linear activation, which is represented by the formula:

f � δ(F1([z
h , zw])) (9)

where δ is a nonlinear activation function; f ∈ RC/r×(H+W );
[·, ·] is the splicing operation along the spatial dimension; F1
is a 1 × 1 convolution operation.

f is then split into two separate tensors, f h ∈ RC/r×H

and f w ∈ RC/r×W , along the spatial dimension. Two 1 ×
1 convolutions Fh and Fw transform f h and f w to have the
same number of channels as the input features x , respectively,
and the formula is expressed as:

gh � σ (Fh( f
h)) (10)

gw � σ (Fw( f
w)) (11)

where σ is expressed as a sigmoid function. The output
feature maps gh and gw are expanded and used as atten-
tional weights for the x- and y-axis coordinates, respectively.

Finally, the process of re-weighting the original feature map
x through the coordinate attention can be written as:

yc(i , j) � xc(i , j) × ghc (i) × gw
c ( j) (12)

3.3 Auxiliary segmentation branch

The auxiliary segmentation branch is a segmentation method
that utilizesmulti-scale features to emulate local features, pri-
marily aimed at enhancing the network’s semantic analysis
capability. This helps themodel better comprehend the struc-
tural features of the lanes and enhances the feature extraction
ability of the convolutional layer. Segmentation branches are
utilized solely during the training phase of the model and are
omitted during the testing phase, thereby ensuring that the
speed of the run remains unaffected despite the addition of
extra segmentation tasks. To effectively capture the dynamic
dependencies between channels and accurately highlight the
more significant lane line features in the current task, the effi-
cient channel attention (ECA) module is introduced in the
auxiliary segmentation branch to further enhance the perfor-
mance of lane line segmentation networks.

3.3.1 ECAmodule

The fundamental mechanism of the ECA module is to
adaptively capture dependencies between channels using
simple and efficient 1D convolutions, eliminating the need
for cumbersome downscaling and upscaling processes [23].
Compared to the traditional attention mechanism, it circum-
vents the complex multi-layer perceptual machine structure,
thereby reducing model complexity and computational bur-
den. By computing an adaptive convolution kernel size, the
ECA module directly applies one-dimensional convolution
on the channel features, enabling it to learn the importance
of each channel relative to the others. The ECA module is
depicted in Fig. 4.

The size k of a 1D convolutional kernel is proportional to
the channel dimension C , and there is a mapping φ between
k and C . The simplest mapping relationships are linear func-
tions such as φ(k) � γ ∗ k − b.The channel dimension C is
usually set to a power of 2. Using an exponential function to
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approximate the mapping φ, this can be expressed as:

C � φ(k) � 2(γ ∗k−b) (13)

Given the channel dimension C , the convolution kernel
size k can be determined adaptively by the expression.

k � ψ(C) �
∣∣∣∣ log2(C)

γ
+
b

γ

∣∣∣∣
odd

(14)

where | t | odd denotes the closest odd number to t . In the
simulation experiment set γ � 2, b � 1 respectively. By
mapping φ interactions, the higher dimensional channels
have longer range interactions, while the lower dimensional
channels have shorter range interactions by nonlinear map-
ping.

3.3.2 Auxiliary segmentation network

Through the ResNet backbone network layer2, layer3, layer4
layers will get three feature maps × 2, × 3, × 4. These
feature maps serve as the input for the segmentation net-
work, enabling the segmentation method of local feature
reconstruction using multi-scale features. The segmentation
network is depicted in Fig. 5.

Initially, to capture the dependencies between feature
channels, the × 2, × 3 and × 4 feature maps undergo ECA
operations individually. Following convolution, normaliza-
tion, and activation operations, it is necessary to upsample
× 3, × 4. Finally, the splicing operation is performed. The
specific steps are illustrated in Fig. 6.
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Fig. 6 Specific steps for segmented networks
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Fig. 7 Location selection and classification based on row anchors

3.4 Location selection and classification based
on row anchors

Traditional semantic segmentation for lane line segmenta-
tion pixel by pixel point has high computational complexity
and slow lane line detection. In order to enhance the effi-
ciency of lane line detection and address issues such as lane
occlusion, this paper employs a location selection and clas-
sification method based on row anchors [33].

Lane line detection has been transformed into the problem
of selecting lane marking anchor points within predefined
row-oriented cells using global features. Initially, the lane
image is grid-divided into a specific number of rows, with
each row further subdivided into a certain number of cells.
Subsequently, for each row of cells, predictions are made
regarding the cells containing lane lines. Finally, the cells
identified to contain lane lines across all predefined rows
are categorized, with those belonging to the same lane
line grouped together. This approach to detecting lane line
anchors circumvents the need to individually process each
pixel point of the lane, thereby significantly enhancing detec-
tion efficiency.Moreover, the utilization of anchors on global
image features results in a larger sensory field, which is more
conducive to addressing challenging scenarios. The location
selection and classification based on row anchors is depicted
in Fig. 7.
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Assuming the maximum number of lanes is C , h repre-
sents the number of divided rows (i.e., the number of row
anchors), and w denotes the number of cells per row. If X
represents a global image feature, then f i j denotes the clas-
sifier used to select the lane position on the i th lane and j th
row anchor. Then the lane is predicted to be:

Pi , j , : � f i j (X ) (15)

where i ∈ [1, C], j ∈ [1, h]. Pi , j , : is a (w + 1)-dimensional
vector, representing the probability of selecting (w + 1) cells
for the i th lane and j th row anchor.

3.5 Loss function

During lane line detection, the background typically occupies
most of the image, while the lane lines constitute only a small
portion of the targets. To enhance the network’s ability to
learn and focus on critical and difficult-to-classify lane line
samples, classification loss is introduced. The classification
loss is defined as follows:

Lcls �
C∑
i�1

h∑
j�1

LCE (Pi , j , :, Ti , j , :) (16)

where LCE denotes the cross entropy loss. Ti , j , : indicates
that the marker is in the correct lane position.

Since the lane points in neighboring rows of anchors are
close to each other, lane locations are represented by classifi-
cation vectors. Thus, continuity is achieved by constraining
the distribution of classification vectors across neighboring
row anchors. The similarity loss function is defined as:

Lsim �
C∑
i�1

h−1∑
j�1

∥∥Pi , j , : − Pi , j+1, :
∥∥
1 (17)

where ‖·‖1 represents L1 norm.
Another loss function emphasizes the shape of the lane.

Given that most lanes are straight, second-order difference
equations are employed to constrain their shape. First, the
probabilities for different lane positions are computed using
the softmax function, as expressed by:

Probi , j , : � so f tmax(Pi , j , 1:w) (18)

where Pi , j , 1:w denotes the w-dimensional vector. Probi , j , :
represents the probability of each lane position. Next, by
using the expectation of the lane line prediction rather than an
approximation, the expected lane position can be expressed

as:

Loci , j �
w∑

k�1

k · Probi , j , k (19)

where Probi , j , k represents the probability of the i th lane,
the j th row anchor, and the kth position.

According to Eq. (19), the second-order difference con-
straint can be formulated as:

Lshp

�
C∑
i�1

h−2∑
j�1

∥∥(Loci , j − Loci , j+1) − (Loci , j+1 − Loci , j+2)
∥∥
1

(20)

where Loci , j denotes the position on the i th lane, j th row
anchor. Finally, the structural loss can be expressed as:

Lstr � Lsim + λLshp (21)

where λ denotes the loss coefficient.
We employ cross entropy as an auxiliary segmentation

loss, then the total loss function can be expressed as:

Ltotal � Lcls + αLstr + βLseg (22)

where α and β denote the loss coefficients, and Lseg denotes
the auxiliary segmentation loss.

4 Experiments and results

To validate the effectiveness and applicability of the
FFCANet proposed in this paper, its performance is eval-
uated alongside other lane line detection methods on two
public datasets, TuSimple andCULane, respectively. The fol-
lowing sections focus on experimental setup, ablation study,
performance comparison and analysis, and visualization of
results.

4.1 Experimental setting

4.1.1 Datasets

To assess the performance of the model proposed in this
paper, it is trained and tested on two widely used benchmark
datasets for lane line detection: TuSimple and CULane. The
details of the two datasets are provided in Table 1.

TuSimple is one of the most widely used datasets for
lane line inspection, collected under consistent motorway
lighting conditions. It encompasses scenes captured in var-
ious weather conditions on motorways, with lane markings
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Table 1 Details of the datasets
Dataset #Frame Train Validation Test Resolution #Lane Environment

TuSimple 6408 3268 358 2782 1280 × 720 ≤ 5 highway

CULane 133,235 88,880 9675 34,680 1640 × 590 ≤ 4 urban and highway

annotated in each image. Lanes are annotated by the 2D coor-
dinates of sampled points, with a uniform height interval of
10 pixels, and the dataset includes both straight and curved
lanes. Created by the Chinese University of Hong Kong,
the CULane dataset was primarily collected in cities and on
motorways with nine complex driving scenarios including
normal, crowd, night, no line, shadow, arrow, curve, dazzle
light, cross.

4.1.2 Evaluation of indicators

The official evaluation metrics for both TuSimple and
CULane are different. For the TuSimple dataset, the primary
evaluation metrics are accuracy (Acc), false positive (FP),
and false negative (FN). The expression for Acc is as fol-
lows:

Acc �
∑

clip Cclip∑
clip Sclip

(23)

where Cclip denotes the number of correctly predicted lane
points, Sclip then denotes the total number of true and valid
lane points in the image. A point prediction is considered
correct if more than 85% of the predicted lane points are
within the threshold of the ground truth. The FP and FN are
calculated as:

FP � Fpred

Npred
(24)

FN � Mpred

Ngt
(25)

where Fpred denotes the number of incorrectly predicted
lanes and Npred denotes the number of predicted lanes.
Mpred denotes the number of missed lanes and Ngt denotes
the number of ground truth lanes.

For the CULane dataset, each lane line is assumed to have
a width of 30 pixels. The Intersection over Union (IOU)
between the model predictions and the ground truth is com-
puted, with predictions having an IOU > 0.5 considered as
true positives. Finally, the F1 score is used as the evaluation
metric for the CULane dataset. The expression is as follows:

F1 � 2 × Precision × Recall

Precision + Recall
(26)

Precision � T P

T P + FP
(27)

Table 2 Parameter settings on different datasets

Dataset TuSimple CULane

Number of rows 56 18

Number of row anchors 100 200

Number of lane lines 4 4

Recall � T P

T P + FN
(28)

where TP,FP, andFN indicate true positives, false positives,
and false negatives, respectively.

4.1.3 Implementation details

The models in this paper were trained and tested using
NVIDIAGeForce RTX 4060 Laptop GPU 13th Gen Intel(R)
Core(TM) i7-13650HX CPU, and the deep learning frame-
work was PyTorch. We utilize a pre-trained ResNet as the
backbone network, and the input images are resized to 288
× 800 pixels. To mitigate overfitting and enhance general-
ization, we apply a data augmentation strategy that includes
scaling, panning, andflipping. The number of training epochs
for the TuSimple dataset is set to 200, the batch size is set to
32, theAdamWoptimiser [41] is utilizedwith an initial learn-
ing rate of 4e-4 and a weight decay rate of e-4, and the cosine
annealing learning rate decay strategy [42] is employed dur-
ing training. The number of training epochs for the CULane
dataset is set to 50, the batch size is set to 32, and for training
with a single GPU, the initial learning rate needs to be set
to 0.025. For different datasets, the division of row anchor is
also different, and the specific parameter settings are shown
in Table 2.

4.2 Ablation study

To validate the effectiveness of the proposed FFCA mod-
ule and the introduction of the ECA module in the auxiliary
segmentation branch, ablation studies are conducted on the
TuSimple dataset to show the performance of each module.
ResNet-18 is selected as the baseline network, and FFCA
module and ECA module are added to the baseline network
in turn to assess the impact of eachmodule on lane line detec-
tion. The models are trained and tested separately with the
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Table 3 Results of ablation
experiments on the TuSimple
dataset

Baseline FFCA ECA Acc FP FN

√
95.82 0.1905 0.0392√ √
95.98 0.1891 0.0372√ √
95.93 0.1894 0.0379√ √ √
96.06 0.1883 0.0365

The optimal results for each indicator is indicated in bold

identical parameter settings, and the results of the ablation
experiments are presented in Table 3.

From the data in the table above, it is evident that after
the introduction of the proposed FFCA module to the orig-
inal network, the accuracy is increased by 0.16% and the
false positives and false negatives are reduced by 0.0014
and 0.0020 respectively. This demonstrates that the pro-
posed FFCA module can make full use of the shape a priori
information of lane lines to better locate and identify lane
line features. With the introduction of the ECA module in
the assisted segmentation branch, the accuracy improved
by 0.11% and the false positives and false negatives were
reduced by 0.0011 and 0.0013, respectively. It is shown that
the ECAmodule is able to capture the dynamic dependencies
between channels, more accurately highlighting the more
important lane line features for the task at hand. The simulta-
neous introduction of the FFCA and ECA modules resulted
in a 0.24% increase in accuracy and a 0.0022 and 0.0027
reduction in false positives and false negatives, respectively,
affirming the efficacy of both modules. The visual compari-
son results of the ablation experiments are shown in Fig. 8.
The figure indicates that lane line fitting is enhanced by the
incorporation of the FFCA and ECA modules. This also
demonstrates the validity and feasibility of incorporating
these modules.

4.3 Performance comparison and analysis

The FFCANet of this paper is evaluated on two pub-
lic datasets, TuSimple and CULane, using ResNet-18 and
ResNet-34 as backbone networks, respectively, and com-
paredwith other lane line detectionmethods. The comparison
methods were tested on the same hardware under the same
conditions. For the TuSimple dataset, seven methods, SCNN
[24], SAD [29], SGNet [32], PolyLNet [35], UFLD [33],
CondLNet [34], MAM [43], and BezierLNet [37] were
selected for comparison. Acc, FP, FN, and Runtime (elapsed
time per frame) are used as evaluation metrics and the results
are shown in Table 4.

Since the TuSimple dataset only contains motorway
scenes with adequate lighting conditions and favorable
weather conditions, and the traffic scenarios are relatively
uncomplicated, there is little difference in the accuracy of

each lane line detection method. When using the ResNet-
18 backbone, the Acc of FFCANet is 96.06%, which is
0.19%, 2.7%, 0.24%, 0.58%, 0.23%, and 0.65% higher than
SGNet, PolyLNet, UFLD, CondLNet, MAM, and BezierL-
Net. Compared with UFLD, which is also based on row
anchor detection method, FP and FN are reduced by 0.0022
and 0.0027, respectively. When using the ResNet-34 back-
bone, the Acc of FFCANet is 96.09%, which is 0.22%,
2.73%, 0.23%, 0.61%, 0.26%, and 0.44%higher than SGNet,
PolyLNet, UFLD, CondLNet, MAM, and BezierLNet. FP
and FN were reduced by 0.0026 and 0.0032 over UFLD,
respectively. Although the Acc of SCNN and SAD is infe-
rior to that of FFCANet, the FFCANet proposed in this paper
performs superior in terms of time consumed per image
frame, which is 46.03 and 4.62 times faster than SCNN and
SAD, respectively. In summary, FFCANet has a fast operat-
ing speed while maintaining a high Acc.

For theCULane dataset, sevenmethods, SCNN [24], SAD
[29], Res34-VP [21], E2E [19], LSTR [36], DeepLab [20],
GCSbn [44], STLNet [45], and UFLD [33] were selected
for comparison. F1 values and FPS were used as assess-
ment indicators and the results are shown in Table 5. From
the table, it can be seen that FFCANet achieves superior
results in terms of F1 value and speed, with the fastest speed
of 345.8 FPS, with excellent real-time performance. When
using the ResNet-34 backbone network, FFCANet has an
F1 value of 72.8, outperforming all other comparison meth-
ods except STLNet and also has a faster speed advantage.
Although STLNet has a slightly higher F1 score than our
method, our approach is 3.17 times faster. The F1 value of
FFCANet outperforms that of UFLD when using the same
backbone networkwith little difference in speed, proving that
the FFCAproposed in this paper aswell as the introduction of
ECA in the segmentation branch enhances the feature extrac-
tion capability. The above results demonstrate the excellent
performance of FFCANet in challenging scenarios.

4.4 Visualization results

In order to visualize the detection effect of the method
in this paper, the detection is performed on two public
datasets, TuSimple and CULane. The visualization results
of FFCANet on TuSimple dataset are depicted in Fig. 9. As
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Fig. 8 Visual comparison results
of ablation experiments

Baseline Baseline+ECA Baseline+FFCA Baseline+FFCA+ECA

Table 4 Comparison with other
methods on the TuSimple dataset Method Acc FP FN Runtime Params GFlops

SCNN [24] 96.53 0.0617 0.0180 133.5 62.2 328.4

SAD [29] 96.64 0.0602 0.0205 13.4 11.8 43

SGNet [32] 95.87 – – 10.9 – –

PolyLNet [35] 93.36 0.0942 0.0933 8.7 22.8 25.1

UFLD(ResNet-18) [33] 95.82 0.1905 0.0392 2.6 27.2 9.2

UFLD(ResNet-34) [33] 95.86 0.1898 0.0386 4.8 54.6 16.9

CondLNet [34] 95.48 0.0218 0.0380 4.5 11.9 10.2

MAM [43] 95.83 0.1903 0.0389 3.6 32.5 11.6

BezierLNet(ResNet-18) [37] 95.41 0.0503 0.0385 4.0 4.1 13.4

BezierLNet(ResNet-34) [37] 95.65 0.0510 0.0390 5.7 9.5 24.6

FFCANet(ResNet-18) (Ours) 96.06 0.1883 0.0365 2.9 31.6 9.8

FFCANet(ResNet-34) (Ours) 96.09 0.1872 0.0354 5.0 56.3 17.5

The optimal results for each indicator is indicated in bold

Table 5 Comparison with other methods on the CULane dataset

Method Normal Crowded Dazzle Shadow No line Arrow Curve Night Total FPS

SCNN [24] 90.6 69.7 58.5 66.9 43.4 84.1 64.4 66.1 71.6 7.5

SAD [29] 90.1 68.8 60.2 65.9 41.6 84.0 65.7 66.0 70.8 74.6

Res34-VP [21] 90.4 69.2 61.4 62.5 43.1 83.5 64.7 63.8 70.9 38.5

E2E(ResNet-18) [19] 90.0 69.7 60.2 62.5 43.2 83.2 70.3 63.3 70.8 –

E2E(ResNet-34) [19] 90.4 69.9 61.5 68.1 45.0 83.7 69.8 63.2 71.5 –

LSTR [36] 86.8 67.3 56.6 59.8 40.1 78.7 56.6 59.9 68.7 –

DeepLab [20] 87.4 64.1 54.1 60.7 38.1 79.0 59.8 60.6 66.7 77.3

GCSbn [44] 89.4 67.7 59.8 62.5 40.9 83.1 60.6 63.4 69.5 189.6

STLNet [45] 91.8 70.2 65.9 69.3 48.8 85.3 67.5 68.2 73.6 62.8

UFLD(ResNet-18) [33] 87.7 66.0 58.4 62.8 40.2 81.0 57.9 62.1 68.4 384.2

UFLD(ResNet-34) [33] 90.7 70.2 59.5 69.3 44.4 85.7 69.5 66.7 72.3 209.7

FFCANet(ResNet-18) (Ours) 90.5 69.0 61.5 62.5 41.8 83.7 63.8 63.7 70.9 345.8

FFCANet(ResNet-34) (Ours) 91.1 70.4 61.7 69.6 42.9 84.8 69.4 67.1 72.8 198.2

The optimal results for each indicator is indicated in bold
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Fig. 9 Visualization results on
the TuSimple dataset

observed from the figure, the lane lines at the far end of the
bend are accurately fitted, as shown by the yellow elliptical
frames in the figure; and the issue of lane line occlusion is
effectively addressed, as shown by the red elliptical frames in
the figure. The network demonstrates excellent performance
in detecting lane straightness, curves and vehicle occlusion.

The visualization results on the CULane dataset are illus-
trated in Fig. 10. A variety of lane line scenarios from
the CULane dataset were selected. It is evident from the
figure that FFCANet exhibits exceptional lane line detec-
tion performance in complex scenarios. Excellent detection
of vehicle obstructions, glare interference, and curved lane
lines is shown in the blue, red, and yellow ellipse frames in
the figure respectively. Analysis of the visualization results
demonstrates that FFCANet exhibits outstanding generaliza-
tion ability and robustness in detecting lane lines in complex
scenarios.

The visualisation of the CULane dataset presented in
Fig. 11 shows that our method obtains smoother and more
accurate lane lines in these challenging scenarios compared
to other methods.

5 Conclusion

In this paper, we introduce FFCANet, a frequency chan-
nel fusion coordinate attention mechanism network for lane
detection. FFCANet adopts ResNet as its backbone network.
We introduce the FFCA module, which captures lane line
details and texture information from different spatial orien-
tations to enhance feature diversity. Additionally, in order to
effectively address the challenges of detection efficiency and
the absence of visual cues, we employ a row anchor-based
prediction and classification method. This method avoids
the high computational complexity associated with pixel-
by-pixel segmentation by treating lane line detection as a
problem of selecting lane marking anchors in row-oriented
cells predefined by global features. To further enhance the
feature extraction capability, an ECA module is introduced
in the auxiliary segmentation branch to capture the dynamic
dependencies between channels. We evaluated FFCANet on
two publicly available benchmark datasets, Tusimple and
CULane, and designed ablation experiments to validate the
effectiveness of each module. Experimental results demon-
strate that the proposed method achieves a balance between
detection accuracy and efficiency in complex road scenarios.
Furthermore, the lightweight ResNet-18 version achieves a
processing speed of 345.8 frames per second.
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Fig. 10 Visualisation results on the CULane dataset

In future research, an integrated lane line detection scheme
that combines vision algorithms with LiDAR technology
could be explored. By integrating convolutional neural net-
works (CNNs) with LiDAR, 3D information of lane lines
can be obtained to enhance detection accuracy, stability, and

real-time performance. This integration aims to enhance the
perception and decision-making capabilities of autonomous
vehicles in complex traffic environments, thereby providing
crucial technical support for the advancement of self-driving
cars.
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Fig. 11 Visual comparison results of UFLD, GCSbn, SAD and our method on the CULane dataset
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