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Abstract
Recently, lightweight methods for single-image super-resolution have gained significant popularity and achieved impressive
performance due to limited hardware resources. These methods demonstrate that adopting residual feature distillation is an
effective way to enhance performance. However, we find that using residual connections after each block increases themodel’s
storage and computational cost. Therefore, to simplify the network structure and learn higher-level features and relationships
between features, we use depth-wise separable convolutions, fully connected layers, and activation functions as the basic
feature extraction modules. This significantly reduces computational load and the number of parameters while maintaining
strong feature extraction capabilities. To further enhancemodel performance, we propose the hybrid attention separable block,
which combines channel attention and spatial attention, thus making use of their complementary advantages. Additionally,
we use depth-wise separable convolutions instead of standard convolutions, significantly reducing the computational load
and the number of parameters while maintaining strong feature extraction capabilities. During the training phase, we also
adopt a warm-start retraining strategy to exploit the potential of the model further. Extensive experiments demonstrate the
effectiveness of our approach. Our method achieves a smaller model size and reduced computational complexity without
compromising performance. Code can be available at https://github.com/nathan66666/HASN.git

Keywords Efficient super-resolution · Channel attention · Spatial attention · Hybrid attention separable block

1 Introduction

As the application scenarios of virtual reality technology con-
tinue to expand, so too does the demand for image quality.
High-quality images can provide users with a more immer-
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sive experience. In this context, events such as the CGI and
CASA conferences are dedicated to advancing various fields
within computer graphics and virtual reality, making sig-
nificant contributions to the progress of these technologies.
The successful application of image super-resolution tech-
niques will undoubtedly further promote the development
of this field. Particularly, the emergence of efficient image
super-resolution technology has made it easier to deploy this
technology on edge devices, thereby broadening its applica-
tion.

Image super-resolution (SR) is a typical branch of low-
level vision methods, reconstructing high-resolution (HR)
images from low-resolution (LR) inputs. Traditional SISR
methods use interpolation techniques to recover correspond-
ing HR images from LR ones. While simple and effective,
these methods struggle to restore some of the details and tex-
tures in images. Since SRCNN [1] first introduced convolu-
tional neural networks to the field of image super-resolution,
deep learning (DL) has achieved remarkable performance
and realistic visual effects due to its learnable feature rep-
resentations. These SR networks [2–11] have significantly
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Fig. 1 Comparison with other SOTA methods for image SR on Set5. The red dots represent the method proposed in this paper

improved the quality of reconstructed images. Their suc-
cess can be partially attributed to their larger model capacity
and intensive computational power. However, this makes
them difficult to deploy on resource-constrained devices in
real-world applications. Therefore, it is necessary to design
lightweight models to improve the efficiency of SISR mod-
els, achieving a good balance between image quality and
inference time.

Many prior works [1, 12–25] have been proposed to
develop efficient image super-resolution models. They use
different strategies to achieve high efficiency, including
parameter sharing strategy [26], cascading network with
grouped convolution [27], information or feature distillation
mechanisms [21–23] and attention mechanisms [2, 3, 22].
Although they have improved efficiency using these strate-
gies, redundancy still exists in convolution operations.

In this paper, to make the network more lightweight, we
propose a new lightweight SR network, which consists of
several stacked hybrid attention separable blocks. This struc-
ture is capable of extracting higher-level image features and
includes more edge features and texture details. We only use
a few necessary residual connections to prevent the vanishing
gradient problem while integrating low-level features. Addi-
tionally, we use depth-wise separable convolutions instead of
standard convolutions in convolutional blocks, significantly
reducing the computational load and the number of parame-
ters while maintaining strong feature extraction capabilities.
To fully maximize the model’s capabilities, we propose a
warm-start retraining strategy to further learn the image dis-
tribution and use the geometric self-ensemble strategy during
the inference phase. Specifically, our contributions are as fol-
lows:

• We propose a hybrid attention separable network for effi-
cient image super-resolution, which can extract higher-

level image features and include more edge features and
texture details without additional residual connections.

• We propose a warm-start retraining strategy, which helps
in learning the distribution of high-resolution images,
effectively enhancing network performance.

• Extensive experiments demonstrate that our proposed
method surpasses existing state-of-the-art (SOTA) meth-
ods in terms of parameters (Fig. 1) and FLOPs, while
maintaining comparable performance inPSNRandSSIM
metrics.

2 Related work

2.1 Classical SISRmethods

SRCNN [1] is the first work that introduces deep convo-
lutional neural networks (CNNs) to the image SR task.
They use a three-layer convolutional neural network to
jointly optimize feature extraction, nonlinear mapping, and
image reconstruction in an end-to-end manner, achieving
performance superior to traditional SR methods. Subse-
quent methods adopt more complex convolutional module
designs, such as residual blocks [22, 28, 29] and dense
blocks [30], to enhance the model’s representational capac-
ity. As networks become larger and deeper, the introduction
of various attention mechanisms [2, 31] has become a
new trend in image super-resolution research. For exam-
ple, RCAN [32] employs channel attention, while PAN [33]
uses pixel attention. Additionally, self-attention mechanisms
have shown significant performance in image reconstruc-
tion. SwinIR [2] leverages the swin transformer architecture
[34], multi-scale feature representation [35], hybrid attention
mechanisms, and local–global feature interaction. HAT [31]
further expands the window size and uses channel attention
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to better activate available pixels. PCCFormer [36] uses par-
allel attention transformer and adaptive convolution residual
block to improve feature expression ability of the model.
Recently, some emerging attention mechanisms have also
achieved great success in imaging [37, 38]. Image super-
resolution techniques have been applied in the medical field,
making significant contributions to the diagnosis of brain
diseases and morphometric studies [39].

2.2 Lightweight SISRmethods

To meet the requirements of edge devices, it is crucial to
develop lightweight and efficient SR models. The SR net-
work SRCNN [1] achieves impressive results but also faces
issues such as high computational demands. FSRCNN [12]
addresses these issues by removing the interpolation upsam-
pling, introducing transposed convolution at the end of the
network, and using smaller butmore numerous convolutional
kernels, achieving approximately 17 times the acceleration
compared to SRCNN. DRCN [14] employs recursive calls
to the feature extraction layers, while DRRN [16] improves
uponDRCNbycombining recursive and residual networks to
achieve better performance with fewer parameters. LapSRN
[15] uses transposed convolution for upsampling, leveraging
convolutional layers to learn the residuals between high-
resolution images and upsampled feature maps, achieving
multi-scale reconstruction through progressive upsampling.
IDN [18] effectively extracts local long-path and short-path
features through an information distillation module, achiev-
ing relatively fast inference speed. IMDN [21] constructed
a cable information multi-distillation block (IMDB) con-
sisting of distillation and selective fusion. The distillation
module gradually extracts features, while the fusion module
determines the importance of candidate features based on an
attention mechanism and fuses them accordingly.

Recently, researchers have been optimizing convolution
methods to develop lighter and more efficient SR models.
For example, ECBSR [40] and RepVGG [41] effectively
extract edge and texture information, while FMEN [42] and
BSRN [29] further accelerate network inference and reduce
the number of network parameters, achieving efficient super-
resolution.

3 Methodology

3.1 Overall network architecture

For the overall network structure of HASN, we adopt a
coarse-to-fine strategy to learn representative features from
LR images. As shown in Fig. 2, HASN consists of three
main stages: an initial feature extraction, amulti-stage feature
extraction, and a high-resolution reconstruction. Here, ILR

represents the original image input, ILR ∈ R
H×W×Cin ((H,

W, and C are the image height, width and input channel num-
ber, respectively). A 3×3 convolutional layer HI F (·) is used
to extract initial feature. This process can be expressed as:

F0 = HI F (ILQ), (1)

The convolutional layer effectively captures local features of
an image, providing feature maps for subsequent deep fea-
ture extraction. Next, F0 extracts multi-stage features using
HASBs. We extract deep feature as:

Fi = HHASBi (F0), i = 1, 2, . . . , K ,

FDF = HConv(FK ),
(2)

where HHASBi (·) denotes the i-th HASB. A 3 × 3 convolu-
tional layer is used after several HASBs to further process
and refine the feature representations, enhancing the feature
learning capability.

IRHQ = HREC (FDF + F0), (3)

where HREC (·) is the function of the reconstruction module.
It consists of a 3×3 convolutional layer and a sub-pixel layer.
The 3× 3 convolutional layer reduces the dimensionality of
the high-dimensional feature maps while preserving impor-
tant information, preparing them for the sub-pixel layer. The
entire training process is divided into two stages. TheL1 loss
function is exploited to optimize the model in the first stage,
which can be formulated as follows:

L1 = ‖ISR − IH R‖1 , (4)

The loss function for the second stage(Ls2) is defined as
follows:

Ls2 = αL1 + βLDKL ,

LDKL = ∑
i PIH R (i)log

PIH R (i)
PISR (i) ,

(5)

where LDKL is KL divergence loss, which is used to mea-
sure the difference between the probability distributions of
the actual high-resolution image and the predicted super-
resolution image. PIHR (i) represents the probability distribu-
tion of the i-th pixel in the high-resolution image, and PISR (i)
represents the probability distribution of the i-th pixel in the
super-resolution image.α and β are two different constants,
which we set to 1 in this context.

3.2 Hybrid attention separable block

As shown in Fig. 3, our proposed HASB consists of two
depth-wise separable convolutions, several fully connected
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Fig. 2 Overall network architecture of our HASN

Fig. 3 a Architecture of hybrid
attention separable block
(HASB). b Architecture of
channel attention block (CAB).
c Architecture of enhanced
spatial attention (ESA)

layers, a channel attention block, and enhanced spatial atten-
tion. First, a 7×7 depth-wise separable convolution operation
is applied to the input features Fin to extract local fea-
tures. Then, the convolved features are subjected to layer
normalization, resulting in the normalized features Fo. The
normalized features Fo are passed to three parallel fully con-
nected layers. The output of the first fully connected layer
is passed through a ReLU6 activation function. The output
of the second fully connected layer is used directly. The out-
put of the third fully connected layer is processed through
the enhanced spatial attention module. The output of the
first fully connected layer is multiplied element-wise with
the output of the second fully connected layer. The result
of this multiplication is added element-wise to the output
of the third fully connected layer (features processed by the
ESA) to obtain the fused features. The fused features are
passed to a fully connected layer for further processing. The
features processed by the fully connected layer are passed
through another depth-wise separable convolution layer to
extract additional features. Finally, the features are processed
through the channel attention blockmodule to obtain the final
output features. The input feature Fin is added directly to the
features before the final depth-wise separable convolution
layer (DW-Conv) through a residual connection. This design
helps alleviate the vanishing gradient problem and enhances
feature learning. The whole structure is described as

Fo = LN (DWConv7×7(Fin)),

Fd1, Fd2 , Fd3 = FC(Fo), FC(Fo), FC(Fo),

Fd = ReLU6(Fd1) ⊗ Fd2 + ESA(Fd3),

Fd = DWConv7×7(FC(Fd)) + Fin),

Fout = CAB(Fd)

(6)

where DWConv7×7 represents a depth-wise separable con-
volution with a 7× 7 kernel, LN (·) denotes the LayerNorm
layer, and FC refers to the fully connected layer.

3.3 Warm-start retraining strategy

We propose a novel warm-start retraining strategy. Differ-
ent from some previous works that use the 2× model as
a pre-trained network instead of training from scratch, we
train HASN for 4× from scratch in the first stage. In the
second stage, we load the model weights from the first stage,
which are not fully converged, and further expand the dataset
(adding Flickr2K). We further learn the distribution of high-
resolution images by minimizing the KL divergence loss and
L1 loss, as formulated in Eq.5. The other training settings
remain consistent with the first stage.
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4 Experiments

4.1 Datasets andmetrics

In this paper, the entire training process is divided into two
stages. In the first stage, we use the DIV2K [43] dataset,
and in the second stage, we use the DF2K dataset (DIV2K +
Flickr2K) [43] to further improve the network performance.
DIV2K [43] is a high-quality (2K resolution) image dataset
containing 800 training images. Flickr2K is an image dataset
with 2K resolution containing 2650 images. Additionally, the
low-resolution images of DIV2K and Flickr2K are generated
from the ground truth images by the “bicubic” downsampling
inMATLAB. For testing, we use fivewidely used benchmark
datasets: Set5 [44], Set14 [45], BSD100 [46], Urban100 [47],
and Manga109 [48]. We evaluate all the SR results using the
PSNR and SSIM metrics on the Y channel of the YCbCr
color space.

4.2 Implementation details

The proposed HASN consists of 6 HASBs, and the number
of channels is set to 52. The kernel size of all depth-wise
convolutions is set to 7. During training, we set the input
patch size to 192 × 192 and use random rotation and hori-
zontal flipping for data augmentation. The batch size is set
to 128, and the total number of iterations is 500k. The ini-
tial learning rate is set to 2 × 10−4. We adopt a multi-step
learning rate strategy, where the learning rate will be halved
when the iteration reaches 250,000, 400,000, 450,000, and
475,000, respectively. The model is trained by Adam opti-
mizer with β1 = 0.9 and β2 = 0.99. In the second stage
of training, we chose the model weights from the 100k-th
iteration of the first stage as the starting point, and the total
number of iterations is set to 1000k. Additionally, we useLs2

as the loss function for the second stage. Other training set-
tings remain consistent with the first stage. To maximize the
potential performance of the HASN proposed in this paper,
we use geometric self-ensemble [7] in the experiment, which
is applied during inference without additional training. The
networks are implemented by using PyTorch frameworkwith
a NVIDIA 3090 GPU.

4.3 Comparison with state-of-the-arts

We compare our models with several advanced efficient
super-resolution models with scale factor of 4. The com-
parison methods include SRCNN [1], FSRCNN [12], VDSR
[13], DRCN [14], LapSRN [15], DRRN [16], MemNet [17],
IDN [18], SRMDNF [19], CARN [20], IMDN [21], RFDN
[22], RLFN [23], DIPNet [24], SPAN [25]. Firstly, in terms
of model performance, we use PSNR and SSIM as evalua-
tion metrics. In terms of model efficiency, we use Parameters

and FLOPs to measure the model size and computational
complexity. The quantitative performance comparison on
five benchmark datasets is shown in Table 1. Compared
with other state-of-the-art models, it can be seen that HASN
achieves better performance on Set5, Set14, and BSD100. Its
performance on the remaining two datasets is comparable.
Overall, HASN achieves performance comparable to other
networkswith fewer parameters and computational complex-
ity, achieving a better balance in performance and efficiency.

5 Ablation study

In this section, we conduct a set of ablation experiments to
evaluate the performance of each proposed module.

5.1 The choice of multiplication and addition in
convolution block

Many previous efficient image SR methods [22, 25, 49]
benefit from residual connections, which extract features
from each block up to the upsampling layer. Some methods
[21–23] also perform feature distillation within each block.
However, these approaches often make the network structure
redundant. We want to design an efficient and compact net-
work. Inspired by [50], element-wise multiplication seems
to provide greater gains in a narrower network compared
to addition. This finding is beneficial for our task, as we
need to minimize network size while achieving equal or bet-
ter performance compared to previous methods. Therefore,
we design some simple experiments to validate this conclu-
sion. As shown in Fig. 4, (a) presents the structure of the
CB module. (b) illustrates the fitting curves of four different
configurations. It is evident that when activation function is
not used, element-wise multiplication performs significantly
better than addition, despite some instability during train-
ing. When activation function is included, both addition and
multiplication configurations exhibit smooth fitting curves,
and the PSNR on the test set shows that the network using
multiplication slightly outperforms the one using addition.
As shown in Table 2, we set up networks with three differ-
ent embedding dimensions. We find that in Urban100, the
PSNR gain between element-wise multiplication and addi-
tion decreases as the dimension increases, from 0.08 dB to
0.07 dB, and finally to 0.01 dB.On other test sets, the changes
do not seem to follow a consistent pattern. However, across
various dimensions, using element-wise multiplication gen-
erally yields better performance.

5.2 Study on HASB number

FromFig. 5,we can observe thatwith the increase in the num-
ber of HASBs, the PSNR shows an upward trend when the
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Table 1 Average PSNR/SSIM for scale factor 4 on datasets Set5, Set14, BSD100, Urban100, and Manga109

Method Params FLOPs(G) Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic – – 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN [1] 8K 52.7 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN [12] 13K 4.6 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR [13] 666K 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

DRCN [14] 1774K 17,974.0 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854

LapSRN [15] 502K 149.4 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900

DRRN [16] 298K 6,796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946

MemNet [17] 678K 2662.4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

IDN [18] 553K 81.8 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

SRMDNF [19] 1552K 89.3 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024

CARN [20] 1592K 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084

IMDN [21] 715K 40.9 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

RFDN [22] 550K 31.6 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

RLFN [23] 543K 33.9 32.24/0.8952 28.62/0.7813 27.60/0.7364 26.17/0.7877 –/–

DIPNet [24] 543K – 32.20/0.8950 28.58/0.7811 27.59/0.7364 26.16/0.7879 30.53/0.9087

SPAN [25] 498K – 32.20/0.8953 28.66/0.7834 27.62/0.7374 26.18/0.7879 30.66/0.9103

HASN (Ours) 435K 26.6 32.23/0.8960 28.66/0.7830 27.62/0.7387 26.13/0.7869 30.50/0.9077

The best and second best results are highlighted in bold and italic, respectively

Fig. 4 Design of convolutional block and convergence curves of different combinations

Table 2 Quantitative comparison (average PSNR/SSIM) of element-wise multiplication and addition across different embedding dimensions on
benchmark datasets

Sum Multiplication Dim Param FLOPs(G) Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

✓ ✗ 30 90k 5.77 31.45 0.8847 28.13 0.7704 27.27 0.7272 25.15 0.7539 29.03 0.8868

✗ ✓ 30 90k 5.77 31.52 0.8858 28.18 0.7716 27.30 0.7280 25.23 0.7560 29.04 0.8871

✓ ✗ 52 227k 14.73 31.85 0.8908 28.36 0.7764 27.42 0.7328 25.52 0.7678 29.67 0.8979

✗ ✓ 52 227k 14.73 31.87 0.8915 28.38 0.7770 27.45 0.7338 25.59 0.7700 29.53 0.8981

✓ ✗ 90 610k 39.62 32.01 0.8933 28.47 0.7799 27.52 0.7362 25.86 0.7795 30.08 0.9039

✗ ✓ 90 610k 39.62 32.07 0.8940 28.51 0.7809 27.54 0.7368 25.87 0.7800 29.91 0.9031

Bold indicates the best result when the “Dim” in the table is the same
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Fig. 5 PSNR of different numbers of HASB on Set5

Table 3 Quantitative comparison (average PSNR/SSIM) of different
HASB number on benchmark datasets

HASB Param FLOPs Set5 Set14

number PSNR SSIM PSNR SSIM

2 177k 10.98 31.69 0.8878 28.26 0.7742

4 306k 18.81 31.86 0.8909 28.40 0.7776

6 435k 26.63 32.06 0.8938 28.52 0.7803

8 564k 34.46 32.06 0.8933 28.50 0.7785

10 693k 42.28 32.15 0.8948 28.56 0.7808

12 822k 50.11 29.11 0.8268 26.58 0.7277

HASB number is less than or equal to 10. However, when the
HASB number is set to 12, there is a sharp decline in PSNR
forSet5. This phenomenon indicates thatwhile increasing the
number of HASB modules can enhance the model’s feature
extraction capability to some extent, excessively increasing
themmay lead to overfitting the training data.Due to the com-
plexity of the attentionmechanism and fully connected layers
within the HASBmodules, the model may capture noise and
details from the training data, resulting in a reduced gener-
alization ability on the test data. As shown in Table 3, with
the increase in the number of HASBs, the model’s parameter
count and computational complexity also increase. Setting
the HASB number to 6 balances the model size and perfor-
mance.

5.3 Study on kernel size of depth-wise convolution

To explore the impact of convolution kernel size on net-
work performance, we set the kernel sizes of all depth-wise
convolutions to 3, 5, 7, and 9, respectively. As shown in
Table 4, we observed that performance improves with larger
kernel sizes across the five benchmark datasets. However, as
the kernel size increases, the number of network parameters
and FLOPs also increase. From the table, the best results are
seen between kernel sizes 7 and 9. To balance computational

complexity and the number of parameters, choosing a kernel
size of 7 is appropriate.

5.4 Study on residual connection

To explore the role of residual connections in image super-
resolution, we use intermediate feature visualization to
observe the changes in the network’s intermediate features, as
shown in Fig. 6. (d) and (f) show feature map visualizations
without and with residual connections, respectively. From
left to right, the features progress from lower to higher lay-
ers, gradually shifting from capturing detailed information
(such as edges and textures) to more abstract information
(such as shapes and overall contours). The lower layer fea-
turemaps focusmore on local features, while the information
in the feature maps becomes more abstract and global as the
layers deepen.

Comparing (d) and (f), we observe that the feature maps
in (d) capture more information at each layer, retaining more
edge and texture details. In contrast, the feature maps in
(f) lose detail information more quickly and shift to more
abstract representations. This suggests that in our method,
CBs [50] may be sufficient to learn important features, while
using excessive residual connections could introduce noise.
The quantitative performance comparison on several bench-
mark datasets is shown in Table 5. The PSNR on Set5,
Set14,B100,Urban100, andManga109 improvedby0.13dB,
0.07dB, 0.03dB, 0.08dB, and 0.02dB, respectively.

5.5 Effectiveness of HASB architecture

To investigate the impact of different configurations of indi-
vidual modules in HASB on network performance, we
conduct a set of comparative experiments, as shown in
Table 6. For example, on Set5, adding CAB to CB increases
thePSNRby0.09dBand theSSIMby0.0009.AddingESA to
CB increases the PSNR by 0.14dB and the SSIM by 0.0013.
When both modules are added, the PSNR and SSIM increase
by 0.2dB and 0.0022, respectively. Compared to the remain-
ing five benchmark datasets, our network achieves the best
performance when combining CB with the other two atten-
tion modules.

To explore the reason behind this phenomenon, we visu-
alize the output features of the last two layers for these
four different network structures, as shown in Fig. 7. We can
observe that when these two attentionmodules are not added,
the last two layers of the network extract high-level features
that focus on local features with fewer details near the output.
In contrast, with the addition of these two attention modules,
edges and textures near the network input gradually increase.
In low-level vision tasks, low-level features are beneficial for
improving network performance.
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Table 4 Quantitative comparison of different kernel sizes. We use the average PSNR/SSIM on the datasets Set5, Set14, BSD100, Urban100, and
Manga109 as the metric

Kernel size Param FLOPs Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

3 × 3 202k 13.09 31.74 0.8900 28.32 0.7759 27.39 0.7315 25.50 0.7656 29.49 0.8961

5 × 5 212k 13.75 31.79 0.8903 28.36 0.7768 27.43 0.7329 25.56 0.7687 29.65 0.8979

7 × 7 227k 14.73 31.87 0.8915 28.38 0.7770 27.45 0.7338 25.59 0.7700 29.53 0.8981

9 × 9 247k 16.04 31.89 0.8915 28.41 0.7774 27.45 0.7336 25.58 0.7705 29.61 0.8979

The best results are in bold

Fig. 6 a Basic network consists of several CBs and a 3 × 3 convolutional layer. b Based on (a), a residual connection is used after each CB. c
Network structure of the convolutional block. d Feature map visualization of the intermediate layers in (a) and (b)

123



HASN: hybrid attention separable...

Table 5 Quantitative
comparison of networks with
and without residual
connections

Method Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

(a) 31.87 0.8915 28.38 0.7770 27.45 0.7338 25.59 0.7700 29.53 0.8981

(b) 31.74 0.8897 28.31 0.7756 27.41 0.7324 25.51 0.7669 29.51 0.8955

(a) represents the network without residual connections, and (b) represents the network with residual connec-
tions. We use the average PSNR/SSIM on the datasets Set5, Set14, BSD100, Urban100, and Manga109 as
the metric. The best results are in bold

Table 6 Quantitative results of the state-of-the-art models on five benchmark datasets

Method ESA CAB Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CB ✗ ✗ 31.87 0.8915 28.38 0.7770 27.45 0.7338 25.59 0.7700 29.53 0.8981

CB ✗ ✓ 31.96 0.8924 28.44 0.7787 27.48 0.7347 25.70 0.7742 29.90 0.9005

CB ✓ ✗ 32.01 0.8928 28.42 0.7784 27.47 0.7346 25.75 0.7757 29.86 0.9010

CB ✓ ✓ 32.07 0.8937 28.52 0.7802 27.52 0.7360 25.88 0.7798 30.12 0.9031

The best result is marked with bold. “CB” is convolutional block, which is shown in Fig. 6c

Fig. 7 Visualization analysis of the impact of CAB and ESA on network feature extraction

Table 7 Quantitative comparison of SPAB and HASB

Method Param Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SPAB 836k 31.91 0.8922 28.39 0.7776 27.45 0.7335 25.66 0.7719 29.88 0.9004

HASB 435k 32.06 0.8937 28.52 0.7802 27.52 0.7360 25.88 0.7798 30.12 0.9031

The best results are in bold
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Table 8 Quantitative
comparison of different
activation functions

Method Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ReLU 31.81 0.8907 28.40 0.7775 27.45 0.7337 25.60 0.7702 29.67 0.8985

LeakyReLU 31.80 0.8909 28.36 0.7768 27.45 0.7336 25.60 0.7702 29.60 0.8983

ReLU6 31.87 0.8915 28.38 0.7770 27.45 0.7338 25.59 0.7700 29.53 0.8981

The best result is marked with bold

Table 9 Quantitative comparison of models with and without the warm-start retraining strategy

Method Dataset Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

w/o DIV2k 32.06 0.8937 28.52 0.7802 27.52 0.7360 25.88 0.7798 30.12 0.9031

w DIV2k 32.08 0.8940 28.55 0.7806 27.53 0.7365 25.89 0.7805 30.16 0.9039

w DF2k 32.17 0.8953 28.59 0.7817 27.58 0.7377 26.03 0.7846 30.29 0.9055

“w” indicates the use of the warm-start retraining strategy, while “w/o” indicates the absence of the warm-start retraining strategy. The best result
is marked with bold

Additionally, we aim to investigate the characteristics of
HASB in advanced feature extraction and low-level feature
retention. Therefore, we select SPAB [25], which lever-
ages a parameter-free attentionmechanism to achieve feature
extraction from shallow to deep layers whilemaintaining low
model complexity and parameter count. We replace HASB
with SPAB, keeping all other experimental settings the same.
As shown in Table 7, the parameter count of HASB is almost
half that of SPAB, but it achieves significant improvements
in both PSNR and SSIM across five benchmark datasets.

5.6 Exploration of different activation functions

Most of the previous SR networks adopt ReLU [51] or
LeakyReLU [52] as the activation function. ReLU6 [53] is
a variant of the ReLU activation function that constrains
the output between 0 and 6. It is widely used in mobile
and embedded devices because it can provide stable perfor-
mance in low-precision computing environments. The results
in Table 8 show that different activation functions can obvi-
ously affect the performance of the model. Among these
activation functions, ReLU and ReLU6 perform compara-
bly. In our experiments, we chose ReLU6 as the activation
function.

5.7 Effectiveness of warm-start retraining strategy

To demonstrate the effectiveness of our proposed warm-start
retraining strategy, we use HASN trained from scratch with
DIV2K as the baseline. As shown in Table 9, when not
expanding the training set, our model shows a slight perfor-
mance improvement with the warm-start retraining strategy.
When further expanding the training set, our model achieves

PSNR improvements of 0.11dB, 0.07dB, 0.06dB, 0.15dB,
and 0.17dB on the five benchmark datasets.

6 Conclusion

In this paper,wepropose ahybrid attention separable network
for efficient image super-resolution (HASN). To make the
network more efficient, we use only a few necessary residual
connections to avoid gradient vanishing. We design a sim-
ple CB module to extract high-level features from the input
image and used two essential attention modules (ESA, CAB)
to enhance edges and textures near the network input. We
conduct extensive feature visualizations to comprehensively
analyze the effectiveness of the network structure. Addition-
ally, we propose a warm-start retraining strategy to further
exploit the network’s performance. Extensive experiments
have shown that the proposed method achieves a better bal-
ance in performance and lightweight design compared to
other networks.
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