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Abstract
Image restoration is the task of aiming to obtain a high-quality image from a corrupt input image, such as deblurring
and deraining. In image restoration, it is typically necessary to maintain a complex balance between spatial details and
contextual information. Although a multi-stage network can optimally balance these competing goals and achieve significant
performance, this also increases the system’s complexity. In this paper, we propose a mountain-shaped single-stage design,
which achieves the performance of multi-stage networks through a plug-and-play feature fusion middleware. Specifically, we
propose a plug-and-play feature fusion middleware mechanism as an information exchange component between the encoder-
decoder architectural levels. It seamlessly integrates upper-layer information into the adjacent lower layer, sequentially down
to the lowest layer. Finally, all information is fused into the original image resolution manipulation level. This preserves
spatial details and integrates contextual information, ensuring high-quality image restoration. Simultaneously, we propose a
multi-head attentionmiddle block as a bridge between the encoder and decoder to capturemore global information and surpass
the limitations of the receptive field of CNNs. In order to achieve low system complexity, we removes or replaces unnecessary
nonlinear activation functions. Extensive experiments demonstrate that our approach, named asM3SNet, outperforms previous
state-of-the-art models while using less than half the computational costs, for several image restoration tasks, such as image
deraining and deblurring. The code and the pre-trained models will be released at https://github.com/Tombs98/M3SNet.

Keywords Image restoration · Single-stage · Feature fusion middleware · Multi-head attention middle block

1 Introduction

Image degradation is a common issue that occurs dur-
ing image acquisition due to a variety of factors such as
camera limitations, environmental conditions, and human
factors. For instance, smartphone cameras with narrow aper-
tures, small sensors, and limited dynamic range can produce
blurred and noisy images due to device shaking caused
by body movements. Similarly, images captured in adverse
weather conditions can be affected by haze and rain. Most
classical image restoration tasks can be formulated as:

L = D(H) + γ (1)

where L denotes an observed low-quality image,H refers to
its corresponding high-quality image, and D(·), γ indicate
the degradation function and the noise during the imaging
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and transmission processes, respectively. This formulation
can signify different image restoration taskswhenD(·) varies
(Fig. 1).

Image restoration aims to recover the high-quality clean
image H from its degraded image L. It is a highly ill-posed
problem as there are many candidates for any original input.
In order to restrict the infinite feasible candidates space to
natural images, traditional methods [1–7] explicitly design
appropriately priors for the given kind of restoration prob-
lem, such as domain-relevant priors and task-relevant priors.
Then, the potential high-quality image can be obtained by
solving a maximum a posteriori (MAP) problem:

Ĥ = arg max
H

log P(L|H) + log P(H) (2)

where P(L|H) represents the probability of observing the
degraded image L given the clean image H, and P(H) rep-
resents the prior distribution of the clean image H. This can
also be expressed as a constrained maximum likelihood esti-
mation:
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Fig. 1 Visualized results of
M3SNet on various image
restoration tasks. Left: degraded
image. Right: the predicted
result of M3SNet. From top to
bottom: image deblurring, and
image deraining task
respectively

Ĥ = arg min
H

‖L − D(H)‖2 + λ�(H) (3)

where fidelity term |L − D(H)|2 serves as an approxima-
tion for the likelihood P(L|H), while the regularization term
λ�(H) represents either the priors of the latent image H
or the constraints on the solution. The aim is to express
the fidelity of the reconstructed image to the original input
while simultaneously considering the prior knowledge or
constraints imposed on the solution

While designing effective priors for image restoration
can be challenging and may not be generalizable. With
large-scale data, deep models such as Convolutional Neu-
ral Networks(CNNs) [8–17] and Transformer [18–22] have
emerged as the preferred choice due to their ability to
implicitly learn more general priors by capturing natural
image statistics and achieving state-of-the-art (SOTA) per-
formance in image restoration. The performance gain of
these deep learning models over conventional restoration
approaches is primarily attributed to their model design,
which includes numerous network modules and functional
units for image restoration, such as recursive residual learn-
ing [23], transformer [18, 19, 21], encoder-decoders [12, 13,
24], multi-scale models [25–27], and generative models [28–
30].

Nevertheless, most of these models for low-level vision
problems are based on a single-stage design, which ignores
the interactions that exist between spatial details and con-
textualized information. To address this limitation, [8–11]
proposes a multi-stage architecture in which contextualized
features are first learned through an encoder-decoder archi-
tecture and subsequently integrated with a high-resolution
branch to preserve local information. Despite its good per-
formance, this method requires refining the results from the

previous stage in the later stage, leading to a high level of
system complexity.

Based on the information presented, a natural question
that comes to mind is whether it is feasible to use a single-
stage architecture to reduce system complexity and achieve
the same balance between spatial details and contextualized
information as a multi-stage architecture while maintain-
ing the SOTA performance. To achieve this objective, we
propose a mountain-shaped single-stage image restoration
architecture, called M3SNet, with several key components.
(1). We utilize NAFNet [12] as the baseline architecture
and concentrate on modifying the network model to attain
multi-stage functionality. By emitting the information trans-
fer between the multi-stage and eliminating the nonlinear
activation function from the network structure, we are able
to reduce the system’s complexity. (2). A plug and play fea-
ture fusion middleware (FFM) mechanism has been added
to facilitate multi-scale information fusion between encoder
and decoder blocks from different layers, resulting in the
acquisition of more contextual information. Additionally,
this approach enables manipulation of the original image res-
olution, thereby aiding in the preservation of spatial details.
As a basic feature fusion block, it can be plug-and-play
in various other image restoration networks to improve the
model representation. (3). A multi-head attention middle
block (MHAMB) is the bridge between the encoder and
decoder that surpass the limitations of the receptive field of
CNNs and capture more global information.

The main contributions of this work are:

(1) A novel single-stage approach capable of generating out-
puts that are contextually enriched and spatially accurate
similar to a multi-stage architecture. Our architecture
reduces system complexity due to its single-stage design
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Fig. 2 PSNR vs. computational cost on Image Deblurring. Under different parameter capacities, our model achieves state-of-the-art. In addition,
our model involves only a relatively small number of multiply-accumulate operations (MACs)

eliminates the need for information to be passed between
stages.

(2) A feature fusion middleware mechanism (FFM) that
enables the exchange of information across multiple
scales while preserving the fine details from the input
image to the output image. It can be used as a general
and efficient plug-inmodulewith few lightweight param-
eters for various image restoration networks.

(3) A multi-head attention middle block (MHAMB) that is
capable of aggregating local and non-local pixel interac-
tions.

(4) We demonstrate the versatility ofM3SNet by setting new
state-of-the-art on 6 synthetic and real-world datasets for
various restoration tasks (image deraining and deblur-
ring) while maintaining low complexity (see Fig. 2).
Further, we provide detailed analysis, qualitative results,
and generalization tests.

2 Related work

Image degradation is a common occurrence caused by
camera equipment and a variety of environmental factors.
Depending on the specific degradation phenomenon, differ-
ent image restoration tasks are proposed, e.g., deblurring and
deraining. Early image restorationworkwasmainly based on
manually crafting some prior knowledge, such as total varia-
tion and self-similarity [1–7]. With the rise of deep learning,
data-driven methods like CNN [8, 31–41] and Transformer
[19–21, 42, 43] have become the dominant approach for
image restoration due to their impressive performance. These
methods can be categorized as either single-stage or multi-
stage based on their architectural design.

2.1 Single-stage architecture

In recent years, the majority of image restoration research
has focused on single-stage architecture. Among these archi-
tectures, the encoder-decoder based U-Net [8, 12, 13, 21,
30, 44–46] and dual network structure [47–51] are mainly
included.

Encoder-Decoder Approaches. In recent years, encoder-
decoder have gained great attention from researchers in
the field of image restoration thanks to its ability to cap-
ture multi-scale information. To construct an effective and
efficient Transformer-based architecture for image restora-
tion, [21] introduce a novel locally-enhanced window and
multi-scale restoration modulator to create a hierarchical
encoder-decoder network. [37] utilize selective kernel fea-
ture fusion to realize the information exchange of different
scales and information aggregation based on attention. [27]
develops a simple yet effective boosted decoder to pro-
gressively restore the haze-free image by incorporating the
strengthen-operate-subtract boosting strategy in the decoder.
By eliminating or substituting the nonlinear activation func-
tion, [12] establishes a simple baseline that yieldsmeasurable
outcomes while requiring fewer computing resources.

Dual Network Approaches. The Dual Networks archi-
tecture is designed with two parallel branches that separately
estimate the structure and detail components of the target sig-
nals from the input. These components are then combined to
reconstruct the final results according to the specific task for-
mulationmodule. This architecturewasfirst proposedby [52]
and has since inspired a lot of subsequent work, including in
the areas of image dehazing [47–49], image deraining [53],
image denoising [50], and image super-resolution/deblurring
[51]. The Dual Networks approach has proven to be effective
in addressing various low-level vision problems, by enabling
a better separation of the structure and detail information,
leading to improved performance in terms of both accuracy
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and computational efficiency. Furthermore, the flexibility of
this architecture makes it adaptable to different types of data,
making it a popular choice in the field of image restoration.

Despite the significant achievements made by these net-
works, it remains a challenge to effectively balance these
competing goals of preserving spatial details and contextu-
alized information while recovering images.

2.2 Multi-stage architecture

The multi-stage networks are shown to be more effective
than their single-stage counterparts in high level vision prob-
lems [54–57]. In recent years, there have been some attempts
[8, 10, 11, 58–61] to apply multi-stage networks to image
restoration. They aims to break down the image restora-
tion process into several manageable stages, enabling the
use of lightweight subnetworks to progressively restore clear
images. This approach facilitates the capture of both spatial
details and contextualized information by individual subnet-
works at each stage. To prevent the production of suboptimal
results that may arise from using the same subnetwork at
each stage, a supervisory attention mechanism was proposed
along with the adoption of distinct subnetwork structures
[8]. Additionally, [60] present a novel self-supervised event-
guided deep hierarchical Multi-patch Network to handle
blurry images and videos through fine-to-coarse hierarchical
localized representations. Nevertheless, this approach ele-
vates the complexity of the system as refining the previous
stage’s results is required in subsequent stages.

3 Method

Our primary goal is to create a single-stage network archi-
tecture that can efficiently handle the challenging task of
image restoration by balancing the need for spatial details
and context information, all while using fewer computational
resources. The M3SNet is built upon a U-Net architecture,
as shown in Fig. 3. As is apparent from the figure, in contrast
to the traditional U-Net network, we have inverted the archi-
tecture and introduced two key components: (a) the feature
fusion middleware (FFM) and (b) the multi-head attention
middle block (MHAMB). The model’s architecture takes on
a mountain-like shape, and we liken the image restoration
process to climbing a mountain.
Overall Pipeline. Given a degraded image I ∈ R

H×W×3,
M3SNet first applies a 3 × 3 convolutional layer to extract
shallow feature maps F0 ∈ R

H×W×C (H ,W ,C are the
feature map height, width, and channel number, respec-
tively). Next these shallow featuresF0 pass through 4−level
encoder-decoder and one multi-head attention middle block,
yielding deep features FDF ∈ R

H×W×C . Each layer con-
tainsmultiple feature fusionmiddleware between the encoder

Fig. 3 Architecture of M3SNet for image restoration

and decoder to capture multi-scale information and retain
spatial details. Finally, we apply convolution to deep fea-
tures FDF and generate a residual image R ∈ RH×W×3

to which degraded image is added to obtain the restored
image:Î = R + I. We optimize the proposed network using
PSNR loss:

PSN R = 10 · log10 · (2n − 1)2

||Î − İ||2 (4)

where İ denotes the ground-truth image.

3.1 Feature fusionmiddleware (FFM)

By incorporating an encoder and decoder network in the ini-
tial stage, followed by a network operating at the original
image input resolution in the final stage, the multi-stage net-
work can produce high-quality images with accurate spatial
details and reliable contextual information. However, the lat-
ter stage of this process requires revising the results of the
previous stage, which adds a slight level of complexity to
the system. While a single-stage network has relatively less
complexity, it may struggle to balance spatial details and
context information effectively. Therefore, we are exploring
a middleware mechanism for feature fusion that enables a
single-stage architecture to achieve the same functionality as
a multi-stage architecture. As a basic feature fusion block,
it can be plug-and-play in various other image restoration
networks to improve the model representation.

As shown in Fig. 4a, the feature fusion middleware(FFM)
is a nonlinear activation-free block (NAFBlock) with upsam-
ple and feature fusion.We have introduced the FFM between
the encoder-decoder architectural levels to integrate upper-
layer information into adjacent lower layers. This integration
takes place sequentially, from the highest layer down to the
lowest, until all information is fused into the original image
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Fig. 4 (a) Feature fusion middleware (FFM) that enables the exchange
of information across multiple scales while preserving the fine details.
(b) The architecture of nonlinear activation free block (NAFBlock). (c)

Simplified Channel Attention (SCA). (d) Multi-head attention middle
block (MHAMB) that captures more global information

resolution manipulation level. This approach enhances the
network’s capacity to capture and fuse multi-scale features,
ranging from simple patterns at low levels, such as corner or
edge/color connections, to more complex higher-level fea-
tures, such as significant variations and specific objects. As a
result, this structure preserves spatial details while integrat-
ing contextual information, ultimately ensuring high-quality

image restoration. Formally, let FEi ∈ R

H
i2

×W
i2

×i2C be the
output in the i-th level encoder (i = 1, 2, 3, 4). At each
level, the feature fusion information FFMs,i is given as:

FFM1,i = HNa f1,i (FEi ⊕U P(FEi+1))

FFMs,i = HNa fs,i (U P(FFMs−1,i+1) ⊕ FFMs−1,i )
(5)

where ⊕ denote the element-wise addition, U P(·) rep-
resents the up-sampling operation and HNa fs,i (·) is the s-th
FFM in the i-th level.

This design offers two benefits. Firstly, the feature fusion
middleware integrates multi-scale information. For example,
the FFM of the third level fuses the encoder information of
the third and fourth level, and the FFM of the second layer
fuses the information of the second, third and fourth lev-
els, so that the network model can capture abundant context
information. Secondly, the feature fusion middleware in the
1th layer operates on the original image resolution, with-
out employing any subsampling operation, thereby enabling

the network model to acquire detailed spatial information of
high-resolution features.
NAFBlock.NAFBlock [12] is a variant of theU-Net network
that simplifies the system by replacing or removing the non-
linear activation function. Figure 4b illustrates the process of
obtaining an outputY from an input X using Layer Normal-
ization, Convolution, Simple Gate, and Simplified Channel
Attention. Express as follows:

X1 = X + C1(SC A(SG(C3(C1(LN (X))))))

Y = X1 + C1(SG(C1(LN (X1))))

SG = X f 1 × X f 2

(6)

whereC1 is the 1×1 convolution, C3 is the 3×3 depth-wise
convolution, GAP is the adaptive average pool, X f 1, X f 2 ∈
RH×W×C

2 are obtained by dividing X f 3 into channel dimen-
sions, and SC A(·) is shown in Fig. 4c.

Finally, the depth features FDF are obtained through this
single-stage architecture, as demonstrated below:

FDi = HNa f-1,i (FDi+1 + FFM-1,i )

FDF = FD1
(7)

where FDi is the output in the i-th level decoder, and -1
indicates that this is the last feature fusion middleware at this
level.
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3.2 Multi-head attentionmiddle block (MHAMB)

The transformer model [19–21] has gained popularity in
image restoration tasks due to its capability to capture global
information, as evidenced by its increasing usage in recent
years. The computation on a global scale results in a quadratic
complexity in relation to the number of tokens as shown in
Eq. 8, rendering it inadequate for the representation of high-
resolution images.

OMSA = 4hwC2 + 2(hw)2C (8)

To alleviate this issue, [19, 20, 43] etc., proposed various
methods to reduce complexity. In this paper, we propose a
multi-head attention middle block (MHAMB) as the bridge
of the encoder-decoder, shown in Fig. 4d. MHAMB uti-
lizes global self-attention to process and integrate the feature
map information that is generated by the last layer of the
encoder. This approach is particularly efficient in handling
large images because convolution downsamples space, while
attention can effectively process smaller resolutions for bet-
ter performance. From the last layer of the encoder output
FE4, our MHAMB first encode channel-wise context by
applying a 1 × 1 convolution and a 3 × 3 depth-wise con-
volution to generate the query, key and value matrices
Q ∈ R

H×W×C ,K ∈ R
H×W×C and V ∈ R

H×W×C as fol-
lows:

Q = C3(C1(FE4))

K = C3(C1(FE4))

V = C3(C1(FE4))

(9)

Inspired by [19], we reshape Q, K, V to Q̂ ∈ R
(HW )×C

h ×h ,

K̂ ∈ R
(HW )×C

h ×h , V̂ ∈ R
(HW )×C

h ×h to apply SA across
channels rather than spatial dimensions to reduce the com-
putation complexity, where h is the number of head. Next,we
calculate similarities of pixel pairs between all the reshaped
queries and keys as:

Attention(Q̂, K̂ , V̂ ) = Sof tMax

(
Q̂ K̂

β

)
V̂ (10)

where β is a learning scaling parameter used to adjust the
magnitude of the dot product of Q̂ and K̂ prior to the appli-
cation of the softmax function. As we use the multi-head
strategy, we finally concatenate all the outputs of multi-head
attention and reshape the attention matrix back to its origi-
nal dimensions of RH×W×C , and then get the final result by
applying a 1 × 1 convolution. The resulting output is then
added to FE4 and passed to the decoder. This allows the
model to incorporate self-attention in the lowest-resolution
feature maps, generating richer feature representations that

123



A novel single-stage...

improve the overall performance of the model, as shown in
the experiments below.

4 Experiments

Weevaluate the proposedM3SNet on benchmark datasets for
three image restoration tasks, including (a) image deraining,
(b) image deblurring, and (c) image denoising.

4.1 Datasets and evaluation protocol

We use PSNR and SSIM as quality assessment metrics. To
report the reduction in error for each method relative to
the best-performing method, we convert PSNR to RMSE
(RMSE ∝ √

10−PSN R/10) and SSIM to DSSIM (DSSIM
= (1 - SSIM)/2). The datasets are summarized in Table 1.
Image deraining. Our derain model is trained on a collec-
tion of 13,712 clean-rain image pairs obtained frommultiple
datasets [62, 63, 65, 66]. We assess the model’s performance
on various test sets, including Test100 [65], Test1200 [66],
Rain100H [63], and Rain100L [63].
Image deblurring. To perform image deblurring, we utilize
the GoPro [67] dataset, which consists of 2,103 image pairs
for training and 1,111 pairs for evaluation. Additionally, we
assess the generalizability of our approach by applying the
GoPro-trained model directly to the test images of the HIDE
dataset. TheHIDEdataset is designed specifically for human-
aware motion deblurring, and its test set comprises 2,025
images.
Image denoising. For training our image denoising model,
we utilize the SIDD dataset [69], which consists of 320 high-
resolution images for training and 1,280 patches from 40
high-resolution images for evaluation. It’s important to note
that SIDD datasets comprise real-world images.

4.2 Implementation details

We train the proposed M3SNet without any pre-training and
separate models for different image restoration tasks. We
utilize the following block configurations in our network for
each level: [1, 1, 1, 28] blocks for the encoder, [1, 1, 1, 1]
blocks for the decoder, [2, 2, 1, 0] blocks for the FFM. And
one MHAMB for the bridge of the encoder and decoder.
We train models with Adam [74] optimizer(β1 = 0.9, β2 =
0.999) and PSNR loss for 5 × 105 iterations with the initial
learning rate 1×10−3 gradually reduced to 1×10−7 with the
cosine annealing [75]. We extract patches of size 256 × 256
from training images, and the batch size is set to 32. We
adopt TLC [76] to solve the issue of performance degradation
caused by training on patched images and testing on the full
image. For data augmentation, we perform horizontal and
vertical flips.

4.3 Image deraining results

In our image deraining task, we compute the PSNR/SSIM
scores using the Y channel in the YCbCr color space,
which is consistent with previous works such as [8, 71,
73]. Our method has been demonstrated to outperform exist-
ing approaches significantly and consistently, as presented
in Table 2. Specifically, our method achieves a remarkable
improvement of 0.93 dB and a 10.2%error reduction on aver-
age across all datasetswhen compared to the best CNN-based
method, SPAIR [73]. And achieves a improvement of 0.2 dB
and a 3% error reduction compared to the best Transformer-
based method, Restormer [19]. Moreover, we can achieve
up to 2.76 dB improvement over HINet [9] on individual
datasets, such as Rain100L. Compared to our baseline net-
work NAFNet [12], we see significant performance gains
across all datasets, with an average improvement of 1.11 dB.
This proves that our proposed FFM and MHAMB can learn
an enriched set of hybrid features, which combines local and
non-local information which is vital for high-quality image
deraining.

In addition to quantitative evaluations, Fig. 5 presents
qualitative results that demonstrate the effectiveness of our
M3SNet in removing rain streaks of various orientations and
magnitudes while preserving the structural content of the
images.

4.4 Image deblurring result

The performance evaluation of image deblurring approaches
on the GoPro [67] and HIDE [68] datasets is presented in
Table 3. Our M3SNet outperformed other methods, with
a performance gain of 0.09dB when averaging across all
datasets [67, 68]. Specifically, compared to our baseline net-
work NAFNet [12], we improve 0.08 dB and 0.12 dB at
32 widths and 64 widths, respectively. Compared with pre-
vious CNN-based models [8], this progress can be much
more obvious. Compared with previous best Transformer-
based method, Restormer-local [19], we improve 0.17 dB
on the GoPro dataset. It is worth noting that even though
our network is trained solely on the GoPro Dataset, it still
achieves state-of-the-art results (31.49 dB in PSNR) on the
HIDE dataset. This demonstrates its impressive generaliza-
tion capability.

Figure 6 displays some of the deblurred images produced
by ourmethod.Ourmodel recovered clearer images thatwere
closer to the ground truth than those by others.

4.5 Image denosing result

We compare the RGB image denoising results with other
SOTA methods on SIDD [69], show in Table 4. Our
method obtains considerable gains over the state-of-the-art
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Fig. 5 Image deraining example. The outputs of M3SNet exhibit no traces of rain streaks on both image samples. M3SNet also recovers the most
detailed images

Table 3 Image deblurring
results

Methods GoPro [67] HIDE [68] Average

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
MT-RNN [77] 31.15 0.945 29.15 0.918 30.15 0.932

DMPHN [61] 31.20 0.940 29.09 0.924 30.15 0.932

Suin etal. [78] 31.85 0.948 29.98 0.930 30.92 0.939

SPAIR [73] 32.06 0.953 30.29 0.931 31.18 0.942

MIMO-UNet++ [44] 32.45 0.957 29.99 0.930 31.22 0.944

MPRNet [8] 32.66 0.959 30.96 0.939 31.81 0.949

MPRNet-local [8] 33.31 0.964 31.19 0.945 32.25 0.955

Restormer [19] 32.92 0.961 31.22 0.942 32.07 0.952

Restormer-local [19] 33.57 0.966 31.49 0.945 32.53 0.956

Uformer [21] 32.97 0.967 30.83 0.952 31.90 0.960

HINet [9] 32.71 – – – – –

HINet-local [9] 33.08 0.962 – – – –

MSFS-Net [79] 32.73 0.959 31.05 0.941 31.99 0.950

MSFS-Net-local [79] 33.46 0.964 31.30 0.943 32.38 0.954

NAFNet-32 [12] 32.83 0.960 – – – –

NAFNet-64 [12] 33.62 0.967 – – – –

M3SNet-32 (ours) 32.91 0.965 30.92 0.948 31.92 0.957

M3SNet-64 (ours) 33.74 0.967 31.49 0.951 32.62 0.959

The best and second best scores are highlighted and underlined
The proposed M3SNet is trained only on the GoPro dataset but achieves a 0.09 dB improvement over the
state of the art on the average of the effects on both datasets

Fig. 6 Image deblurring example on the GoPro dataset [67]. Compared to the state-of-the-art methods, our M3SNet restores sharper and
perceptually-faithful images
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Table 4 Image denoisng results Methods MPRNet [8] Restormer [19] NAFNet [12] M3SNet

PSNR 39.71 40.02 40.30 40.55

SSIM 0.958 0.960 0.962 0.962

The best and second best scores are highlighted and underlined

Table 5 Ablation analysis for FFM and MHAMB on the benchmarks

Methods Test100 [70] Test1200 [71] Rain100H [72] Rain100L [72] Average

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
w/o FFM 30.37 0.899 33.02 0.918 30.45 0.892 37.47 0.968 32.83 0.920

w FFM 31.29 0.903 33.46 0.924 30.64 0.892 39.62 0.984 33.75 0.926

w/o MHAMB 31.17 0.901 33.41 0.924 30.59 0.891 39.48 0.980 33.66 0.924

w MHAMB 31.29 0.903 33.46 0.924 30.64 0.892 39.62 0.984 33.75 0.926

Table 6 Plug-and-play study of
FFM. We pluged FFM into
various image restoration
networks to verify its
improvement on the model
effect

Model PSNR SSIM

Restormer [19] 32.92 0.961

Restormer + FFM 33.03 0.962

Uformer [21] 32.97 0.967

Uformer + FFM 33.04 0.967

NAFNet [12] 32.83 0.961

NAFNet + FFM 32.90 0.963

approaches, i.e., 0.25 dB over NAFNet [12], and 0.53 dB
over the Transformer-based method Restormer [19].

4.6 Ablation studies

Effectiveness of FFM. To examine the effect of the FFM,
we present the deraining results of w/o FFM in Table. 5. We
can see that the derained images obtained from the method
utilizing the FFM exhibit higher PSNR and SSIM values
compared to the derained images produced by the method
that does not employ the FFM.

To demonstrate the compatibility of our FFM method
as a plug-and-play component for other image restoration
models, we showcase the deblurring results achieved by inte-
grating FFM into top-performing models (e.g. Resformer
[19], Uformer [21], and NAFNet [12]) in Table. 6. We
can clearly see the performance of both three models are
improved by our approach. For a visually intuitive under-
standing the effect of such FFM, we further use high-pass
filtering (HPF) to visualize learned features in Fig. 7. Com-
pared to original image restoration model without adding
FFM, the addition of FFM can better help to reconstruct
finer detail features and improve the potential restoration
quality. Since FFM seamlessly integrates information from
the upper layers of the encoder-decoder structure into the
adjacent lower layers and fuses all the information to the res-
olution manipulation level of the original image, this allows
the model to better capture local and non-local information,

thus facilitating more accurate representation for achieving
high-quality output.

Effectiveness of MHAMB. To evaluate the effectiveness of
MHAMB, we perform experiments based on w/o MHAMB
in Table. 5. Compared to not applying MHAMB, MHAMB
provides additional performance benefits thanks to the capa-
bility to capture global information.

In Fig. 8,we have provided visual comparisons ofM3SNet
w/ and wo/ the MHAMB. This study validates the recovered
results of the model with the MHAMB tend to be clearer
since it enables more global features to be fully used during
the restoration process.

4.7 Resource efficient

Deep learning models have become increasingly complex in
order to achieve higher accuracy. However, larger models
require more resources and may not be practical in certain
contexts. Therefore, there is a need to design lightweight
image restoration models that can achieve high accuracy. In
our work, we design a mountain-shaped single-stage net-
work.This architecture optimizes the balance between spatial
details and contextual information while minimizing the
computational resources required to restore images.

Our M3SNet has been shown to outperform other mod-
els, as demonstrated in Table 7. Despite having 0.6M higher
parameters thanMIMO-unet++ [44], our proposedM3SNet-
32 still achieves better performance,while using significantly
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Fig. 7 Visualization of feature maps. Our proposed FFM can be pluged into existing image restoration models to generate more precise high-
frequency details

Fig. 8 Effect of the MHAMB on image deraining. a Input corrupt image, Compared with (b), the image restored by M3SNet w/ MHAMB (c) can
remove much more rain and recover the numbers accurately, d target highquality image

Table 7 The evaluation of
model computational
complexity. This is conducted
with an input size of 256 × 256,
on an NVIDIA 1060 GPU

Method PSNR Params(M) MACs(G)

Multi-Stage MIMO-UNet++ [44] 32.68 16.1 1235

MPRNet [8] 32.66 20.1 778

E-StackMPN [60] 33.56 118.2 472

Single-Stage HINet [9] 32.77 88.7 171

Restormer [19] 32.92 26.13 140

Uformer [21] 32.97 50.88 89.5

M3SNet-32 (ours) 32.91 16.7 37

M3SNet-64 (ours) 33.74 66.3 146

fewer computational resources, with MACs approximately
40 times smaller than that of MIMO-unet++. Considering
all factors, including model parameters, MACs, and perfor-
mance, our model is the optimal choice.

5 Conclusion

In this paper, we present a mountain-shaped single-stage
network that effectively captures multi-scale feature infor-
mation and minimizes the computational resources required
for image restoration. Our design is guided by the princi-
ple of balancing the competing goals of contextual infor-
mation and spatial details while recovering images. To
this end, we propose a feature fusion middleware mecha-
nism that enables seamless information exchange between
the encoder-decoder architecture’s different levels. This

approach smoothly combines upper-layer information with
adjacent lower-layer information and eventually integrates
all information to the original image resolution manipulation
level. As a basic feature fusion block, it can be plug-and-
play in various other image restoration networks to improve
the model representation. To overcome the limitations of
CNNs’ receptive fields and capture more global information,
we utilize a multi-head attention middle block as the bridge
of our encoder-decoder architecture. Furthermore, to main-
tain computational efficiency and lightweight model size, we
replace or remove nonlinear activation functions and instead
use multiplication. Our extensive experiments on multiple
benchmark datasets demonstrate that ourM3SNetmodel sig-
nificantly outperforms existing methods while utilizing low
computational resources.
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