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Abstract
Low-light images suffer from low contrast and low dynamic range. However, most existing single-frame low-light image
enhancement algorithms are not good enough in terms of detail preservation and color expression and often have high
algorithmic complexity. In this paper, we propose a single-frame low-light image fusion enhancement algorithm based on
multi-scale contrast–tone mapping and "pixel healthiness" evaluation. It can adaptively adjust the exposure level of each
region according to the principal component in the image and enhance contrast while preserving color and detail expression
with low computational complexity. In particular, to find the most appropriate size of the artificial image sequence and the
target enhancement range for each image, we propose a multi-scale parameter determination method based on the principal
component analysis of the V-channel histogram to obtain the best enhancement while reducing unnecessary computations.
In addition, a new "pixel healthiness" evaluation method based on global illuminance and local contrast is proposed for fast
and efficient computation of weights for image fusion. Subjective evaluation and objective metrics show that our algorithm
performs better than existing single-frame image algorithms and other fusion-based algorithms in enhancement, contrast,
color expression, and detail preservation.

Keywords Low-light images · Image enhancement · Multi-scale fusion · Contrast–tone mapping

1 Introduction

Low-slight images are a widespread class of images in the
real world, a degradation of image brightness and contrast
due to many factors such as insufficient light intensity or
shadows [1].

Despite the amazing advances in image sensor technology,
longer exposure time when shooting in low-light scenes can
also lead to phenomena such as artificial ghosting and partial
over-exposure. To enhancing the brightness and contrast of
low-light images, particularly to achieve high dynamic range,
is a critical part of image pre-processing to meet the growing
demand for complex, all-weather scene imaging.
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In recent years, numerous image enhancement methods
have been developed, encompassing techniques based on his-
togram equalization, adaptive curve mapping, retinex-based
methods, and learning-based methods. Each method has its
unique advantages. For instance, histogram equalization-
based methods enhance images by redistributing their
grayscale values, leveraging the statistical distribution of
image brightness for significant enhancement effects with
high efficiency [2]. Adaptive curve mapping techniques, on
the other hand, enhance images while maintaining a nat-
ural appearance, thus achieving excellent visual outcomes
[3]. Retinex-based methods, a significant category in image
enhancement, have seen rapid advancements, enhancing
images by estimating illumination components with remark-
able efficacy [4].

Thesemethods perform adequately in uniformly low-light
conditions and when the scene has few observation tar-
gets. However, in scenarios involving diverse light sources,
shadows, or clear foreground, midground, and background
elements, they often fail to ensure uniform enhancement
across all areas, leading to over- or under-enhanced regions.
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Fusion-based methods serve as an excellent supplement in
these cases [5–7]. They generate multiple artificial images,
each enhancing specific areas or grayscale ranges, which are
then combined to produce the final image. This method tends
to ensure that all regions of the image have been given sat-
isfactory brightness and contrast without losing sight of one
or the other.

Nevertheless, traditional fusion-based enhancement
strategies have their limitations. First, the fixed number of
artificial images can lead to computational redundancy in
simple scenes or unsatisfactory enhancement in complex
lighting conditions. Second, artificial image generation
often overlooks the original light–dark relationships within
the image, potentially resulting in unnatural outcomes
post-fusion. Third, the fusion step, crucial for enhancement,
typically does not prioritize edge and texture preservation,
risking detail loss in the output image.

To play the advantages of fusion methods in enhancing
low-light images under complex lighting, while addressing
these issues, this paper introduces an adaptive multi-scale
image enhancement and fusionmethod for single-frame low-
light images. This method adaptively calculates the optimal
number of artificial images based on the grayscale distribu-
tion characteristics of the image, significantly optimizing the
naturalness and detail representation of the fused image. Ini-
tially, we employ histogram statistics of the V channels in
HSV color space along with principal component peak anal-
ysis to adaptively ascertain the scale and target enhancement
range of the multi-scale artificial image sequence. Secondly,
we improve the traditionalOCTMmethodbymaking it appli-
cable to multi-scale artificial images. We call this refined
version as "interest-area perception OCTM" (IAP-OCTM),
which adaptively calculates the parameter based on the
grayscale range of the interest-areas in the current artificial
image. This process generates multi-scale enhanced image
sequences which are ready for subsequent fusion. Thirdly,
we propose a new "pixel healthiness" evaluation method
based on global luminance and local contrast to calculate the
weight of each pixel in each artificial image, which effec-
tively enhances the contrast and luminance and preserves
detail. The enhanced image from the proposed method com-
bines brightness enhancement, contrast enhancement, detail
protection and optimization of color expression to achieve
the best low-light image enhancement.

The main contributions of our method are as follows:

1. This paper proposes a new multi-scale parameter deter-
mination method for determining the number of images
in multi-scale enhanced artificial images sequence and
the grayscale range for interest-areas in each gener-
ated image. The method is based on histogram statistics
and principal component peak analysis. It can solve the
problem of under-enhancement in complex illumination

scenes or computational redundancy in uniform low-light
scenes caused by the fixed number of artificial images in
traditional fusion enhancement methods.

2. This paper proposes an improved OCTM method
called "interest-area perception OCTM" (IAP-OCTM)
for enhancing low-light images. The key of this method
lies in its ability to adaptively enhance the areas of interest
within the current artificial image while also considering
the light–dark relationship of these regions in the original
image. IAP-OCTM ensures that all major regions of the
original low-light image been enhanced, while avoiding
unnatural phenomena such as chaotic light–dark relation-
ships in the final enhanced image.

3. A "pixel healthiness" evaluation method based on global
illuminance and local contrast is proposed. It integrates
the grayscale and edge detail of the pixel. We use this
method as a criterion to calculate each pixel’sweight. The
method is simple and efficient, with good edge protection
and excellent detail performance.

2 Related works

With the ongoing advancements in image processing tech-
nology, many image enhancement methods based on single-
frame low-light images have been proposed. They can be
primarily categorized into four main types: value-based,
retinex-based, fusion-based, and deep learning-based.

Value-based methods are methods for redistributing the
global grayscale distribution of low-light images based
on pixel-value statistics, thereby improving the brightness
and contrast of the image, including the classic histogram
equalization (HE) and gamma correction (GC) methods.
Researchers have also proposed various improvements in
the early years, such as contrast limited adaptive histogram
equalization (CLAHE) [8], adaptive gamma correction with
weighting distribution (AGCWD) [9] and optimal contrast-
tone mapping (OCTM) [10]. Although these methods can
achieve luminance and contrast enhancement, they cannot
cope well with noise and uneven illumination effects. The
enhancement can be over-enhanced or unnatural. Later, Gu
et al. [11] employed visually noticeable regions and Su et al.
[12] combined optimal contrast-tone mapping with human
eye observation habits to further prevent the generation of
unanticipated artifacts and over-enhancement. However, the
contrast and edge sharpness of the enhanced image are still
unsatisfactory.

Retinex-based methods are one of the most classic
approaches in the image enhancement area. Retinex the-
ory was first proposed by Land and McCann [13] in 1977.
They proposed that color is determined by the ability of an
object to reflect long-, medium- and short-wave light and the
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color is not affected by the non-uniformity of light. However,
after extensive subsequent experiments, McCann revised the
previous assumption and proposed that spatial structuremea-
sured in the illumination can affect the colors, leading to the
departure from perfect color constancy [14, 15]. At the same
time, many advances have been made in image enhance-
ment methods based on this theory. Guo et al. [10] proposed
an effective method called LIME, which refines the initial
illumination map by using a structural prior as the final
illumination map and further denoising using the method
of block matching 3-D filtering algorithm (BM3D) [16],
Wang et al. [17], and proposed a method called naturalness
preserved enhancement algorithm (NPEA), which used a bi-
log transformation to process the illumination. Kong et al.
[18] introduced the Poisson function into the retinex model
and proposed a Poisson noise aware retinex model (PNAR).
Unfortunately, these methods still struggle to balance over-
and under-enhancement in complex lighting situations and
do not give a good sense of naturalness.

Fusion-based methods decompose the input image into
multiple sub-images based on frequency, gray-scale or other
criteria. Each sub-image will be processed separately and
finally fused into the output image. These methods show
excellent results in image enhancement for low-light images,
especially those in complex lighting scenes. Ying et al. [14]
proposed a bio-inspired multi-exposure fusion framework
(BIMEF) which is a decomposition method based on the
camera response model can effectively prevents the appear-
ance of over-enhanced areas, but the contrast of the enhanced
images is unsatisfactory. Hessel andMorel [19] used a multi-
exposure model to enhance low-light images to varying
degrees and then fuse the images. However, the loss of detail
in the enhanced images is severe, and the color performance is
not good enough. Peng et al. [20] performed adaptive gamma
correction on multi-scale images separately and fused them,
and Xu et al.[21] enhanced the original image with differ-
ent non-linear mapping relationships and fused them. Both
methods deal with individual regions of different brightness
individually and do not take into account the dark–light rela-
tionship in the same image, so the enhanced image may
appear to be brighter in areas with less real light than in
areas with more light, resulting in the unnaturalness of the
image.Wanget al. [22] proposed amethod for edge-enhanced
multi-exposure image fusion inYUVcolor space,with image
decomposition,weight calculation and fusion based onGaus-
sian pyramids. This method achieves excellent results, but it
is difficult to obtain a multi-exposure image of an identi-
cal scene in the real world, so the application of the method
is limited. In the area of fusion-based image enhancement
techniques, it has been observed that an increase in the num-
ber of artificial images potentially improves the outcome
for low-light images existing within complex lighting envi-
ronments. However, this augmentation invariably leads to a

proportional rise in computational time for the algorithm. In
situations involving a singular target or those characterized
by uniformly low illumination, the application of an exces-
sive number of artificial images is rendered superfluous.

The deep convolutional neural network has developed
rapidly and achieved many results in image processing area.
Li et al. [23] proposed a convolutional neural network (CNN)
image enhancement algorithm called Lighten-Net, which
uses the CNN to estimate the illumination map, optimizing it
with the guide filter and finally obtaining an enhanced image
according to the retinex model. Zheng et al. [24] proposed
a hybrid learning framework that compensates model-driven
and data-driven methods with each other to generate multi-
scale exposure images and fuse them.Wei et al. [25] proposed
a deep network called Retinex-Net, including a network for
decomposition and a network for illumination adjustment.
Guo et al. [26] trained a lightweight deep network named
DCE-Net, to estimate pixel-wise and high-order curves for
dynamic range adjustment of a given image. Ma et al. [27]
developed a new context-sensitive decomposition network
(CSD-Net) architecture to exploit the scene-level contextual
dependencies on spatial scales. The performance of these
methods depends heavily on the quality and quantity of the
dataset, and it will be more desirable to collect images with
different illuminations from similar scenes, which greatly
increases the difficulty of obtaining a training set. Also, since
subjective visual perception is more important than single
metrics such as brightness, contrast, and sharpening when
assessing the quality of enhanced images, this also poses a
great difficulty in training the network.

3 Proposedmethod

Our proposed method revolves around identifying the major
grayscale distribution ranges in the original low-light image.
Then, we utilize the IAP-OCTM to selectively enhance each
major grayscale range, resulting in a corresponding artifi-
cial image sequence. Subsequently, we perform image fusion
based on the "pixel healthiness" of each pixel in each artificial
image. This fusion process ensures that the final enhanced
image aligns with human visual perception, while simulta-
neously enhancing contrast. The overall framework of our
proposed method is depicted in Fig. 1.

3.1 Multi-scale parameter determination

Compared to the overall enhancement method, the multi-
scale fusion enhancement method can pay more attention to
the image details during the enhancement process, and effec-
tively prevent over-enhancement and under-enhancement at
the same time. In the fusion-based method, determining the
number of artificial images to be generated and the degree
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Fig. 1 Diagram of the proposed method

Fig. 2 Examples and V-channel histograms of three representative low-light images. a–c Low-light images. d–f Original histogram in blue, and
processed histogram in orange

of enhancement of each image are one of the keys to deter-
mining the quality of the output image; in this paper, we call
this step as multi-scale parameter determination. In order to
find amethod to adaptively determine the enhancement inter-
vals for different kinds of low-light images, we analyzed
histogram statistics from over 1000 low-light images from
six datasets (VV-data [28], LIME-data [29], NPE-data [17],
DICM [30], SCIE-data [6], and MEF-data [31]). We will
illustrate the flow of our method specifically with several
typical types of low-light images shown in Fig. 2.

For images directly captured by the camera, the camera
position, target position and lighting conditions are fixed. So,
for human visual system (HVS) observation, a main target in
the picture, or the background part, will be shown as a piece
of area with a similar gray value. In this paper, they are called
"HVS interest areas," and these are the parts that need to be
focused on in the process of image enhancement. The his-
togram h showing the grayscale distribution can accurately
reflect these grayscale intervals that need to be focused on in

the enhancement process through the form of a peak. There-
fore, we believe that based on the histogram distribution, we
can better determine howmany generated images are needed
to enhance a low-light image, and determinewhich part of the
grayscale intervals should be focused on in these generated
images.

As shown in Fig. 2, in some indoor scenes, the illumi-
nation conditions are uniform, and the low-light images are
overall in a similar grayscale interval, from the histogram,
it is also obviously that there is only one peak, so we can
degrade the fusion enhancement method in this paper to a
single-image enhancement scheme. On the other hand, the
natural outdoor scenes shown in Fig. 2b and c have widely
varying grayscale values due to the presence of close-up and
distant views, as well as different materials such as trees,
water, and sky. For example, the trees and rocks parts in the
shadows in Fig. 2b are clustered in the histogram to form
a peak in the grayscale range of 0–50, while the sky in the
distant view and the rocks in the light form another peak in
the grayscale range of 110–160. Figure. 2c obviously shows
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that the trees on the island are the darkest and they clus-
ter in the grayscale range of 10–30, the water portion has a
grayscale range of about 75–105, the large area of clouds in
the sky mainly occupy the grayscale range of 115–160, and
the remain sky is the brightest which has the grayscale value
around 180. Thus, for Fig. 2b, a better solution would be
to use two generated images one focusing on enhancing the
close-up portion while letting the sky portion overexposed,
and the other enhancing the distant portion while keeping the
close-up views underexposed. The two images are later fused
to obtain an enhanced image with all parts at the appropriate
level of enhancement. For Fig. 2c, we will use four generated
images to enhance the trees, the water, the clouds, and the
sky, respectively, and then perform fusion.

Here, we will specifically describe the steps of deter-
mining the number of generated images n and finding the
corresponding enhanced grayscale range boundaries th. First
step in our method, in order to focus on the overall trend of
the histogram, we processed the curve using Kalman filter
to fit the overall trend while removing the small peaks. The
filtered histogram is denoted by hk. Since the requirement
for the effect of the Kalman filter here is only to highlight
certain trends, the choice of parameters is more flexible. In
this paper, the process noise covariance Q is set to 0.0001,
and themeasurement noise covariance R is set to 0.01, which
can get satisfactory results for all test images. Also, in order
to correct for the overall image grayscale bias that exists in
some low-light images, such as the image looking overall
grayish, we add a parameter th0 to mark the starting point
of the gray value in current image, th0 is set to 0.05% in the
cumulative histogram.

In the second step, we first identify all the peaks in the
histogram. Although we use the Kalman filter to filter the
histogram, it is still not possible to guarantee that the bound-
ary determination will not be affected by small fluctuations
in a complex variety of image types. Therefore, after finding
the peaks of the histogram, we will calculate the height of
prominences for each peak denoted as pi . To further filter out
ups and downs due to small grayscale variations in the same
observation target, after running through all the peaks, we
denote 5% of the maximum value of all the height of promi-
nences as a judgmental threshold, T = max(pi ) × 0.05.

We discarded the peaks whose pi < T in third step, as
they are insufficient to represent an independent observation

target. When the histogram is relatively homogeneous, the
probabilities corresponding to each pixel are also relatively
average, and since the total number of pixels in the pixel
image is fixed, the maximum value and prominence heights
of the individual principal component peaks will also be low.
As a result, the threshold T we calculated will also be lower,
whichwill appropriately protect the smaller peaks frombeing
discarded and prevent the omission of the observed target.
when there is a clear distribution concentration in the his-
togram, it represents that there is a very obvious observed
target in the image, then the threshold T will be larger at
this time, and some small histogram peaks due to texture
or details will no longer be considered as separate targets,
which is a very intuitive way. Since the 5% is chosen to filter
out some too-small peaks, this value is not particularly strict
either, but it should not be too large or too small. Figure 3
gives the cases of the possible over-attention to tiny ups and
downs and the omission of principal component peaks that
can occur when this value is set to 1% and 10%. Figure 3e
shows that when T = max(pi ) × 1% the processing of the
histogramof Fig. 3a appears to be overly focused on the small
peaks, making an extra enhancement boundary th3, which
may lead to redundant computations in the algorithm. When
T = max(pi ) × 10% , it can lead to missing the enhance-
ment boundaries should be considered, th2 and th3, as shown
in Fig. 3f, which can affect the quality of the enhanced result.
When the threshold is set to 5%, Fig. 3c and d shows that we
can achieve the target quite well.

Next are the final two steps of our algorithm, we have
determined the center gray value of the principal compo-
nent peaks of an image. For each aggregated peak, 95% of
the peak prominence is sufficient to encompass that princi-
pal component peak. After that, we look for the first gray
value after the peak, which probability value less than 5%
of the peak prominence height, as the boundary, denoted as(
th1, th2, ...thn

)
. Here, the total number of peaks n is the size

of artificial generated images. And the grayscale range of
interest for each generated image Ii (i ∈ [1, 2, · · · n+1]) can
then be represented as th0 ∼ th1, th0 ∼ th2, ..., th0 ∼ thn .
The algorithmic process for multi-scale parameter determi-
nation is summarized in Algorithm 1.
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Fig. 3 Example for enhanced
grayscale boundaries
determination with different T.
a and b Low-light images. c and
e Comparison of 5% and 1%.
d and e Comparison of 5% and
10%

(c) T=5%×max(pi) (d) T=5%×max(pi)

(e) T=1%×max(pi) (f) T=10%×max(pi)

(a) (b)
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th0 th1 th2 th3
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3.2 Interest-areas perception OCTM for artificial
image sequence

In our method, the purpose of each artificial image is
to enhance the specific grayscale interval to a suitable
brightness. Therefore, global enhancement methods (e.g.,

histograms and some retinex-based methods) have difficulty
in achieving this regional enhancement goal. Instead, we
propose an interest-areas perception optimal contrast-tone
mapping (IAP-OCTM) method based on general OCTM
theory, which generates a set of suitable parameters for
each generated image according to the multiscale parame-
ters obtained previously. In the specific calculation process,
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IAP-OCTM can find the most suitable gradient for each gray
level, and the final mapping curve is the accumulation of
gradients.

The increment of two adjacent gray levels in mapping
curve, also be known as gradient, can represent the differ-
ence in gray values between those in the image aftermapping.
Thus, a larger gradient in the mapping curve at a particular
gray level means this gray level has a greater contrast in the
enhanced image. However, if the gradient is unconstrained,
the way to maximize the global contrast is to binarize the
image at the gray value with the highest probability, which is
clearly unreasonable. Therefore, in general OCTM method
[10], as shown in Eq. (1), there are upper and lower con-
straints on the gradient, thus making the process of solving
the enhancement curve a linear optimization problem.

argmax
s

∑

j∈L in

p j s j

s.t . (a)
∑

j∈Lout

s j ≤ Lout

(b) s j ≥ εmin

(c) s j ≤ εmax

(1)

here p j is the probability density of the gray level j in original
low-light image, s j is the gradient of the mapping curve at
this gray level, and L in and Lout are the dynamic range before
and after the process, respectively.We need to ensure that the
output image is still in the grayscale range of 0 to 255, so Lout

need to be set to 0–255. εmin and εmax are the upper and lower
limits of the s j , respectively, and these three parameters will
directly affect the enhancement process and are the variable
parameters that need to be adaptively determined for different
generated images for our proposed IAP-OCTM.

In IAP-OCTM, global enhancement is not required for
each generated image, but focused on specific gray scale
intervals. Therefore, fixed parameters are no longer appli-
cable. We improve the parameter computation method in
general OCTM for adaptive generating the constraints.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Li
in = th0 ∼ thi

εmin = 1

3
εmax = P2/Li

in

(2)

Equation (2) gives the calculation of the three parame-
ters in the IAP-OCTM. The first one is L in. L in determines
which portion of the grayscale interval will be stretched to
the interval from 0 to 255. In contrast to the simple way of
setting L in as 0 ~ 255 in OCTM, we set Li

in for the image
processing for Ii as th0 ∼ thi . The second one is εmin, deter-
mines the lower limit of the gradient, The smaller the εmin,
the better the tone continuity, but the degree of enhancement

will also be limited. In our experiments, a pleasing visual
appearance is obtained when εmin is set to 1

3 . The third one
is εmax, which is the upper limit of the gradient, prevents the
gradient assignment from being too aggressive, resulting in
too few gray levels in the enhanced image. εmax is directly
related to the target range of gray-scales. When the current
image focuses on darker parts, the thi will be small. At this
point, we will require a stronger enhancement to stretch out
the details hidden in dark areas. So, we should set a larger
value for εmax. If the current image intends to enhance the
brighter regions of the input image, thi is a larger value. In
this case, the dark areas have been well-enhanced in another
artificial image, so we do not need to be too aggressive with
the enhancement but should pay more attention to prevent-
ing over-enhancement, and the εmax should be smaller. We
constructed a function to represent this inverse relationship
mentioned above, as shown in Eq. (2). P is the parameter that
adjusts the sensitivity of the inverse function, which varies
from 18 to 22. In the absolute majority of low-light images,
P = 20 gives satisfactory results.

So far, the parameters inEq. (1) andEq. (2) are determined.
We can solve the linear optimization equation to obtain the
gradient s j for each generated image. And we can easily get
the ideal mapping curve M( j) by accumulating the gradients
s j . The enhanced artificial image I can be achieved from the
original low-light image V by grayscale mapping according
to the mapping curve, as shown in Eq. (3).

M( j) = s1 + s2 + s3 + · · · + s j ( j ∈ [0, 1, · · · 255])
Ii (x , y) = Mi (V (x , y)) (i ∈ [1, 2, · · · n+1]) (3)

here (x , y) represents a specific pixel location, Ii represents
the i th artificial image, and Mi represents the i th mapping
curve.

Figure 4. shows the processing of an example low-
light image by the IAP-OCTM. In order to verify the
effectiveness of our method, we take the lighthouse
(Fig. 4a) as an example. Based on the multi-scale parame-
ter [thi = th0,th0,th3 n = 3](shown in Fig. 4b), we divide the
input image into three "HVS interest areas." The blue area is
the darkest part and requires the strongest enhancement via
the blue mapping curve. The red area is the next darkest part,
occupying the largest proportion of the whole picture. This
area will be enhanced through the red mapping curve. At the
same time, the yellow area is the brighter part of the origi-
nal image and does not require aggressive enhancement. We
should focus on improving the contrast of the target in the
image and is enhanced via the yellowmapping curve.We can
happily find that the enhancement results are as expected, as
shown in Fig. 4c–e. In Fig. 4c, the darkest areas are properly
enhanced, such as the top of the lighthouse and the chairs
inside the car. In Fig. 4d, the image’s overall brightness is
enhanced, especially in the parts of the sky and grass that
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Fig. 4 Generation process of
multi-scale artificial image
sequences. a Original V-channel.
b V-channel histogram, target
enhancement boundary and
enhancement curve. c–e
Generated artificial image
sequence

occupy large areas. In Fig. 4e, the texture and contrast of the
windows and lighthouse are protected and prevented from
being over-enhanced.

3.3 Multi-scale image fusion based on“pixel
healthiness” evaluation

Human visual perception of image quality is heavily influ-
enced by brightness and contrast. Pixels with appropriate
brightness and contrast are often considered "healthier."
Therefore, a comprehensive "pixel healthiness" evaluation
method based on both global illumination and local contrast
is proposed in this paper. In addition, based on the healthiness
evaluation results, a function is constructed to calculate the
weights of each pixel in the artificial image sequence for the
final multi-scale image fusion. Meanwhile, we also enhance
the details and textures to optimize the fused images further.

3.3.1 Global illumination weight map generation

In each artificial image, the pixels in the target grayscale
range will be enhanced to the appropriate gray levels, while
the rest may be over- and under-enhanced since they are
not considered in the current image. Therefore, we need to
label the pixels in the satisfying illumination range and give
them higher weights in the fusion process. In this sector, the
global illumination weight map will be determined by both

the current image’s target grayscale range and the pixel’s
illuminance estimation.

For each pixel, the darker or brighter gray value due to
local textures or details is not representative of the actual
brightness of the current pixel. Therefore, the ideal illumi-
nation estimate should ensure it is as close as possible to
the original image while retaining only meaningful and dis-
tinct structural boundaries and ignoring details and textures
within the same structure. We construct an efficient linear
optimization equation to accomplish this. The first term of
the formula is used to represent the difference between the
luminance estimation and the original image, while the sec-
ond term reflects the smoothness of the texture. This means
that we need the first term as the dominant component when
the pixel is at a structured edge, thus preserving the informa-
tion in the original image and increasing the weight of the
second term to smooth the texture when the pixel contains
only texture, as shown in Eq. (4).

argmin
T

∑

(x , y)

(
(T (x , y) − V (x , y))2

+λ ×
∑ Mcom(x , y)(∇comT (x , y))2

|∇comV (x , y)| + ε

) (4)

here V (x , y) is the gray value of a pixel located on (x , y) in
the V channel of the HSV color space, as the initial estima-
tion. T (x , y) is the final illumination estimation. ε is a very
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small constant to avoid the zero denominator. The gradient
operator ∇com and weight coefficient Mcom are the key point
in Eq. (4).

We know that if there is a major edge in a local window, it
will have a large directional gradient compared to a localwin-
dow with only complex textures. Based on this, we construct
four directional gradient detection matrices for horizontal
( fh), vertical ( fv) anddiagonal directions ( fdl, fdr). Thedirec-
tional gradient operator ∇com is defined as the sum of the
absolute values of the convolution sum of the four detection
matrices with the image window, as shown in Eq. (5). Here,
win(x , y) is a 3*3 window centered at current pixel.

fh =
⎡

⎢
⎣

−1/3 −1/3 −1/3
0 0 0
1/3 1/3 1/3

⎤

⎥
⎦ fv =

⎡

⎢
⎣

−1/3 0 1/3
−1/3 0 1/3
−1/3 0 1/3

⎤

⎥
⎦

fdl =
⎡

⎢
⎣

−1/6 −1/3 0
−1/3 0 1/3
0 1/3 1/6

⎤

⎥
⎦ fdr=

⎡

⎢
⎣

0 −1/3 −1/6
1/3 0 −1/3
1/6 1/3 0

⎤

⎥
⎦

∇com(x , y) = |win(x , y) ∗ fh| + |win(x , y) ∗ fv|
+|win(x , y) ∗ fdl| + |win(x , y) ∗ fdr|

(5)

To identify the major edges as accurately as possible, we
use the inverse of the sum of the directional gradients of all
nine pixels in the 3 × 3 window in which the current pixel
is located as the negative correlation coefficient Mcom, as
Eq. (6) shows.

Mcom(x , y) = 1
∑

(l, n)∈ω in(x , y)
∇comV (l, n) + ε

(6)

here ε is a very small constant to avoid the zero denominator.
(l, n) represents 9 pixels in a window.

After computing the illumination estimation T (x , y), we
also propose an exponential-like evaluation function, as
shown in Eq. (7), which integrates the illuminance estima-
tion and the target grayscale range for each image to obtain
a weight map representing the "illuminance healthiness" of
each pixel.

wi
ge(x , y) = exp

(
−|Ti (x , y) − thi |

σge

)
(7)

herewi
ge is the global illuminationweightmap for i th artificial

image. σge is an experimental parameter, set to 0.4 in this
paper, and thi is the boundary for i th artificial image’s target
grayscale range in multi-scale parameter.

As shown in the second column of Fig. 5a is mainly
responsible for enhancing the darkest parts to the proper
brightness, such as the shrubs at the bottom left. The global
illumination map in Fig. 5d shows that the corresponding

area is indeed given the maximum weight as well. Figure 5b
ismainly used to enhance themain areas of the image that are
at a medium gray level, so Fig. 5e shows that areas such as
grass and trees have larger weights. Moreover, Fig. 5c is used
to protect the local bright parts of the image and enhance the
contrast. Therefore, in Fig. 5f, only the lighthouse and win-
dow with higher brightness in the original image are given
larger weights.

3.3.2 Local contrast weight map generation

Empirically, it is widely accepted that the human eye has the
best discrimination in moderate gray levels. The luminance
adaptation model based on the just-noticeable-difference
(JND) model summarized by Chun et al.[32] also verified
it. In this paper, we have constructed a low-light just-
noticeable-difference (LLJND) model based on the JND
model, combinedwith the characteristics of low-light images
as follows:

LLJND(I (x , y))

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

15 × (1 −
√

I (x , y)

Icomfort
) + Ires, I (x , y) ≤ Icomfort

Ires
Icomfort + 1

× (I (x , y) − Icomfort)

+Ires, otherwise
(8)

Icomfort is the most comfortable gray level for the human
eye in low-light images. For natural low-light images,
humans usually perceive that it should be slightly lower than
the image in normal light, so we set Icomfort to 100 there.
Ires is the extreme grayscale resolution of HVS in the most
comfortable situation, set to 3 in this article, which means
that the human eye can distinguish pixels with a gray value
difference of 3.

Based on theLLJNDmodel,we constructed the pixel local
contrast evaluationmethod.Not only does it take into account
the gradient sum of the window in which the current pixel
is located, but it also considers the human ability to perceive
grayscale differences at the current gray level. At this point,
we can obtain a local contrast evaluation criterion more in
line with human observation habits, as shown in Eq. (9)

Ci
pixel(x , y) =

∑

(l, n)∈win(x , y)

|I (l, n) − I (x , y))|
LLJND(T (x , y))

(9)

here Ci
pixel

(x , y) represents the local contrast of pixel (x , y)

in the i th artificial image. win(x , y) is a 3 × 3 window, and
(l, n) represent the pixels in this window. T (x , y) represents
the illumination estimation for current pixel obtained before.
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Fig. 5 Weight map sequence generation process. a–c Generated images sequence. d–f Global illumination map for generated image sequence.
g–i Local contrast map for generated image sequence. j–l Final fusion weight map

Like the weight calculation function for global illumi-
nance, we also construct an evaluation function to assess the
"contrast healthiness" based on the difference between the
median contrast of the current image and the local contrast
of the current pixel. As shown in Eq. (10), wi

lc
(x , y) is the

final obtained local contrast weight map for current artificial
image. median(∗) is the operation to find the median and σlc
is an empirical parameter to control the sensitivity, which is
set to 0.4 here.

wi
lc(x , y) = 1

1 + exp

(
median(Ci

pixel(x , y))−Ci
pixel(x , y)

σlc

) (10)

As shown in the third column of Fig. 5, in local con-
trast maps of each artificial image (Fig. 5g–i), our evaluation
method identifies the details and textures that show the best
contrast in the current image and assigns higher weights to
these pixels. Moreover, it is worth mentioning that the high-
lighted detail parts are consistent with the grayscale regions
we assigned for the desired enhancement, proving that our
generation for multi-scale images is as expected.

Finally, we define the final "pixel healthiness" based
fusion weights Wi (x , y) for the artificial image sequence
as the normalized sum of the global illumination map and
the local contrast map, as shown in Eq. (11).

Wi (x , y) = wi
ge(x , y, i) + wi

lc(x , y, i)
i=n+1∑

i=1

(
i
ge(x , y, i) + wi

lc(x , y, i)
) (11)

The fourth column of Fig. 5 is the calculated weight map.
We can see that the grayscale range that each image wants to

enhance can also be well reflected in it. At the same time, the
use of local contrast allows details, especially the edges of
the regions, to be well protected compared to the global illu-
mination map alone. This also proves that "healthier" pixels
are indeed given higher fusion weights in our method. For
example, shrubs and trees in Fig. 5j, sky and grass in Fig. 5k,
and windows and lighthouse’s walls in Fig. 5l all have higher
gray values in the weight map.

3.3.3 Detail and texture extraction

Sharper edges and textures can effectively enhance the over-
all image viewing experience, but valuable detail information
is inevitably lost during the enhancement and fusion process.
In order to further optimize the details and improve the qual-
ity of the fused image further, we also propose a fast detail
enhancement method. As previously stated, the illumination
estimation retains only the boundaries of areas with signifi-
cantly different shades of gray, while smoothing out details
and textures in the same structure. In our method, with the
aim to extract the detail as fast and efficiently as possible
without adding extra computational cost, we make full use
of the illumination estimation obtained before, and the detail
map can be very easily represented as the difference between
the original artificial image and the illumination estimation,
as shown in Eq. (12).

Di (x , y) = I i (x , y) − T i (x , y) (12)

here Di (x , y) represents the detail map, and I i (x , y) and
T i (x , y) are the i th generated artificial image and the illumi-
nation estimation obtained before. It is essential to note that
here Di (x , y) is allowed to be negative.
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Fig. 6 Detail extraction effect diagram. a–c Artificial images sequence. d–f Detail extraction for each generated image

As shown in Fig. 6, each detail extractionmap is well done
in its respective enhanced grayscale area. Such as the wall
texture of the lighthouse, as shown in Fig. 6f, will be well
protected in the final fused image.

3.3.4 Artificial image fusion

Image fusion is the process of combining artificial image
sequences into an enhanced image.Wecalculate theweighted
sum of the artificial image sequence and the detail map-based
weight map, as shown in Eq. (13).

E(x , y) =
i=n∑

i=1

(
I i (x , y) + Di (x , y)

)
× Wi (x , y) (13)

here E(x , y) represents the enhanced V channel. I i (x , y)
is the i th artificial image, Di (x , y) is the detail map, and
Wi (x , y) is the weight map with index i in the sequence.

At this point, we get the enhanced grayscale image, as
shown in Fig. 7c. After that, to get the enhanced color image
while keeping the original hue, we use it as a new V channel
and convert it back to RGB color space together with H and
S channels. The final enhanced color image and details are
shown in Fig. 7d. We are pleased to see that the whole image
has been nicely enhanced. The cars in the darkness have been
enhanced to a comfortable gray level for viewing, and the
texture of the lighthouse is well-protected at the same time.

4 Experiments and discussion

This section will use experimental analysis to confirm the
method’s efficacy. We compared the proposed method with
eight state-of-the-art methods, including the LIME+BM3D
[29], ICIP2019 [33], LR3M [34], STAR [35], IESDD [36],

PNAR [18], EGFM [1], EJOM [37], Zero-DCE [26] and
CSDGAN [27]. In addition, we tested these methods on
57 low-light images in six public datasets: VV-data, LIME-
data, NPE-data, DICM, SCIE-data, and MEF-data. It is well
known that the choice of parameters in a low-light image
enhancement method is decisive for the effectiveness of the
enhancement. Therefore, to make a relatively fair compar-
ison, we use the default parameters of each method for all
test images. For our method, all parameters will be set to the
values described in the previous section.

We implement all experiments using MATLAB R2020b
on a PC with an Intel(R) Core(TM) i5-11,400 CPU @2.60
GHz processor. (No GPU acceleration was used.).

4.1 Qualitatively comparison

Similar to our method, ICIP1029, EGFM and EJOM are
based on image decomposition and fusion.While thesemeth-
ods do a good job of preventing over-enhancement, they do
not perform well in contrast enhancement and color expres-
sion. As shown in Fig. 8b and c, ICIP1029 and EGFM
enhance the darker parts of the image to some extent, but the
image is still darker overall. EJOM is great in terms of overall
brightness enhancement, as shown in Fig. 8d, but it still has
problems with contrast, as if a layer of white fog is above the
image, resulting in less vivid colors. Thanks to themulti-scale
fusion of the principal components, our method achieves
good results in terms of both overall brightness enhance-
ment and contrast enhancement. Figure. 8e, clearly shows
that the grass and trees (top line image) and the murals (bot-
tom line image) all have better contrast and color expression
in the images, which is more in line with human observation
habits.

LIME, LR3M, STAR, IESDD and PNAR all belong
to methods based on retinex theory. The enhanced image
is obtained by processing the reflection layer obtained
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Fig. 7 Image before and after
processing by the proposed
enhanced framework. a Original
V channel. b Original color
image. c Enhanced V channel.
c Enhanced color image

Fig. 8 Result comparisons between different methods. a Original image; b Results from ICIP2019; c Results from EGFM; d Results from EJOM;
e Results from ours

from the decomposition. As shown in Fig. 9, all methods
achieved acceptable results. LIME performed well in terms
of overall brightness enhancement but also caused local over-
enhancement leading to information loss and unsatisfactory
edge processing. LR3M, STAR, IESDD, and PNAR showed
excessive smoothing, resulting in a significant loss of image
detail. As shown in Fig. 9c–f, the plant details (top line
image), the forest texture (middle line image), and the sig-
nage text (bottom line image) all appear excessively blurred.
IESDD is slightly better at detail protection, but the image
is still relatively dark overall. By detailed comparison, the

results of our method are excellent. The brightness is suffi-
ciently enhanced, and the detailed textures arewell protected.
The edges also show no anomalies that are uncomfortable to
the human eye, as shown in Fig. 9g.

In addition, we compare our method with an open-source
method based on deep learning (Zero-DCE and CSDGAN.
Deep learning-based methods require a large amount of data
for training and algorithms are complex. Especially when
the resolution of low-light images is large, very large video
memory of GPU is needed to support the algorithm to run,
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Fig. 9 Result comparisons between different methods. a Original image; b results from LIME + BM3D; c results from LR3M; d results from
STAR; e results from IESDD; f results from PNAR; g results from ours

Fig. 10 Result comparisons between different methods. a Original image; b results from CSDGAN; c results from Zero-DCE; d results from ours

which brings a lot of difficulties for the use of the algo-
rithm. We also found that the brightness of the CSDGAN
and Zero-DCE enhanced images is appropriate, but the con-
trast performance is still unsatisfactory, and there is a layer
of white fog in the vision. Meanwhile CSDGAN shows halo
phenomenon in some low-light images, as shown in Fig. 10b.
In contrast, our method maintains good enhancement effect
and detail retention with better visual effect in processing all
test images as shown in Fig. 10d.

In addition, we selected 57 images in the test dataset we
used, with acceptable results for all 10 methods, to form a
subjective evaluation dataset. Forty people engaged in image

processing research (divided into four groups randomly) con-
ducted a personal evaluation of the enhancement results of
all methods: 5 points for first place, 4 points for second place,
3 points for third place and zero points for the rest.

Table 1 summarizes the means of the four groups of scor-
ing. We also calculated the variance between the four sets of
scores and the percentage of scores for eachmethod.Wewere
pleased to find that ourmethod stood out althoughCSDGAN,
Zero-DCE and LIME + BM3D also achieved good scores.
Moreover, the scores of ourmethod showedgood consistency
between four groups. Table 1 demonstrates that the proposed
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Table 1 Statistic results of subjective visual evaluation for 10 methods

Method Scores
(average of 4
group)

Variance (4
groups)

Percentage
statistics
(%)

ICIP2019 3.75 14.25 3.13

LIME +
BM3D

12.25 10.92 10.21

LR3M 3.75 17.58 3.13

STAR 4.75 14.25 3.96

LESDD 3.5 32.33 2.92

PNAR 5.25 14.68 4.38

EGFM 6.5 15 5.42

EJOM 7 10 5.83

CSDGAN 23.25 16.92 19.38

Zero-DCE 17.5 11.67 14.58

Ours 33.75 8.92 27.08

method has a clear advantage regarding the intuitive percep-
tion of human eye observation.

4.2 Quantitative comparison

In order tomake a quantitative comparison of image enhance-
ment, we will evaluate the enhancement results of the 10
methods in terms of both image enhancement and image
quality. Six widely recognized evaluation metrics are used.

4.2.1 Image enhancement

For image enhancement, we use three widely used met-
rics: absolute mean brightness error (AMBE) [38], discrete
entropy (DE) [39] and measure of enhancement (EME)
[40]. AMBE evaluates the luminance enhancement of the
enhanced image compared to the original image. DE esti-
mates the detail of the enhanced image based on a probability
histogram distribution. EME evaluates the contrast of the
enhanced result compared to the original image. Three
metrics mentioned are where a higher score means better
performance.

As shown inTable 2, ourmethod achieved first place inDE
and EME, showing that our results have the best performance
in terms of detail and information protection. On AMBE, we
achieved third, due to our method’s commitment to finding
the most appropriate enhancement strength rather than the
stronger, the better. Both LIME + BM3D and CSDGAN,
which achieved the top two places, are prone to local over-
enhancement.

4.2.2 Image quality

For image quality, we adopt contrast enhancement
based contrast-changed image quality measure (CEIQ)
[41], naturalness image quality evaluator (NIQE) [42]
and blind/referenceless image spatial quality evaluator
(BRISQUE) [43] for the assessment of enhanced image qual-
ity. CEIQ considers structural similarity, histogram entropy,
cross-entropy and other factors to assess image quality.NIQE
characterizes the naturalness of an image by calculating
the natural scene statistics (NSS) features of the test image
patches. BRISQUE uses scene statistics with locally normal-
ized luminance coefficients to quantify an image’s possible
loss of naturalness. The higher the CEIQ metric, the more
information the image has and the better the overall image
quality.

As shown in Table 3, our method ranks two firsts and
one second among the three metrics characterizing overall
image quality. The superiority of our method in the CEIQ
metric is due to the full use of the entire gray-scale interval in
our enhancement method, ensuring that the enhanced image
has the highest possible information content and preventing
over- and under-enhancement wherever possible. The lead
in the NIQE and BRISQUE metrics is due to our principal
component-based analysis and a fusionmethod that fully fol-
lows the viewing habits of the human-eye. This allows our
method to produce enhanced images with the best human-
eye viewing experience. This is why the enhanced image
obtained by our method won by a large margin in the subjec-
tive test.

4.3 Ablative analysis

In this section, ablative experiments and analysis were per-
formed to verify the effectiveness of each main component.
Firstly, we discuss the necessity for multi-scale parameter
determination in the Interest-areas perception OCTM by
visual comparison and metrics of DE, EME, and CEIQ.
In interest-areas perception OCTM, the threshold is deter-
mined based on the number of principal components in the
image statistic, which we replace with a simple use of middle
grayscale as the demarcation (image is divided into [0,127]
and [128,255]) and experiment with images in the dataset.
Since multi-scale parameter determination focuses on the
adequate enhancement of individual regions in an image and
prevents over-enhancement, it leads to better overall con-
trast and protection of detailed information. We provide the
objective evaluation results for DE, EME and CEIQ for the
images in the dataset in Table 4. We are pleased that multi-
scale parameter determination performs better in all three
metrics. Figure 11 clearly illustrates that our method has a
clear advantage in the enhancement of the indoor part of the
image.
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Table 2 Comparison of average score of AMBE, DE and EME for 10 methods on six datasets

Methods ICIP
2019

LIME +
BM3D

LR3M STAR LESDD PNAR EGFM EJOM CSDGAN Zero-DCE Ours

AMBE↑ 37.74 79.53 43.00 42.33 41.21 40.94 40.15 53.95 65.67 42.28 58.56

DE↑ 7.11 7.55 6.94 6.99 7.19 7.20 7.27 7.36 7.31 7.20 7.61

EME↑ 9.62 8.56 6.63 7.31 6.85 7.65 9.39 7.07 7.45 9.42 10.02

The frist and second results are highlighted in bold and underline

Table 3 Comparison of average score of CEIQ, NIQE and BRISQUE for 10 methods on six datasets

Methods ICIP
2019

LIME +
BM3D

LR3M STAR LESDD PNAR EGFM EJOM CSDGAN Zero-DCE Ours

CEIQ↑ 3.18 3.47 3.13 3.12 3.26 3.27 3.18 3.28 3.26 3.23 3.52

NIQE↓ 2.69 2.87 3.40 2.66 2.97 2.95 2.70 2.93 3.17 3.11 2.52

BRISQUE↓ 28.47 28.57 33.95 26.62 31.85 32.51 26.51 31.03 20.76 28.63 26.26

The frist and second results are highlighted in bold and underline

Table 4 Comparison of average score of DE, EME and CEIQ for
method with middle grayscale demarcation and method with multi-
scale parameter determination

Methods Method with middle
grayscale demarcation

Method with multi-scale
parameter determination

DE↑ 7.28 7.61

EME↑ 9.16 10.02

CEIQ↑ 3.32 3.52

The frist results are highlighted in bold

Fig. 11 Result comparisons between different methods. a Result from
method with middle grayscale demarcation, b result from method with
multi-scale parameter determination

Secondly, we have verified the necessity for two factors in
the "pixel healthiness" evaluation by DE, EME, BRISQUE,
NIQE and CEIQ. As described in Sect. 2.3, global illumina-
tion and local contrast characterize whether the current pixel
is in a good state regarding luminance and contrast, thus guid-
ing the generation of fusion weights. Therefore, both maps
can achieve good image fusion and complement each other

to achieve better fusion results. We give examples of image
enhancement using global illuminationmap only, using local
contrast map only and both together, as shown in Fig. 12. We
also present the average results of the objective evaluation
metrics for the three methods in Table 5.

As shown in Fig. 12, when we only using the global illu-
mination map for fusion, some areas are under-enhanced
as the effects of internal detail and texture enrichment are
not considered. When only using the local contrast map,
the high-frequency areas may lead to halo artifacts at the
edges, whereas when the two maps are used together, a bet-
ter enhancement is achieved.

Finally, we verified the necessity for Detail and Tex-
ture Extraction and enhancement. Fig. 13 shows an example
of image enhancement with and without detail and texture
extraction. The average results for DE. EME, BRISQUE,
NIQE and CEIQ are presented in Table 5. The enhanced
images using detail and texture extraction are significantly
better than the images without it, in both direct human eye
observation and objective metrics. This is because the detail
and texture extraction makes it possible to increase the gray
level difference in a limited gray level range, thus improving
contrast. This process is similar to the optimization of the
combination of the black-level correction (BLC) and edge
enhancement (EE) processes in the image signal processing
(ISP) pipeline.

4.4 Comparison of computational costs

Table 6 demonstrates the average computational runtimes for
enhancing ten low-light images with a resolution of 1280 *
960, across allmethods considered for comparison. Since our
methodmay choose different values of n for different images,
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Fig. 12 Result comparisons
between different methods.
a Result from method with global
illumination map only, b result
from method local contrast map
only, c result from our method

Table 5 Comparison of average score of DE, EME, BRISQUE, NIQE
and CEIQ for method with global illumination map only, method with
local contrast map only, method without detail and texture extraction
and our method

Methods Global
illumination
map only

Local
contrast
map
only

Method
without
detail and
texture
extraction

Our
method

DE↑ 7.32 7.33 7.23 7.61

EME↑ 9.20 9.25 7.84 10.02

BRISQUE↓ 26.33 28.15 28.35 26.26

NIQE↓ 2.94 3.02 2.95 2.52

CEIQ↑ 3.32 3.30 3.29 3.52

The frist results are highlighted in bold

we detail the runtime for n values ranging from 1 to 8. This
delineation ensures a comprehensive and precise depiction
of our algorithm’s computational efficiency when applied to
low-light images of varying complexity. In the comparison,
we exclude the consideration of GPU acceleration for meth-
ods such asCSDGANandZero-DCE, as their performance is
significantly influenced by such hardware acceleration. Rel-
ative to EGFM and EJOM, which also employ image fusion
frommultiple artificially generated images for enhancement,
our methodology demonstrates comparable time consump-
tion at n = 2 and n = 3. Although it does not surpass
the rapidity of straightforward and efficient single-frame
enhancement techniques like LIME and LESDD, it notably
outperforms more computationally intensive single-frame
enhancement strategies, including LR3M and PNAR.

The efficiency of our method is influenced by the value of
n. Under complex lighting and scene conditions, a larger n
value is necessary to ensure an optimal enhancement result,
though this increases computation time. It is crucial to fore-
cast computation times for different n values, necessitating
a thorough analysis for each step, as shown in Table 7 and
Fig. 14. This analysis combines a reviewof computation prin-
ciples with experience data to estimate the computation time
for each step accurately.

Fig. 13 Result comparisons between different methods. a result from
method without detail and texture extraction, b result from our method

Table 6 Average computation time of different method (second)

Methods Average computation time

ICIP2019 10.93

LIME + BM3D 4.86

LR3M 205.5

STAR 53.61

LESDD 3.12

PNAR 58.26

EGFM 18.974

EJOM 16.735

Our Method(n = 1) 6.6696

Our Method(n = 2) 11.4370

Our Method(n = 3) 16.1928

Our Method(n = 4) 20.8286

Our Method(n = 5) 27.3887

Our Method(n = 6) 33.4356

Our Method(n = 7) 38.0765

Our Method(n = 8) 43.1314

The frist and second results are highlighted in bold and underline

The process of multi-scale parameter determination is
independent of the value of n, requiring only a single pass
through the histogram statistics of the image. As depicted in
Table 7, this phase consistently necessitates approximately
0.61 s across all n values, denoted as tstep1 = 0.61s. In the
step of artificial images generation, the IAP-OCTMwill per-
form a uniform process of linear optimization calculation
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Table 7 Average computation time for different step (second)

Step n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Multi-scale Parameter Determination 0.6133 0.6091 0.6102 0.6099 0.6135 0.6328 0.6198 0.6192

Artificial Image Generation 0.1422 0.2902 0.4398 0.5991 0.7228 0.8995 1.0331 1.1656

Global Illumination Weight Map Generation 2.359 4.1808 6.108 7.7601 10.59 12.9994 14.8068 16.7502

Local Contrast Weight Map Generation 3.4926 6.2843 8.9546 11.7695 15.3591 18.7861 21.4891 24.4633

Detail and Texture Extraction 0.0016 0.0029 0.0041 0.0052 0.0078 0.0087 0.0108 0.013

Artificial Image Fusion 0.0609 0.0697 0.0761 0.0848 0.0955 0.1091 0.1169 0.1201

Total Time 6.6696 11.437 16.1928 20.8286 27.3887 33.4356 38.0765 43.1314

Fig. 14 Relationship of computation time for each step and the value of n

and grayscale mapping for each generated image. Hence, the
time required for each synthetic image is constant, approxi-
mately 0.147 s for an image with a resolution of 1280*960.
Therefore, the computational time for this step is directly pro-
portional to the value of n, expressed as tstep2 = n × 0.147s.
The generation of global illumination weight maps and local
contrast weight maps represent the most time-consuming
components within our method because both processes need
iterating over every pixel of each artificial image and per-
forming operations such as sorting, and convolution. The
operations performed on each artificial image are the same
thus, the time required also follows a proportional rela-
tionship. Specifically, the Global illumination weight map
generation step requires approximately 2.1 s for each arti-
ficial image, and the local contrast weight map generation
needs four convolution operations for per pixel, leading to
an approximate duration of 3.06 s for each generated image.
The computation time can be expressed as tstep3 = n × 2.1s
and tstep4 = n × 3.06s. The detail and texture extraction
step involves a single subtraction operation, resulting in a
significantly short processing time. This operation is con-
sistently identical for every image, with computation time

approximately being 0.0014 s hence, the duration of this step
can be denoted as tstep5 = n × 0.0014s. The final proce-
dure in the proposed method is artificial image fusion, which
performs multiplication and addition operations n times,
depending on the n value. Consequently, the time required
for this step adheres closely to a linear function with n value.
Through experimental data and fitting, we can represent this
as tstep6 = n × 0.009+0.661s. Therefore, the correlation
between the value of n and the algorithm’s computation time
can be represented as the summation of the aforementioned
steps, denoted by Eq. (14).

t = tstep1 + tstep2 + tstep3 + tstep4

+ tstep5 + tstep6 = n × 5.3174 + 0.661s (14)

Figure 14 vividly illustrates the comparison between
experimental data and the fitting curve for varying n values.
This relationship clearly demonstrates how the computation
time escalates with increased n values. At this time, we
can accurately predict the computation time of the proposed
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Table 8 Statistical results of n value for images in three dataset and average computation time

Dataset n = 1 n = 2 n = 3 n = 4 n = 5 n > = 6 Average computation time (s)

VV_data 4 111 88 15 4 0 14.2132

DICM 73 109 35 21 5 0 11.8461

LOL_data 11 24 11 1 1 0 11.9835

sum 88 244 134 37 10 0 12.6809

Fig. 15 Relationship of computation time for each step and the value of
n

method for all n values, as it follows a simple linear relation-
ship. This is crucial for optimizing the performance of our
method under various complex lighting and scene conditions.

Since the n value has a decisive impact on the compu-
tational efficiency of the proposed method, and the images
used in the algorithm description phase come from several
datasets widely used in the field, it is necessary to further ver-
ify the efficiency of the proposed algorithm when processing
typical low-light images captured in real-world scenarios.
Therefore, we specifically evaluated the calculation results
of the n value for each image in three publicly available
low-light image datasets taken by ordinary users in practi-
cal scenes. It can demonstrate the efficiency of the proposed
method in handling low-light images in real-world conditions
more objectively.

The dataset include the VV_data [28] provided by Vas-
silios Vonikakis, consisting of 222 of the most challenging
images for enhancement, each containing parts that are cor-
rectly exposed and parts that are severely underexposed or
overexposed. Additionally, the DICM dataset [30] includes
47 low-light images of everyday scenes captured with com-
mercial digital cameras by Ying et al. Furthermore, the
LOL_data [25], specifically collected for low-light enhance-
ment by Wei, includes 244 images from real scenes. In total,
these datasets contain 513 low-light images. Similarly, we
scaled all images in the datasets to a resolution of 1280*960
to facilitate a clearer comparison of computational efficiency.

Table 8 and Fig. 15present the statistical results of the n

value for 513 images. It is evident that for almost all real-
world low-light images, the optimal n value computed by
the proposed method is less than 5, and over 90% of the
images in dataset having an n value less than 3. This indicates
that the proposed method’s computation time in practical
applications is not a cause for concern. Additionally, Table 8
provides the average computation time for low-light images
in each of the three datasets, as well as the average compu-
tation time for all 513 images, which is approximately 12.68
s.

Figure 16 also gives the enhancement effects of all eleven
algorithms on the low-light images used in the Experiments
and Discussion section.

5 Conclusion

In this paper, we propose a single-frame low-light image
enhancement method based on multi-scale interest-area per-
ception OCTM and "pixel healthiness" evaluation. In our
method, the multi-scale parameter is determined adaptively
by principal component analysis of the V-channel histogram.
Based on this parameter, the interest-area perception OCTM
generates artificial image sequences well according to the
main target grayscale range in the image. Moreover, we use
a "pixel healthiness" evaluation method based on a global
illumination map and local contrast map to quickly and
efficiently compute image fusion weights. In addition, we
specifically protect and enhance edges and details based on
illumination estimation. Subjective evaluation and objective
metrics show that our algorithm performs better than existing
single-frame image algorithms and other fusion-based algo-
rithms in enhancement, contrast, color expression and detail
retention. Meanwhile, the computation time of the method
proposed in this paper is still long, especially when n is
large, and is not advantageous compared with other single
frame-based image enhancement methods. Our future work
will focus on optimizing the global illumination weight map
and local contrast weight map generation process. Moreover,
enhanced image denoising is another future direction.
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Fig. 16 Result comparisons between different methods
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