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Abstract
Generating talking head videos through a face image and a piece of speech audio has gained widespread interest. Existing
talking face synthesis methods typically lack the ability to generate manipulable facial details and pupils, which is desirable
for producing stylized facial expressions. We present ManiTalk, the first manipulable audio-driven talking head generation
system. Our system consists of three stages. In the first stage, the proposed Exp Generator and Pose Generator generate
synchronized talking landmarks and presentation-style head poses. In the second stage, we parameterize the positions of
eyebrows, eyelids, and pupils, enabling personalized and straightforward manipulation of facial details. In the last stage, we
introduce SFWNet to warp facial images based on the landmark motions. Additional driving sketches are input to generate
more precise expressions. Extensive quantitative and qualitative evaluations, along with user studies, demonstrate that the
system can accurately manipulate facial details and achieve excellent lip synchronization. Our system achieves state-of-the-
art performance in terms of identity preservation and video quality. Code is available at https://github.com/shanzhajuan/
ManiTalk.

Keywords Facial animation · Expression manipulation · Gaze manipulation · Neural network

1 Introduction

Talking head generation has gained widespread interest in
multimodal human–computer interaction in recent years. It is
crucial for filmmaking, virtual avatars, video conferencing,
and virtual education. Precise lip movements and realistic
video portraits are essential for enhancing user feedback.
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Natural headmovements, along with facial details like blink-
ing, eyemovements, and eyebrowmotions, also contribute to
an improved user experience. Most existing methods focus
on improving lip synchronization [24] and image clarity [18]
andgenerating stylized headmotions [39, 44, 48].Generating
realistic and manipulable talking videos, which are desirable
for generating diverse talking styles in complex scenarios, is
typically overlooked by talking face synthesis methods.

Generating realistic talking heads contains many chal-
lenges since head motions and facial details have nearly no
correlation to audio, unlike the lips [18]. Some works can
generate specific facial details, such as natural head move-
ments [33, 41] and templated [18] or controllable blinking
[42, 44]. They struggle to capture all the facial details. More-
over, due to the neglect of controlling pupils, their models
are constrained and need help handling source images with
unnatural gaze directions or multi-target interaction situa-
tions (for generating talking videos where the subject looks
at different targets). Manipulating pupils is also challeng-
ing due to the requirement for a realistic pupil rendering
model and additional controllable pupil parameters. Some
end-to-end methods need help to offer additional constraints
for pupil rendering [24]. Our approach uses 3D sparse land-
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marks as intermediate characterization, which is a typical
and straightforward approach [10] and has been used in the
state-of-the-art[18, 48]. We add two additional pupil land-
marks for controlling gaze direction. The pupils, eyebrows,
and eyelids are constrained by corresponding landmarks and
independently parameterized for ease of control.

After editing the landmarks, accurately warping the facial
images corresponding to the landmark motions poses a chal-
lenge. The significant changes in gaze direction and lip
movements make generating stable and realistic rendering
difficult. To solve this challenge, several works concatenate
a candidate image set of the source person on the facial
representation [10, 18], but it is often challenging tofind addi-
tional images with matching backgrounds. Neural radiance
field (NeRF) has been explored in facial animation, which
could preserve more details and provide better naturalness
[4]. However, this method could be more effective in various
scenarios and for different identities. The flow-based system
considers facial deformation a conditioned action transfer
and learns optical flow to represent facial changes from either
supervised [10] or unsupervised [38, 47] 2D feature points.
Zhao et al. [47] provide a first-order motion approximation
using Thin Plate Splines (TPS) transformation [3] based on
unsupervised points and efficiently model complex facial
movements. However, the generated facial details could be
more explicit, and mouth shapes could be more precise.

Based on Zhao et al.’s [47] system, we introduce SFWNet
to deform facial images based on landmark motions. What
sets our model apart from theirs is that our landmarks are
strategically placed on meaningful parts of the face, mak-
ing the network focus on critical facial motions. Due to task
differences, their Background Motion Predictor is no longer
applicable. We employ the generative adversarial training
mechanism to optimize the generation of unseen pixels. To
minimize expression errors, we incorporate the sketch of the
driving landmarks as additional shape constraints into the
Warp Module. The main contribution of this paper can be
summarized as:

• We propose ManiTalk for manipulable talking head gen-
eration. The system can manipulate facial details (head
pose, blink, eye gaze, and eyebrow) and generate diverse
talking styles.

• The proposed SFWNet accurately deforms faces accord-
ing to landmark motions. Incorporating a sketch of
driving landmarks enhances visual quality and ensures
more precise facial shapes in the final results.

• The system can work on source images in the wild, such
as arbitrary identities, complex backgrounds, and face
images with head poses and expressions.

• Experiments show that our system achieves state-of-
the-art performance in identity preservation and visual

quality. We also achieve state-of-the-art motion synchro-
nization on the VoxCeleb dataset.

2 Related work

2.1 Audio-based dubbing in video editing

Audio-based dubbing in video editing can generate audio-
synchronized lower face and replace the mouth region of the
original video.Thesemethods donot need to consider expres-
sions and head poses. The main challenge is to generate a
photo-realistic mouth texture matching the original video
and splice it seamlessly. Personalized visual dubbing [17,
29, 36, 45] is easier since they are limited to several certain
persons in the known backgrounds. Arbitrary-subject visual
dubbing [24, 28] builds a general model for any identities.
Most methods generate the latent embedding from audio and
then render the results using the image-to-image translation
network [17, 36, 45]. Several methods generate audio-related
facial landmarks to produce accurate lipmotions [28, 29]. 3D
model-based approaches generate expression, texture, and
illumination blendshapes from audio features based on exist-
ing face datasets [36, 45]. There aremethods to generatemesh
vertices and texture maps for more accurate expressions and
realistic renderings [17].

2.2 Audio-based single image facial animation

Audio-based single image facial animation generates talking
heads from a single facial image. With the development of
deep learning, end-to-end methods [11, 33] have become a
trend. For example, Sefik et al. [11] take a standard normal
distribution and a categorical emotion as input and gener-
ate talking face videos synchronized with the input speech
and consistent with the input emotion. Some works calculate
dense motion fields between the target and source motions
and take them as intermediate representations. Wang et al.
[33] infer talking motions represented by keypoint-based
dense motion fields from the input audio. An image genera-
tion network is thenused to render videos basedon themotion
fields. It better governs spatial and temporal consistency in
the generated videos. Because of the limited information
in the input image, some works additionally take reference
images or videos as input to providemore constraints for gen-
erating stable background and hair [18, 39]. The additional
images have the same background as the source image,which
is hard to achieve in practice.
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2.3 Gaze redirection

Gaze redirection is manipulating an input image of a face
such that the face in the output image appears to look at a
given target direction [25]. Some works use graphics models
to render eye gaze [37]. Freund et al. [37] correct gaze direc-
tions in video conferencing by modifying the eyes’ albedo,
diffuse, shading, and illuminations, which is computation-
ally complex. Some methods mainly utilize image warping
to redirect the gaze [13, 40]. They are limited when the tar-
get gaze direction is far from the source gaze [25]. Recent
methods consider eye rotation as a 3D perception problem,
which thinks of gaze changes as the rigid rotation of the eye-
ball [10, 25]. They need to model the complete eyeball in
advance. Although gaze redirection has many advances, few
researches have achieved gaze redirection in audio-driven
face generation.

3 Methods

The pipeline of our system is illustrated in Fig. 1. We use 3D
sparse landmarks as intermediate results to generate talking
head videos synchronized with the speech.

3.1 Audio-related generation

This section introduces the facial landmark generation net-
work (ExpGenerator) and the pose generation network (Pose
Generator). Given the input audio sequence a1:T and the
source image I i , ourmodel generates audio embeddings ha1:T
and subsequently produces head poses P̂1:T and facial land-

mark sequences D̂1:T . The framework is formulated as:

ha1:T = �a(a1:T ) (1)

D̂1:T = �e(ha1:T ) + Im ′ (2)

P̂1:T = �p(ha1:T ) + I p (3)

where �a , �e, and �p are the Audio Encoder, Exp Gener-
ator, and Pose Generator, respectively. Initial pose I p is the
pose of the source image. For Im ′, we first estimate the 3D
source landmarks Im from the source image usingMediaPipe
detector [19]. Im ′ is the de-posed source landmarks with a
neutral expression.

AudioEncoder.For speech-related face generation tasks, the
Audio Encoder should be robust to different audio sources,
regardless of noise, languages, or speakers. Using a pre-
trained speechmodelmeets this requirement. The pre-trained
model has already been sufficiently trained on large audio
datasets and efficiently extracts relevant information from
speech. Our Audio Encoder�a uses the feature encoder part
of the pre-trainedWav2Vec2 model [1]. It consists of several
blocks containing a temporal convolution (TCN) followed
by layer normalization and a GELU activation function. It
can extract acoustically meaningful but contextually inde-
pendent features from the raw speech signal.�a is initialized
using the feature encoder weights in Facebook’s Wav2Vec2
model [1], which are trained using more than 50,000-h unla-
beled speech. It has been applied in facial animation work
and achieves surprising results [12]. The encoder weights are
fixed during training.

Exp Generator. Exp Generator observes audio embedding
ha1:T ⊆ R

T×512 and predicts facial landmarks D̂1:T ⊆
R
T×68×3. To avoid some audio-irrelevant facial motions

influencing the lip’s accuracy, Exp Generator only predicts

Fig. 1 Overview of ManiTalk. It consists of three parts: Audio-related Generation (the blue part), Personalized Expression Manipulation (the green
part), and Sparse Feature-driven Warp Network (the red part)
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lip and jaw motions while the rest of the parts are still. The
network employs a transformer-based architecture to ensure
accuracy and smoothness across long sequences. It consists
of a twelve-layer Transformer encoder [32], a linear pro-
jection layer, and a FaceFormer decoder [12]. The linear
projection layer projects expression-related embeddings into
a 64-dimensional space. The FaceFormer decoder predicts
synchronized landmark offsets, which are added to unposed
3D source landmarks Im ′. The structure of the FaceFormer
decoder is similar to the Transformer decoder but with gen-
eralization abilities for longer sequences. During training,
the Transformer encoder is initialized with the Transformer
weights in Facebook’s Wav2Vec2 model [1] and fine-tuned.

Pose Generator.
Mapping from speech features to head poses is difficult due
to the weak correlation between them. To simplify this task,
we constrain the speaking scenario to online presentations,
where the speaker’s head mainly faces the camera with small
motions. Training data is also readily available.

PoseGenerator is trained to generate headmotions P̂1:T ⊆
R
T×6 (consist of rotations P̂ rot

1:T and translations P̂ trans
1:T ) con-

ditioned on the audio features ha1:T . Similar to LSP [18]
and SadTalker [44], we formulate this task as a probabilistic
instead of a regression problem. The network sees the history
poses and current audio features and autoregressively pre-
dicts the joint probability distribution of the current pose. The
probabilistic model we use is a multi-dimensional Gaussian
distribution. At time t , the network outputs the mean values
μt and the standard deviations σt of the estimated Gaussian
conditioned on ha1:T and {P̂t−T ′ , P̂t−T ′+1, ..., P̂t−1}. T ′ is the
receptive field of the network.We sample the distribution and
obtain the head motion offsets. The offsets are added to I p

and fed to the network to predict the subsequent timesteps.
The used prediction network is the conditional probabilistic
generative model [18, 23]. It consists of a stack of two resid-
ual blocks with seven dilated convolution layers each. The
history receptive field size T ′ is 255 frames, equal to 4.25
seconds.

3.2 Personalized expressionmanipulation

The facial landmarks generated by Exp Generator only have
lip and jawmotions, while eyebrows and eyelids remain still.
Weadd facial detailmotions to the landmarks through expres-
sion manipulation. The landmarks on different facial parts
are independent. This allows us to manipulate facial parts
independently.

eyelid and brow motions. To generate eyelid and eye-
brow motions, LSP [18] samples a standard motion set from
datasets for each identity. Their approach does not work for
our system because we must apply movements to different
individuals. To solve this, we personalize the sampled land-

marks. For sampled standard motion sequences Mb
1:B and

Me
1:E , we align them to the source landmarks Im ′ by align-

ing the neutral state frame. Then, we calculate the differences
for each frame relative to the neutral frame, obtaining person-
alized motion offset sequences M̂b

1:B ′ and M̂e
1:E ′. Finally, we

cyclically add the calculated offset sequences to the eyelid
and eyebrow landmarks in D̂1:T and generate personalized
eyelid and eyebrow motions.

Additionally, we can control the motion patterns of eye-
lids and eyebrows. The blinking frequency can be controlled
using the parameter V blink ∈ [0, 1], where a bigger value
corresponds to a higher blinking frequency. We control eye-
brow motions using parameters {Abrow ∈ [−1, 1], V brow ∈
[0, 1]}.Apositive value of Abrow represents raising eyebrows,
while a negative value represents frowning. Larger absolute
Abrow results in more pronounced eyebrow actions. A big-
ger V brow corresponds to a higher frequency of eyebrow
motions. By default, the system is set to generate natural
facialmovementswith a neutral expression, i.e.,V blink = 0.5
and Abrow = 0.

Gaze Manipulation. We introduce two pupil landmarks to
control the gaze and abstract them into two parameters,
{θ, ρ}. Figure2a shows the coordinate axes directions of
landmarks D̂1:T . We project eyelid landmarks onto the XOY
plane. Given the landmarks Q1

′, Q2
′, Q3

′, Q4
′, Q5

′, Q6
′

on the eyelid, we roughly define the pupil motion range
Q1Q2Q3Q4Q5Q6 after the observation of pupil move-
ments. The range is shown in Fig. 2c. The motion contour
can be formulated as follows:

Q1 = 2Q4
′/7 + 5Q1

′/7, Q2 = Q6
′/4 + 3Q2

′/4 (4)

Q3 = Q5
′/4 + 3Q3

′/4, Q4 = (Q5
′ + Q3

′)/2 (5)

Q5 = 4Q5
′/5 + Q3

′/5, Q6 = 4Q6
′/5 + Q2

′/5 (6)

O = (Q5
′ + Q2

′)/2 (7)

Themotion contour of the left eye ismirror to that of the right
eye (as seen in Fig. 2b). Next, we define the pupil polar coor-
dinate system and using the ordered pair {θ ∈ [0, 360◦], ρ ∈
[0, 1]} specifies the pupil location S as shown in Fig. 2b. ρ

is the relative radius, defining the motion amplitude in that
direction. The ρ for points on the motion contour equals 1.
We define the point on the contour in the θ direction as S′.
So

−→
OS = ρ · −−→

OS′. When ρ = 0, S is at the location of pole
O, indicating looking straight. When {θ = 90◦, ρ = 1}, S
lies on the line Q5Q6, representing looking upward. Notably,
the movements of the left and right pupils are often the same.
The polar axes for both eyes are consistent. We approximate
the z-coordinate of S as the average of the z-coordinates of
Q1

′, Q2
′, Q3

′, Q4
′, Q5

′, Q6
′.

Poses and Projections. Because the subsequent SFWNet
operates in 2D space. We project the manipulated 3D land-
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Fig. 2 Illustrations of the pupil motion range and pupil polar coordinate system

marks to a 2D plane via an orthographic camera model C .
The process is formulated as:

D̂1:T ′ = C · (P̂ rot
1:T · D̂1:T + P̂ trans

1:T ) (8)

where D̂1:T ′ ⊆ R
T×70×2 is the resulting 2D facial landmarks

containing pupil landmarks.

3.3 Sparse feature-driven warp network—SFWNet

In this section, we predict the final facial animation using
SFWNet. As illustrated in the red part of Fig. 1, SFWNet con-
sists ofCoarseMotionEstimation,DenseMotionEstimation,
and the Warp Module. The network generates facial images
frame by frame. It is robust enough to generate smooth facial
animations without considering contextual dependencies.

First, the Coarse Motion Estimation module generates K
sets of shape transformations from the source image to the
driving. Specifically, given the orthographically projected 2D
source landmarks Im ′′ and the t th frame driving landmarks
D̂t

′, we select 5×K deformation points from themand divide
points into K groups, resulting in Im1:K

′′ and D̂t,1:K ′. The
selected landmarks are shown in Fig. 7. By minimizing dis-
tortion, we can calculate the Thin Plate Splines (TPS) [3]
transformation of each group from source points to driving
points. We use T tps

k to represent the kth TPS transforma-
tion. K is considered as a hyper-parameter. Setting K to 10
yields better results (see Sect. 4.5). Please refer to [3] for
more details about TPS transformations.

Dense Motion Estimation aims to combine the K coarse
transformations and generate dense motion fields along with
the multi-scale occlusion masks. This is achieved by using
an hourglass-structured Dense Motion Module. Specifically,
we individually warp the source image using K TPS trans-
formations. The K warped images are concatenated and fed
into the Dense Motion Module. It outputs K weight maps
W1:K corresponding to the K TPS transformations, which
are used to calculate dense optical flow for facial motion:

˜T (u, v) =
K

∑

i=1

Wk(u, v)T tps
k (u, v) (9)

Fig. 3 Implementation details of the Warp Module

Where the weight maps are summed to one at any pixel
location. Additionally, the Dense Motion Module outputs
multi-scale occlusion masks using an additional convolution
layer at each decoder layer to handle missing parts in the
source image.

In the Warp Module, we fuse multi-scale features to gen-
erate high-quality images. The details are shown in Fig. 3.
Meaningful landmarks allow us to provide additional shape
constraints by inputting the sketchof the driving landmarks as
conditions to the decoder. Specifically, the feature extraction
layers, denoted as f i and f d , extract effective features from
the source image and the driving sketch at the same resolu-
tion, respectively. The features of the source image are passed
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through the encoder, followed by warping the resulting fea-
ture map of each layer using the optical flow. The warped
feature map is then multiplied by the occlusion masks of the
corresponding scale. The sketch features are input into the
same encoder, and its output is concatenated to the decoder
via a skip connection along with the masked source features.
The decoder finally reconstructs the driving image X̂t .

3.4 Implementation details

In this section, we describe training in relevant detail. The
Exp Generator, Pose Generator, and SFWNet are trained in
a decoupled way. They are trained using Adam optimizer on
two NVIDIA GeForce RTXTM 3090Ti.

Exp Generator.We construct the VOCASET-sparse dataset
based on VOCASET [7] as the training set. The VOCASET-
sparse contains 473 sentences spoken by 12 subjects at
60 f ps. It has 68 facial landmarks specified manually on
the VOCASET facial meshes. We use the same training,
validation, and testing splits as VOCA [7]. Exp Generator
is trained for 100 epochs with autoregression. The learning
rate is 1e − 4. The batch size is 1. The loss function is the
Mean Squared Error, which computes the distance between
the predicted landmarks and the ground truth.

Pose Generator. Pose Generator is trained to generate
presentation-style head motions from audio embeddings.
HDTF [46] serves as the training set since it consists of online
presentation videos. The truth headposes are calculated using
OpenFace [2]. We randomly split the dataset into a training,
validation, and test set with an 8:1:1 ratio. At the training
phase, the learning rate is 1e − 4. The batch size is 8. The
negative log-likelihood of the pose distribution [18] is opti-
mized, which forces the network to output the mean values
μ and standard deviations σ of the Gaussian distribution.

SFWNet. SFWNet is trained on the VoxCeleb dataset [21],
which consists of interview videos of different celebrities.
The videos are cropped based on face regions and resized to
256×256 pixels. The 70 facial landmarks are predicted from
video frames using MediaPipe [19]. During each iteration,
we extract a source image I i and a driving image X from the
same video. This process eliminates the influence of facial
shapes, allowing the network to focus solely on expression
changes. The learning rate is 2e − 4. The batch size is set to
32. Themodel is trained for 100 epochs. For the training loss,
a pre-trained VGG-19 network [27] is used to improve ren-
dering quality. The warp loss is used for optimizing theWarp
Module similar to [26, 47]. The absence of deformation land-
marks outside the facial region may result in a limited ability
to generate realistic hair and background. We improve this
with the adversarial training mechanism. We use the multi-
scale PatchGAN [34] as the discriminator. The LSGAN loss

[20] is used to optimize the discriminator.We also use amask
color loss to penalize artifacts in the eye and mouth area. The
final loss is the sum of the terms:

L = LGAN + LVGG + Lwarp + 500 ∗ Lcolor (10)

4 Results

In this section, we demonstrate the superiority of ourmethod.
We also report on user studies that evaluate the quality at a
video level. Readers can refer to the supplemental videos to
evaluate the results presented in this section.

4.1 Evaluationmetrics

We evaluate our method on multiple metrics widely used in
previous works. Learned Perceptual Image Patch Similarity
(LPIPS) [43] is used to evaluate the perceptual similar-
ity between images. Cumulative Probability Blur Detection
(CPBD) [22] is used to evaluate the sharpness of generated
frames. L1 denotes the average L1 distance between the
pixel values (range of 0–255) of the generated and reference
images.When used to evaluate landmarks and poses, L1 rep-
resents the average L1 distance between generated and truth
values. We also use Average Keypoint Distance (AKD) to
evaluate the facial alignment in generated images.Weemploy
MediaPipe [19] to extract 68 keypoints from the generated
and reference images and subsequently calculate AKD val-
ues.We chooseCosine Similarity (CSIM) to evaluate identity
preservation. We use ArcFace [9] to extract identity embed-
ding of the source image and generated frames and calculate
the CSIM of embedding. Smoothness is used to assess the
smoothness of generated sequences, the same as the temporal
loss introduced in [31]. We choose LSE-D and LSE-C [24]
to assess lip synchronization. Lower values are preferable for
L1, Smoothness, LPIPS, AKD, and LSE-D metrics. As for
LSE-C, CSIM, and CPBD metrics, higher values are more
desirable.

4.2 Comparison to the state-of-the-art

Wecompare our systemwith several state-of-the-artmethods
(MakeItTalk [48], Audio2Head [33], AVCT [30], EAMM
[38], and SadTalker [44]) using their publicly available
checkpoints. For EAMM,we generate facial animations with
neutral emotions. The evaluation is performed on VoxCeleb
test set [21] and HDTF dataset [46]. Most videos in Vox-
Celeb have complex backgrounds and exaggerated poses and
expressions,which can be used to evaluate themodel’s ability
to process wild images. Videos in HDTF have clean back-
grounds, forward-facing faces, and high resolutions. They
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Table 1 Comparison to the state-of-the-art methods for the single image facial animation (MakeItTalk [48], Audio2Head [33], AVCT [30], EAMM
[38], and SadTalker [44]) on VoxCeleb [21] and HDTF dataset [46]

VoxCeleb HDTF

LSE-D↓ LSE-C↑ CSIM↑ CPBD↑ LSE-D↓ LSE-C↑ CSIM↑ CPBD↑
MakeItTalk (2020) 10.230 4.294 0.779 0.212 10.283 4.118 0.865 0.330

Audio2Head (2021) 8.681 5.891 0.402 0.149 7.786 6.684 0.645 0.265

AVCT (2022) 10.887 3.832 0.267 0.157 8.826 5.567 0.584 0.264

EAMM (2022) 9.443 4.908 0.420 0.130 9.921 3.893 0.554 0.179

SadTalker (2023) 8.321 6.476 0.643 0.231 8.325 6.143 0.780 0.334

Ours 8.196 6.935 0.863 0.294 8.486 5.771 0.926 0.348

Fig. 4 Comparison to state-of-the-art audio-based face generation methods. The top row presents source images and the actual lip shapes

are suitable for testing the clarity of generated videos. We
use LSE-D, LSE-C, CSIM, and CPBD evaluation metrics.

Table 1 shows that ourmethod achievesmuch better visual
quality and identity consistency according to CPBD and
CSIM. Despite the low resolution for VoxCeleb, our method
still produces high-sharpness results. For LSE-D and LSE-
C, we achieve optimal lip synchronization on the VoxCeleb
but not on the HDTF. In some cases, we have observed that
lip blurring can make it challenging to distinguish clearly
between some consecutive and similar pronunciations. This
might be a contributing factor to the relatively poorer syn-
chronization of our method on HDTF. Nonetheless, we have
still achieved comparable performance. Meanwhile, as men-
tioned in SadTalker [44], the lip synchronization metrics
may be too sensitive to audio, where the unnatural lip move-
ment may get a better score. Figure4 illustrates visual results
obtained by different methods. We give the truth frames

to visualize the lip synchronization. Our method has visual
quality and mouth shape similar to the original video. Other
methods are all struggling for identity preservation. Apart
fromSadTalker, thesemethods often produce distorted faces,
especially for faces from VoxCeleb. SadTalker struggles to
generate precise lip movements when using a source image
with an open mouth (See the third column in Fig. 4).

4.3 User studies

We conduct thoughtful user studies in this section. We gen-
erated a total of 10 videos for testing. These samples contain
almost equal genders with different poses and expressions
to evaluate the robustness. We use the binary comparison
method,where twovideoswith the same audio clip are shown
side by side [16]. Every participant is required to make 150
comparisons (10 audio clips×C2

6 comparisons). To avoid any
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Table 2 Results of the user studywherewe compare ourmethod against
state-of-the-art methods

Lip Video Overall
Synchronization Sharpness Naturalness

MakeItTalk 323 (32.3%) 409 (40.9%) 429 (42.9%)

Audio2Head 487 (48.7%) 358 (35.8%) 454 (45.4%)

AVCT 403 (40.3%) 464 (46.4%) 409 (40.9%)

EAMM 258 (25.8%) 156 (15.6%) 184 (18.4%)

SadTalker 731 (73.1%) 710 (71%) 699 (69.9%)

Ours 798 (79.8%) 903 (90.3%) 825 (82.5%)

Each row represents the number and the weight of votes for each metric

selection bias, the order (left/right) of all methods for com-
parison is random for each pair. We invited 20 participants
and let them choose the best method for lip synchronization,
video sharpness, and overall quality. All participants are stu-
dents majoring in computer science. Fourteen of them are
male. The average age of them is 24.95 (Std=3.90). They
were naive to the purposes of the experiment.

The results are presented in Table 2, where our method
receives the most votes across all metrics. SadTalker demon-
strates comparable performance in lip synchronization to
our method. Audio2Head exhibits poor lip synchronization,
inconsistent with Table 1. We think that the blurry and dis-
torted faces influence participants’ opinions. Our method
performs quite well regarding video sharpness and overall
naturalness. SadTalker occasionally produces background
artifacts during head movements, resulting in a decrease in
overall naturalness.

4.4 Expressionmanipulation evaluation

In addition to generating realistic facial animations, a stand-
out feature of our approach is the ability to manipulate facial
details and gaze. Figure5 illustrates the results of manipulat-
ing faces. As shown at the top of Fig. 5, our system achieves
stable and realistic rendering during blinking. In the middle
of Fig. 5, Column 2 shows expressions with neutral eye-
brows.Column3 illustrates expressionswith frowning,while
columns 4 and 5 show expressions with different eyebrow-
raising degrees. The results show that our system provides
accurate eyebrowcontrol. It still generates correct lipmotions
and temporally smooth renderings, even for extreme eyebrow
motions.

Figure 6 illustrates the results of gaze manipulation. We
also retrain the work of He et al. [14] (denoted as PRMGR)
as a baseline. As illustrated in Fig. 6, the eye patches re-
rendered by PRMGR are inconsistent with the source image,
resulting in noticeable seams on the face. The output could be
more accurate when the gaze shifts horizontally. Our results
accurately simulate the gaze directions subjectively, even
using the source images with head poses. It can be seen that

Fig. 5 The results of manipulating eyelids, eyebrows, and emotions.
The first column represents the source image. Columns 2 to 5 of the eye-
lid manipulation figure depict consecutive frames of blinking. Columns
2 to 5 of the eyebrowmanipulation figure showcase the same expression
with varying eyebrow states. Each column of the emotion manipulation
figure is the same frame with the same mouth shapes but different emo-
tions

other attributes like eyebrows, hair, and background are well
preserved in the manipulated images. Our results have per-
ceptual similarity and consistency to the source images.

4.5 Ablation

Exp Generator. To demonstrate the advantages of pre-
trained speech features, we compare Exp Generator trained
with andwithout pre-trainedAudioEncoderweights (denoted
as ’w/opre-trained embedding’).Wealso trainExpGenerator
using fixed Transformer encoder weights without fine-tuning
(denoted as ’w/o fine-tune’). We also explore whether the
FaceFormer decoder has advantages over the Transformer
decoder (denoted as ’w/ Transformer decoder’). The results
on the test set are presented in Table 3. Without pre-trained
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Fig. 6 The results of gaze manipulation. Each row shows the same expression with different gaze directions. Columns 1, 5, 6, and 10 show gaze
in the direction of extreme right, left, upward, and downward, respectively. The middle columns show the interpolated pupil position

Table 3 Ablation for architecture and training modalities in Exp Gen-
erator

L1↓ Smoothness↓
(×10−3) (×10−3)

w/o fine-tune 2.552 0.942

w/o pre-trained embedding 2.479 1.044

w/ Transformer decoder 2.679 0.892

Ours (fine-tune+FaceFormer) 2.453 0.686

Table 4 Ablation for architecture and loss design in Pose Generator

L1↓ Smoothness↓
Transformer E + Transformer D (L2) 8.431 1.499

Transformer E + Transformer D (P) 7.332 1.356

Transformer E + FaceFormer D (L2) 11.257 0.521

Transformer E + FaceFormer D (P) 13.631 0.493

Ours (L2) 6.858 0.760

Ours (P) 5.634 0.546

E means encoder; D means decoder; L2 means trained using L2 loss; P
means trained using probabilistic loss

weights and fine-tuning, we observe decreased accuracy
and smoothness for facial movements. They fail to produce
synchronized mouth movements, resulting in a noticeable
temporal jitter. Due to the superiority of Transformer archi-
tecture, ’w/ Transformer decoder’ provides nice smoothness.
However, it tends to generate the average values, making the
talking animation look mumbled.

Pose Generator. As shown in Table 4, we perform an abla-
tive study for Pose Generator by training and testing five

alternative variants: ’Transformer E + Transformer D (L2)’,
’TransformerE+TransformerD (P)’, ’TransformerE+Face-
Former D (L2)’, ’Transformer E + FaceFormer D (P)’, and
’Ours (L2)’. The results show that the variants produce more
temporal jitters or lower accuracy than our structure, sug-
gesting that Transformer and FaceFormer architectures may
not be suitable for our task. The variant ’Ours (L2)’ makes
the mapping become a regression problem. It struggles to
balance audio and history poses, resulting in minor motion
variations. This demonstrates that the probabilistic model is
better suited for generating audio-related head poses.

SFWNet.
As shown in Fig. 7, we compare different values of hyper-
parameters K in our method, specifically 6, 8, and 12, which
correspond to 30, 40, and 60 landmarks, respectively. As
we know, SFWNet learns facial deformation based on the
transformation between the source landmarks and the driv-
ing landmarks. The selected landmarks should represent key
facial motions like eye, lip, and cheek motions. The test
results are shown in Table 5. It shows thatmore or fewer land-
marks negatively impact the image quality and the expression
accuracy. We found that our approach exhibits superior pixel
stability. In the "K=6, 8, 12" settings, temporal jitter is
noticeable in the hair and background areas. This effect is
particularly pronounced in the ’K=6’ setting, resulting in dis-
torted faces.

We also evaluate the design of the loss functions. Table 5
demonstrates that LVGG plays amore significant role in train-
ing. Other loss functions focus on enhancing the renders for
facial details. Figure8 shows the rendering samples. We can
observe that the loss functions primarily affect the eye and
mouth rendering. ’w/o LVGG’ causes holes on the face. The
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Fig. 7 The selected landmarks
for different K in SFWNet
ablation. The landmark colors
represent their groups

Table 5 Ablation for hyper-parameter K , loss design, and Warp Mod-
ule structures in SFWNet

LPIPS (×10−1)↓ L1↓ AKD↓
K=6 1.232 12.107 1.937

K=8 1.221 11.769 1.882

K=12 1.210 11.791 1.824

w/o Lcolor (K=10) 1.210 11.926 1.914

w/o Lwarp (K=10) 1.249 12.043 1.906

w/o LGAN (K=10) 1.279 11.925 1.771

w/o LVGG (K=10) 2.374 18.408 3.180

w/o Sketch (K=10) 1.205 11.801 1.887

Ours (K=10) 1.201 11.689 1.709

rendering quality of the mouth area on ’w/o LGAN’ is notice-
ably poorer.

We compare our rendering with ’w/o Sketch’, which does
not incorporate the sketch of the driving landmarks in the
Warp Module. As seen in Table 5, our method yields bet-
ter results across all three metrics, with more pronounced
changes in the L1 and AKD. Figure9 demonstrates that our
approach produces accurate mouth shapes and realistic ren-
dering. Sometimes, ’w/o Sketch’ fails to close the mouth
fully or generates distorted lips.

4.6 Extensions

Using 3D landmarks as intermediate results allows expres-
sion manipulation, triggering several extensions. We can

use facial detectors (e.g., MediaPipe [19]) to obtain facial
landmarks from reference videos. The generated landmarks
serve as driving landmarks to achieve video-based expres-
sion transfer. Inspired by VideoReTalking [5], our method
can be used for emotional talking head generation based
on manipulable facial details. Figure5 shows the emotion
editing results. Positive emotions result in more pronounced
gestures and richer facial details. Users can creativelymanip-
ulate landmarks to generate multiple emotions.

4.7 Limitation

Although the proposed method can handle source images
in the wild, it may still exhibit noticeable artifacts in some
instances. Large pose changes may lead to distortion and
blurriness at the hair-background junction, as shown in
Fig. 10a. This could be attributed to the limited background
constraints in SFWNet. One way to solve this is to sepa-
rate the subject from the background using face parsing [8]
and generate them independently. Although qualitative and
quantitative experiments indicate that our method can gen-
erate sharp images, we still struggle to synthesize realistic
teeth in some cases. This limitation can be improved via the
blind face restoration networks [35], as shown in Fig. 10b.
Because the training data lacks well-organized emotional
talking videos, our emotion editing results are less expres-
sive than the state-of-the-art [6]. Fine-tuning on a specialized
emotional expression dataset [15] could be a solution.

Fig. 8 Ablation for loss design
in SFWNet. The red box
indicates the poor rendering
parts

123



Manitalk: manipulable talking head generation from single... 4923

Fig. 9 Ablation for Warp
Module structures in SFWNet.
’w/o Sketch’ means that the
model does not incorporate the
sketch of the driving landmarks
in the Warp Module

Fig. 10 Limitations. a The distortion caused by large pose changes;
b Left: The teeth rendering generated by our method. Middle: The
teeth rendering generated by our method + GFPGAN [35]. Right: The
zoomed mouth regions

5 Conclusion

This paper presents ManiTalk, the first manipulable audio-
driven talking head generation system to generate per-
sonalized talking styles. We propose Exp Generator and
Pose Generator to generate synchronized talking landmarks
and presentation-style head poses. Personalized expression
manipulation allows for manipulating facial details (eyelids
and eyebrows) independently. We add two additional pupil
landmarks to manipulate the gaze. We introduce SFWNet,
which learns coarse and dense motion fields to model the
relationships between landmarks and realistic renderings.We
provide additional shape constraints by inputting the sketch
of the driving landmarks to the Warp Module, enhancing the
face accuracy and realism. Experimental results show that the
proposedmethod canwork on subject images in thewild.Our
results not only preserve lip synchronization but also achieve
state-of-the-art performance in terms of identity preservation
and video quality. Furthermore, themanipulable face extends
the potential application ranges. We can generate emotional
talking videos and videos that talk to multiple targets with
just one source image.

In the future, we will add candidate images or phoneme-
related features as input to improve the quality of the
generated video. Additionally, we will work on a more

lightweight network for end-to-end facial generation. Gen-
erating emotional expressions that match speech is also one
of our future works.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-024-03490-
4.
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