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Abstract
Curve reconstruction is a fundamental task in many visual computing applications. In this paper, a data-driven approach
for curve reconstruction is proposed. We present an inception layered deep neural network structure, capable of learning
simultaneously the number of control points and their positions in order to reconstruct the curve. To train the network, a
large set of general synthetic data is generated. The reconstructed uniform B-spline closely approximates any arbitrary input
curve, with or without intersections. Because the network predicts the number of control points required for the B-spline
reconstruction, redundancy is reduced in the curve representation. We demonstrate our approach on various examples.

Keywords Machine learning · Curve reconstruction · Subdivision curves · B-splines

1 Introduction

In a typical industrial design modeling scenario, a real-world
model is produced and subsequently scanned and stored
digitally as point clouds. Techniques for reconstructingmath-
ematical curves and surfaces from the scanned data are then
applied to recover the geometric properties. What is referred
to as reverse engineering is employed extensively in the
design and manufacturing process and ensures a more effi-
cient and faster design phase [1].

Curve reconstruction, the derivation of an analytic expres-
sion for a smooth curve which closely approximates given
data points, is a key component in reverse engineering with
numerous applications in computer-aided design (CAD), vir-
tual reality and computer vision. A major concern in curve
reconstruction is focused both on accuracy control and data
reduction. Depending on applications, different types of
curves such as parametric curves, implicit curves and subdi-
vision curves are used for fitting. In this work, we reconstruct
subdivision curves [2, 3] which in the limit are equivalent to
uniform B-spline curves.

B-spline curves (1) are a standard curve representation in
CAD due to their flexibility, with widespread usage in a vari-
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ety of designfields.Adesignermodifies theB-spline curve by
means of control points. Considering that the reconstructed
curves enter a design pipeline, B-spline control points need to
be reduced. The reduction not only enables a sensible mod-
ification of the curve by a designer but also speeds up most
of downstream processes and leads to a decrease in storage
requirements [4].

The aim of this work is to derive a coarse control polygon
for a uniform B-spline which closely fits the data samples.

In this paper we explore a data-driven approach based
on Deep Neural Networks (DNN). DNNs are able to learn
features from input data without requiring any hand-crafted
feature extraction or human intervention [5] and are used for
a wide variety of applications to learn from data [6, 7]. By
leveraging DNNs, our proposed method aims to capitalize
on their ability to capture complex patterns and relation-
ships within geometric datasets, thereby facilitating robust
and accurate curve reconstruction.

The pipeline of the proposed method is depicted in Fig. 1:
The input of the proposed network is an arbitrary ordered
set of geometric data points. Note that our neural network
directly operates on point data without the need for comput-
ing intermediate features. The output of the network is the
number and positions of control points of a smooth B-spline
or subdivision curve which closely approximates the input
data.

The network was carefully crafted to include a number
of convolutional layers. By employing an inception module,
where convolutions are performed in parallel instead of in
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Fig. 1 Pipeline: The input of the neural network is point samples of
a planar curve. Via the encoder part, features are extracted from input
data and saved as a latent code. Then the features are aggregated by the
dense layer and reshaped to predict the (x, y) coordinates of control
points

sequence, we are able to achieve even higher accuracy in the
reconstruction.

To enable the DNN to adjust the number of control points
used in the curve reconstruction for each input data individ-
ually, we use a padding approach in the output layer. While
padding is frequently employed to add flexibility to the input
of a network [8], the authors are unaware of previous work
using this approach being employed to the output of a net-
work. Our work demonstrates that padding can be used to
add flexibility to the output.

The contributions outlined in this paper are:

• A large set of high-quality synthetic data is derived for
training. The data resemble real data and are general.
It includes data samples from curves which may have
intersections, are uniformly or nonuniformly sampled,
or may have different types of noise.

• We introduce a carefully crafted DNNwith layers of par-
allel convolutions, referred to as inception layers, which
considerably improve the accuracy of the reconstruction.

• Because the network predicts not only the position, but
also the appropriate number of control points to approx-
imate any input curve, the number of B-spline control
points is kept low.

The paper is structured as follows: Sect. 2 discusses works
related to the approach presented in this paper. The proposed
method, depicted in Fig. 1, is explained in detail in Sect. 3.
Section4 includes the evaluation of the proposed method-
ology and a comparison with other methods, followed by a
conclusion in Sect. 5.

2 Background

B-spline curve fitting and reconstruction are closely related
and solve common problems in many fields of research, and
numerous approaches have been put forward.

Reconstruction aims at finding a parameterized curveC(t)
which approximates given a number of ordered data points
di . The parametric curve is typically assumed to be aB-spline
curve

C(t) =
n∑

i=1

Ni,d(t)Pi , t ∈ [td , tn], (1)

where Ni,d are the B-spline function of degree d defined on
a knot sequence U = {t1, . . . , tn+d+1}. The B-spline curve
C approximates the control polygon given by n linearly con-
nected control points Pi . The knot sequence may be uniform
or nonuniform. The control points Pi and the knots t are the
design freedoms to satisfy approximation requirements.

Reconstructing B-splines from input data was first intro-
duced by de Boor and Rice [9], where given an initial set of
knots their position is optimized by means of least squares
approximation.

As it is usually not known in advance how many control
points are at least required to achieve a good reconstruction,
they extended their approach to variable knot vectors using
an iterative approach, where systematically new knots were
introduced in each iteration. They found that their approach
always led tomore knots than required [10]. Since their initial
work, a wide range of similar least squares approaches have
been put forward which typically suffer similar problems.

An important concern in B-spline curve fitting is to reduce
the number of knots and, correspondingly, the number of B-
spline control points while reconstructing at high accuracy.
Therefore, the data reduction often requires some iterative
process, where new control points are introduced in each
iteration [11–14]. This typically leads to B-spline curves
with more control points than required. Various solutions to
reducing the number of redundant control points have been
proposed [4, 11, 12]. Instead of locally optimizing each con-
trol point individually, a global approach to optimizing the
approximation has shown better results.

More recently various intelligent approaches have been
put forward in order to reconstruct a curve or surface, i.e.,
evolutionary algorithms [15], the particle swarm optimiza-
tion method [16–19] and machine learning [20–23].

A variety of neural networks have been devised to recon-
struct curves or surfaces from input data.

Laube et al. [23] proposed a data-driven approach to
approximate open B-spline curves. Two interdependent net-
works are used to learn parametric values and knot vectors.
Their approach requires segmenting the input curve into
smaller pieces.

A B-spline-based reconstruction technique on binary
images and point clouds was presented by Gao et al. [22].
They used a hierarchical recurrent NN for curve and control
point prediction and were able to detect multiple curves in
the image. To achieve the necessary accuracy, their learned
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predictions are post-processed using classical optimization
methods. In this paper, we aim to achieve high reconstruc-
tion accuracywithout any post-processing. Scholz and Jüttler
[24] introduce a deep residual network as ameans to acquire a
parameterization for approximating the input data pointswith
a polynomial curve. Tong et al. [25] introduce a novel func-
tion approximation method wherein the Taylor series serves
as the activation function within the NN for polynomial fit-
ting. Mandal and Uhlmann [26] propose a convolutional
neural network to fit a parametric curve onto a biological
object contour. The input of the network is a bioimage and
the network should learn the distribution of control points
to capture the boundary of the existing object in input data.
While their approach reconstructs the simple curves from
input data, we found that it may fail to accurately reconstruct
more complex curves.

Approaches often aim at finding optimal knots placements
for a given B-spline, where support vector machine (SVM)
and DNNs are trained to predict knots for given discrete
points [20, 22, 23]. Again, an iterative approach is chosen,
where new points are introduced in each step.

More recently an unsupervised DNN has been proposed
to optimize the knots of a fixed-size knot vector [21]. While
their approach is promising as it liberates from having to
generate large amounts of synthetic data, their DNN-Solvers
can give knot positions only for a fixed number of knots and
thus, for a given number of control points to improve the fit
of the B-spline curve.

In literature, B-spline reconstruction focuses on improv-
ing the approximation by adjusting knot placement. How-
ever, in a design context, nonuniformity is often only applied
in specific cases, e.g., where the control polygon should be
interpolated. For a given knot sequence and degree, the curve
is fully defined by the position of its control points Pi .

If a uniform parameterization is chosen, the curve corre-
sponds to a subdivision curve [3]. Chaikin [2] first introduced
a fast recursive algorithm, referred to as subdivision, for gen-
erating quadratic B-spline curves on uniform knot vectors.
Subdivision curves have since been generalized to various
degrees.

If the knot vector is fixed and uniform, the derivation of the
curve using the control points may be through the analytic
expression for a B-spline curve (1) or may be recursively
derived through the subdivision.

Most approaches optimize either a fixed set of knots [21]
and control points or employ an iterative approach, where
new control points are introduced in each iteration [20, 22] to
derive the necessary control points. Both may lead to redun-
dancy in the curve representation by employing more than
the required number of control points in the reconstruction.

Instead, we introduce a data-driven approach where the
knot vector is fixed. Because we aim to reconstruct subdi-
vision curves, we assumed the knot vector to be uniform.

The number of design freedoms, in form of control points,
required for a good approximation is derived by the system
together with the positions of these control points.

The solution is a sparse reconstruction of a single curve
which can be represented using 4–10 control points. We
demonstrate our algorithm by applying it to several exam-
ples of open curves, which may intersect.

Although examples are presented for quadratic and cubic
2D curves, our method can be extended in a straightforward
manner to fit data points by a B-spline curve in higher dimen-
sions at arbitrary degrees.

3 Methodology

We expect that reconstructed curves enter a design pipeline.
For the designer to effectively manipulate the reconstructed
B-spline curve, the number of control points Pi should be low.
This requires careful positioning of the few available degrees
of freedom in order to achieve an accurate reconstruction.

Our DNN is trained to learn the relationship between the
input point samples and the uniform B-spline control point
positions Pi . The network learns not only the order and posi-
tion, but also the number of control points Pi required to
define a B-spline curve that fits a smooth curve to a given set
of ordered data points.

Using adata-driven approach to reconstruct curves involves
some challenges which have been addressed in this paper:

• Training the DNN requires a large training dataset of
points sampled from a curve together with the control
points. Real data are highly dependent of the application
and are generally unavailable.

• The output dimension of a DNN is fixed, whereas for
reconstruction, we seek to avoid superfluous control
points which are not required for a good reconstruction.

In this paper, all the above-mentioned challenges have
been addressed.

Because large amounts of real data are typically unavail-
able for training, synthetic data were derived. Any network
is very sensitive to its training data. Creating good general
synthetic data which shares characteristics with real data is
challenging. We will explain the careful derivation of the
synthetic dataset in Sect. 3.1.

We address the fixed size output problem using a padding
approach [27]. Using the proposed method, our network pro-
vides 4-10 control points, depending on the number of control
points required to reconstruct a smooth curve from a given
input data. The DNN adapts the size of the output vector
automatically, providing a solution at a dimension required to
ensure an accurate reconstruction. Avoiding redundant con-
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trol points ensures that a designer can manipulate the curve
after reconstruction sensibly and in a controlled manner.

To increase the accuracy of the data-driven reconstruction,
we carefully designed a suitableDNN.By utilizing the incep-
tion module [28] within its architecture, the network is able
to perform convolutional operations using filters of varying
sizes concurrently, as opposed to the traditional sequential
approach. This enables the network to capture multi-scale
features within a single layer. While including the incep-
tion module increases the number of parameters in our NN
architecture, this architecture represents a significant break-
through in terms of efficiency. We believe that the inception
module’s ability to capture details at different scales as well
as its role in reusing features effectively is key to this effi-
ciency.

Two important components in any deep learning-based
approach are an appropriate network architecture and a suffi-
ciently large representative dataset. In the following sections,
the above-mentioned components will be explained in detail.

3.1 Dataset generation

Since there is no publicly available dataset for this task, we
generate a synthetic dataset. To derive good general synthetic
data is challenging because care has to be taken to avoid
a clever Hans effect [29], where correspondences between
synthetic data and the mathematical expression are learned
which are not in fact present in real-world data.

To create general B-spline curves, whichmay be observed
in a wide range of applications in visual computing, we used
two different methods for control points generation. In the
first method, a set of random control points within a circle
of radius R is generated. To generate n control points, Pi ,
the circle is divided into n sectors, S j , where j ∈ 1, n, each
a random angle α j wide. For each sector, we derive two
random numbers: a random radius r j ∈ (0, R) and a random
angle β j ∈ (0, α j ) to derive the Cartesian coordinates (x, y)
of a control point. Using a circle for the derivation of the
synthetic data is ideal to derive closed curves, but here it is
also employed to derive open curves. In the second method,
the 2D plane is divided into uniform sections based on the
number of control points vertically and in each section, a
random point is generated.

Figure2 depicts two examples of control point generation
with two different approaches.

Using the derived control points, we generate open or
closed control polygons used to derive uniform B-splines.
To derive closed curves we assume the first and last control
points coincide. For open curves, we do not interpolate end
points of the control polygon, consistent with a B-spline with
a uniform knot vector. The control polygons may be inter-
secting. The connectivity between control points is implicit

Fig. 2 Generating synthetic data. Top left: The circle is divided into
seven nonuniform sectors S j , where j ∈ (1, 7) starts from angle zero
(red line). α j is the angle of each circle sector S j . In each sector, a
random angle (β j ) and radius are generated to determine the position
of control points (blue). The top right shows dividing the 2D plane into
uniformsections vertically andgenerating randomcontrol points in each
section. The derived control polygons (blue) and their corresponding
open cubic B-spline curves (pink) are shown below

by the order of derivation. To allow for intersection in the
curve, we may randomly exchange the order of derivation.

We generate examples of cubic planar curves. However,
the approach presented in this paper may be adapted to gen-
erate and also learn the reconstruction of arbitrary degree
B-spline curves of higher dimensions by adjusting the deriva-
tion of the synthetic training data accordingly.

Input data are derived by sampling of the generated B-
spline curves to provide the (x, y) coordinates of 161 data
points, such that the input to the network is a vector of
dimension (161 × 2). To create a general dataset, we apply
equidistant and nonuniform sampling for some curves in the
dataset. In addition, some sample data are perturbed by uni-
form or Gaussian noise.

To train the network presented in this paper, we generated
a synthetic dataset of 490000 planar uniform cubic B-spline
curves with different number of control points (from 4 to 10).
Seventy percent of the dataset is used as training data and the
rest for evaluation.

3.2 Neural networkmodel

The structure of the NN architecture is crucial for achieving
a good performance in a data-driven approach. We carefully
examined various architectures for our task.

Using a fully connected network, where each neuron in
one layer is connected to every neuron in the next layer,
resulted in a high reconstruction loss. Increasing the num-
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Fig. 3 Different networks reconstruct a 2D B-spline curve from input
data. a Fully connected network, b CNN, c CNN with two inception
modules, dCNNwith four inceptionmodules. Details to these networks
are found in the text. The original curve from which the sample points
have been taken and the corresponding control polygon are depicted in
blue and the network’s prediction is shown in pink

ber of layers and neurons in each layer does not improve
the reconstruction. While employing this network in the
decoding part works well, see e.g., by Park et al. [30], these
networks are not practically suited to extracting relevant fea-
tures from spatially correlated data such as curves. Figure3a
shows the reconstruction obtained employing a fully con-
nected network.

Utilizing several convolutional layers in the network,
essential patterns and features are extracted from the input
data and the extracted features are passed to the next layers as
feature maps. To accelerate the learning process, batch nor-
malization [31] is added to adjust the feature maps followed
by a pooling layer to reduce the dimensions of the feature
maps. We use max pooling which takes the maximum value
of patches in a feature map. Figure3b shows the reconstruc-
tion obtained employing a convolutional neural networkwith
three convolutional layers followed by batch normalization
and max pooling layers. Mandal and Uhlman [26] applied
CNN on biological images. While CNN is suitable for their
type of data which only contained simple shapes, it did not
successfully reconstruct complex curves in our experiments.

Although convolutional layers improve the performance
of the network, the error of the reconstruction remains high.
Tuning hyper-parameters such as the number and size of ker-
nels in convolutional layers, as well as increasing the number
of epochs, testing different batch sizes and learning rates, did
not significantly impact the network’s performance.

Adding an inception module [28] improves the perfor-
mance of the network considerably. This module defines
multiple convolutional filters of different sizes in parallel to
enable the network to learn spatial features at different scales.

The extracted multi-level features are then concatenated and
fed to the next layer.

We experimented with different numbers of inception
modules. An example of a curve reconstruction using a NN
with two inception modules is shown in Fig. 3c. The final
architecture shown in Fig. 4 gave consistently best results
obtained using four inception modules, see e.g., Fig. 3d.

In Table 1, the average reconstruction error using the
above-mentioned networks on 2000 test data sampled from
B-spline curves is illustrated.

One fully connected (FC) layer with 20 neurons is defined
at the end of the network to aggregate the extracted features
and do the prediction. To get the (x, y) coordinates of control
points, the output of the FC layer is reshaped to 10×2, thus
providing a maximum of ten control points for a given input
data.

Since we want to predict a flexible number of control
points, the output size of the network needs to be variable.
In order to learn variable control points, padding is added
to the output of the network. Padding is a special form of
masking where the masked steps are at the start or the end of
a sequence to maintain the dimension [27]. The initial part of
this array corresponds to the coordinates of the control points
required to derive a curve which fits the input data closely,
while the remaining entries in the output vector remain zero.
In order to generate the predicted curve based on the output
of our neural network, we ignore zero values and generate
the curve with predicted control points.

ReLU is added as an activation function to the convolu-
tional layers. The number of convolutional kernels is 64 in
the first inception module and 256 in the rest which are deter-
mined via trial and error. Adam [32] with a 0.001 learning
rate is used as an optimizer. This network is trained for 4000
epochs. This many epochs are required for learning, because
we have a complex NN system and much data, but are low
enough to prevent overfitting.

The implementation is based onTensorFlow and all exper-
iments are run on a Linuxmachinewith aGeForce RTX4090
GPU. The number of trainable parameters of InceptCurves is
about 6.5 million; thus, it needs approximately 14 GB mem-
ory for a batch size of 512 in our system.

3.3 Loss function

During the training phase, the weights are adjusted through
gradient descent on a loss function that evaluates the DNN’s
performance.

We have experimented with different types of loss func-
tions to train the network. Examples of the reconstruction
for networks trained with different loss functions are shown
in Fig. 5, with the complexity of the loss function increasing
from left to right: the average maximum Euclidean distance
between the corresponding control points of the target and
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Fig. 4 The architecture of the network employed in this paper. The first
number in each convolutional layer shows the number of filters and the
second one is the size of the filter. We used four inception modules

and in each, the number of filters is specified via n since we use differ-
ent numbers in each module. The output of the network is reshaped to
(10×2) to predict the coordinates of control points

Table 1 Table shows a comparison of the reconstruction error, mea-
sured as Chamfer distance and mean squared error between the original
input curve and its learned reconstruction, using four different networks
as described in the paper. The best results are achieved using four incep-
tion modules within the network

Network Average CD Average MSE

Fully connected network 4.456 6.268

Convolutional network 1.181 3.231

With 2 inception modules 0.329 1.165

InceptCurves 0.103 0.382

predicted curves, the mean squared error between control
points of the target and the predicted B-spline, and the mean
squared error between point samples along the target and the
predicted curve. The network took considerably longer to be
trainedwhen comparing point samples along the curve (Fig. 5
on the right) and we did not observe a significant improve-

ment in the accuracy achieved when comparing the B-spline
curves instead of the control points. Therefore, mean squared
error is selected as a loss function to compare the target and
predicted control points. The loss is computed as follows:

Loss(Pi , P̂i ) = 1

n

n∑

i=1

(Pi − P̂i )
2 (2)

where Pi are the target control points, P̂i are the predicted
control points, and n is the number of control points.

4 Results

To test the network’s performance, a test set of 2000 open
cubic curves is generated. We apply different sampling (uni-
form and nonuniform) and add noise to this set separately to
analyze the performance of our inception network. Gaussian

Fig. 5 The data-driven curve reconstruction employed on the same
point samples predicted by NN using with three different loss func-
tions. The target control points and corresponding quadratic B-spline
curve are visualized in blue, while the predicted control points and
corresponding curve are depicted in pink. Left: The network with max-

imum Euclidean distance loss function. Middle: the evaluation of the
network with control points comparison using mean squared error is
displayed. Right: the evaluation of the network with curve comparison
loss function is shown
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Fig. 6 The chart shows the averageChamfer distance between the target
and predicted curves while feeding different noise or sampling methods
to input curves

noise with four distinct standard deviations of 0.1, 0.5, 1.0
and 2.0 and Uniform noise with 0.5 and 1 maximum devi-
ation are added to this test set separately. To compare the
difference between target and predicted curve, we use the
Chamfer distance [33] and MSE, since these are the error

measures most typically used in curve reconstruction. As
shown in Fig. 6, the network has the lowest error when fit-
ting curves to equidistant samples. One reason is that there
are more equidistributed samples in the training set. If the
data are subject to noise or changing the sampling method,
the accuracyof the reconstruction decreases.As expected, the
more noise the larger the error of the reconstruction. How-
ever, even in this case, the overall shape of the curve was
always captured.

Examples of predictions made by the inception network
are depicted in Fig. 7. The last example (bottom right corner)
is a nonparametric curve, f2(t) = 1

3e
(− 81

4 (t − 0.5)2
)
. Our

network reconstructs this curve with a B-spline curve with 8
control points. The same example was used by Park et al. [4].
In their approach, they used 30 control points. In this work
we are aiming at curve reconstruction which is a lot sparser
than previous works.

Note that no post-processes have been applied to optimize
the output of our neural network as in [22]. The network can
handle curves with and without intersections. It can recon-
struct the overall shape and recover high curvature features
well (Fig. 8).

Fig. 7 Nine examples of InceptCurves reconstructions are shown. The
target curves and their control polygon are shown in blue color, and the
predicted control points and the corresponding smooth B-spline curve

are in pink. The last example (bottom right corner) is a nonparametric
curve which has been reconstructed as a B-spline curve using 8 control
points, much sparser than previous work, e.g., [4]
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(a) Least squares fitting with 20 CPs. (b) Least squares fitting with 7 CPs. (c) InceptCurves with 7 CPs.

Fig. 8 The left figure shows the least square curve fitting with 20 control points. Fitting a curve with seven control points using the least square
method is depicted in the middle picture. Fitting automatically a curve with seven control points using InceptCurves is shown in the right picture

The InceptCurves can not only reconstruct smooth curves
from data sampled nonuniformly from curves with and with-
out intersections but also noisy data. Examples of uniform
B-splines fitted to noisy and nonuniform data are shown in
Fig. 9.

We find that in general, open curves are reconstructed at
higher accuracy than closed curves. We expect this since in
a closed curve the start and end control points are not readily
defined as in open curves.

One of the standard techniques for curve fitting is based on
the least squares approach. InFig. 8,weprovide a comparison
between InceptCurves and the least squares approach on an
example curve.

Note that least squares can also achieve a high accuracy,
but only when many more control points are fitted. To show
this, compare InceptCurves to least squares in Fig. 8, where
we see that InceptCurves approximates the curve with 7 con-
trol points, which is almost as good as the approximation of
least squares with 20 control points. A comparison between
our approach and the least squares method on several non-
parametric curves using 10 control points is provided inTable
2. InceptCurves achieves a more accurate reconstruction of
these nonparametric curves. It is able to capture the overall
shape and reconstruct the regions with high curvature more
precisely. The reconstruction of these nonparametric curves
using InceptCurves is depicted in Fig. 10.

There aremore advanced techniques of curve fitting based
on stochastic optimization approaches such as the genetic
algorithms and particle swarm [18, 34]. However, these
methods suffer from several drawbacks compared to our
approach. First, they typically need a proper initialization
for the method to converge to a global optimum. Otherwise,
the solution can reach only a local optimum which is unde-
sirable. Such an initialization would need a knowledge of
the shape of the curve which is not needed in our method.
Second, the number of control points in these methods is
often not easily adjustable. In contrast, our method achieves
a low approximation error with a very few number of control
points as presented in Table 2. Finally, stochastic optimiza-
tion methods are slow in producing the approximated curve

Fig. 9 In the first row, two examples of noisy curves are fitted with
cubic B-spline curves with 6 and 10 number of control points. The
noisy curves are depicted in blue and the fitted B-spline curve is shown
in pink. In the second row, two nonuniform curves are fitted with cubic
B-splines with 7 and 6 number of control points. The nonuniform curve
is depicted in blue and the fitted B-spline curve is in pink

Table 2 The mean squared error between target and predicted curves
using least squares and InceptCurves. All curves are approximated by
10 control points. The errors are normalized individually via dividing it
by the diagonal length of the bounding box covering all data points of
target and predicted curves. Examples of InceptCurves reconstruction
of these curves are shown in Fig. 10

Curve Formula Least squares InceptCurves

f1(x) = 10x
1+100x2

9.7 × 10−2 6.09 × 10−2

f2(x) = 100
e|10x−5| + (10x−5)5

500 1.5 × 10−1 9.9 × 10−2

f3(x) = sin x + 2e−30x2 9.7 × 10−2 1.9 × 10−2

f4(x) = sin 2x + 2e−36x2 + 2 1.2 × 10−1 4.9 × 10−2

(in the order of hundreds of seconds) due to their iterative
nature, whereas our method produces the curve very fast at
run time (in the order of a few seconds) since the forward
pass of the neural network only uses basic operations.

Note that InceptCurves can predict the number and posi-
tion of control points by training on samples from arbitrary
curves, which may be parametric and nonparametric curves,
noisy, and with different sampling densities. This shows that
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(a) f1(x) (b) f2(x)

(c) f3(x) (d) f4(x)

Fig. 10 B-spline open curve reconstruction using InceptCurves on
some analytic curves, as listed in Table 2

it can be applied to various taskswithout a restriction on these
modalities.

A limitation of our network is that, like other NNs [20], it
requires the input samples to be of a fixed size. InceptCurves
was applied to the reconstruction of planar cubic B-spline
curves with a 161×2-sized input. To handle this restriction,
any arbitrary curve should be up/down-sampled in order to
enter our pipeline. An example of uniform downs-sampling
by selecting points at regular intervals along the curve is illus-
trated in Fig. 11. Feature-preserving down-samplingwill lead
to nonuniform sample distributions which can also be recon-
structed. It will depend on the application which approach
leads to better results.

The InceptCurves is easily extendable to handle 3D curves
of different degrees and larger or lower numbers of samples.
An example of an InceptCurves reconstruction of 3D cubic
B-spline curves is depicted in Fig. 12.

5 Conclusion

In this work, we introduced a data-driven approach to find
the positions of a coarse set of control points for a uniformB-

Fig. 12 3Dcurve reconstructionusing InceptCurves. Theoriginal curve
and control points are depicted in blue. Control points prediction and
its corresponding B-spline curve are shown in pink

spline curve or subdivision curve which closely fits the input
data. The approach, called InceptCurves, is based on a neural
network with inception modules that is able to reconstruct
such curves from input sample datawith a very fewnumber of
control points. The coarseness of the control polygon enables
the reconstructed curve to directly enter a design pipeline.

To train the network we generate a large set of synthetic
data which is generic and resembles the data observed in a
wide range of visual computing applications. By adding flex-
ibility to the output, the inception network is able to learn the
number and position of control points concurrently to derive
a smooth curve of the given input, thus avoiding redundancy
in the reconstructed curve.

This method is fast. Once the network is trained, a recon-
struction takes few seconds. It requires no initialization or
pre-processing and none of the results shown have been post-
processed. Post-processing, as employed in previous work
[22] to achieve even higher accuracy is always an option.
We compared our method to the classic method based on
least squares and showed that it can achieve much lower fit-
ting mean squared errors for fewer control points. Although
results have been presented for the reconstruction of cubic 2D
B-spline or subdivision curves, InceptCurves canbe extended

Fig. 11 The left figure illustrates a 2D curve of size 300 × 2. The middle picture shows the uniform down-sampled version of the original curve.
The prediction of InceptCurves is depicted in pink, while the original curve is depicted in blue in the right figure
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in a straightforward manner to fit data points by any B-spline
or subdivision curves.
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