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Abstract
Feature fusion module is an essential component of real-time semantic segmentation networks to bridge the semantic gap
among different feature layers. However, many networks are inefficient in multi-level feature fusion. In this paper, we
propose a simple yet effective decoder that consists of a series of multi-level attention feature fusion modules (MLA-FFMs)
aimed at fusing multi-level features in a top-down manner. Specifically, MLA-FFM is a lightweight attention-based module.
Therefore, it can not only efficiently fuse features to bridge the semantic gap at different levels, but also be applied to real-
time segmentation tasks. In addition, to solve the problem of low accuracy of existing real-time segmentation methods at
semantic boundaries, we propose a semantic boundary supervision module (BSM) to improve the accuracy by supervising the
prediction of semantic boundaries. Extensive experiments demonstrate that our network achieves a state-of-the-art trade-off
between segmentation accuracy and inference speed on both Cityscapes and CamVid datasets. On a single NVIDIA GeForce
1080Ti GPU, our model achieves 77.4% mIoU with a speed of 97.5 FPS on the Cityscapes test dataset, and 74% mIoU with
a speed of 156.6 FPS on the CamVid test dataset, which is superior to most state-of-the-art real-time methods.

Keywords Real-time semantic segmentation · Multi-level feature fusion · Attention mechanism · Encoder–decoder
architecture · Boundary supervision

1 Introduction

Semantic segmentation is a fundamental task in computer
vision that aims to precisely predict the label of each pixel
in an image. It has been widely applied in many fields,
such as autonomous driving, medical image segmentation,
video surveillance, and more. As the demand for mobile
device deployment grows, real-time semantic segmentation
has become a hot research field in recent years (Fig. 1).
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Real-time semantic segmentation is a challenging task that
requires considering both segmentation accuracy and infer-
ence speed. To balance both accuracy and speed, MobileNet
[1] reduces computation by using depthwise separable con-
volutions. BiSeNet [2, 3] proposes a two-pathway architec-
ture to capture spatial and semantic information separately.
STDC [4] designs a lightweight backbone and proposes a
detail aggregation module to preserve the spatial details in
low-level layers. Despite the development and impressive
performance of real-time semantic segmentation driven by
these methods, it still faces the following challenges:

1) Most of methods are inefficient in multi-level fea-
ture fusion. The semantic gap is common among different
levels of features. Simple feature fusion methods, such as
element-wise addition or channel-wise concatenation oper-
ation, require less computation, but they are not capable of
effectively bridging the semantic gap, leading to suboptimal
segmentation performance. Some fusion methods employ-
ing attention mechanisms, such as [2, 5], unilaterally utilize
spatial or channel context information to generate attention
weights, ignoring the effectiveness improvement brought by
their joint generation. Moreover, sophisticated feature fusion
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Fig. 1 The comparison of speed–accuracy performance on the
Cityscapes test set. Red dots indicate our methods, while blue dots
represent othermethods.Notably, our proposedZMNet achieves a state-
of-the-art trade-off between segmentation accuracy and inference speed

methods [6, 7] can effectively bridge the semantic gap, but
they come with high computational costs and are difficult
to optimize, rendering them unsuitable for deployment on
mobile devices.

2) Most semantic boundary optimizations require addi-
tional inference overhead. Semantic boundaries are crucial
for segmentation accuracy, and further optimizing semantic
boundary prediction can enhance segmentation performance.
However, current real-time semantic segmentation methods
[2, 3, 8–10] usually optimize semantic boundary prediction
by adding extra learnable modules or branches, undoubtedly
leading to additional training costs and inference overhead.

Inspired by the above observations, we propose a novel
real-time semantic segmentation network, ZMNet, that bal-
ances accuracy and speed by using a lightweight decoder
and semantic boundary supervision module. ZMNet adopts
an encoder–decoder structure. In the encoding stage, differ-
ent levels of convolutional blocks generate feature maps of
different scales. Specifically, shallow feature maps contain
more spatial detail information while deep feature maps con-
tain more semantic information. In the decoding stage, we
propose a new feature fusion module to fuse deep and shal-
low features in a top-down manner with multi-dimensional
contextual information of input features. In addition, the
semantic boundaries are refined further to improve accuracy.
These two processes in the decoding stage are implemented
by twomodules: themulti-level attention feature fusionmod-
ule (MLA-FFM) and the semantic boundary supervision
module (BSM).

Our main contributions can be summarized as follows:

• Wepropose a lightweightmulti-level feature fusionmod-
ule called MLA-FFM, which is the critical component of

our decoder. This module can bridge the semantic gap
and fuse multi-level features in an effective and efficient
way.

• We propose a semantic boundary supervision module
called BSM, which aims to improve the accuracy of
semantic boundaries without increasing the computa-
tional cost of the inference stage.

• Extensive experiments demonstrate that ZMNet achieves
a state-of-the-art trade-off between accuracy and speed
on both Cityscapes and CamVid datasets. More specif-
ically, on one NVIDIA GTX 1080Ti card, ZMNet
achieves 77.4%mIoU onCityscapes test set at 97.5FPS,
and 74% mIoU on CamVid test set at 156.6 FPS.

2 Related work

Real-time Semantic Segmentation. With the increasing
demands for mobile device deployment, real-time semantic
segmentation has been an active research area in com-
puter vision for the past few years, with significant progress
achieved in terms of accuracy and speed. So far, a lot of
deep convolutional neural network-basedmethods have been
proposed, and have made great progress in the semantic seg-
mentation of street scenes. MobileNet [1], ShuffleNet [11],
and STDC [4] propose a lightweight and effective backbone
to reduce parameters and computation of models. BiSeNet
[2, 3] proposes a two-pathway architecture which a context
path for high-level context information and a spatial path
as a supplement to strengthen spatial information. Similarly,
BFMNet [10] adopts a bilateral network structure to sep-
arately encode semantic feature information and detailed
feature information, and introduces the attention enhance-
ment fusion module (AEFM) to promote bilateral feature
fusion. Fast-SCNN[12] proposes shallow learning to a down-
sample module that contains three layers using stride 2 for
fast and efficient multi-branch low-level feature extraction.
GDN [13] proposes a guided down-sampling method that
decomposes the original image into a set of compressed
images, reducing the size of feature maps while retaining
most of the spatial information of the original image, thus
greatly reducing computational costs. DDRNet [14] main-
tains high-resolution representations and harvests contextual
information simultaneously with a dual-resolution network
structure and a deep aggregation pyramid pooling module
(DAPPM). Method [15] proposes token pyramid module
for processing high-resolution images to quickly produce
a local feature pyramid. SFANet [16] proposes a Stage-
aware Feature Alignment module (SFA) to efficiently align
and aggregate two adjacent levels of feature maps. Method
[17] develops a lattice enhanced residual block (LERB) to
address the issue of inferior feature extraction capability of
the lightweight backbone network, and proposes a feature
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transformation block (FTB) that mitigates the problem of
feature interference between different layers at a lower com-
putational cost. Moreover, image segmentation under rain or
fog conditions is very practical in real application, especially
in real-time scenario [18–20].

Attention mechanism. The key concept of attention
mechanism is to enhance feature representation and improve
network performance by telling the network “what” and
“where” to focus on.Attentionmechanismhas achieved great
success and been widely applied in neural language process-
ing tasks due to its high efficiency and simplicity. In recent
years, it has also been used in the computer vision field.
Wang et al. [21] bridge self-attention mechanism and non-
local operators for capturing long-range dependencies with
deep neural networks. Method [22] exploits the relation-
ships between different channels by channel attention. Go
further, BAM [23] and CBAM [24] introduce spatial atten-
tion, and combine it with channel attention to improve the
representation power of CNNs. The ResNeSt [25] proposes
a split-attention block that can perform feature map attention
across different feature map groups. SENet [26] strength-
ens the spatial information representation by enhancing the
information correlation between feature maps of different
resolutions through an attention mechanism. Method [27]
proposes sparse attention module (SAM) and class attention
module (CAM) to optimize the computational cost of self-
attention.

Feature FusionModule. Feature fusionmodule is widely
used in encoder–decoder structure networks. As the network
layers deepen, the semantic gap between shallow features and
deep features also increases: deep features contain high-level
semantic information with low resolution, while shallow fea-
tures contain high-resolution spatial information. Although
traditional feature fusionmethods such as element-wise addi-
tion or channel-wise concatenation can effectively reduce
computational and parameter complexity, they may result in
poor fusion performance. To better fuse features of different
levels, BiSeNet [2] proposes a feature fusion module (FFM)
to fuse the output features of the spatial path and context path
to make the final prediction. SFNet [28] proposes a novel
flow-based align module (FAM) to promote broadcasting
high-level features to high-resolution features. DFANet [29]
proposes sub-network aggregation and sub-stage aggrega-
tionmodules to obtain sufficient receptive fields and enhance
the model learning ability. Dai et al. [5] propose an atten-
tional feature fusion (AFF) module, which fuses features
of inconsistent semantics and scales by utilizing multi-scale
contextual information along the channel dimension. In this
paper, we proposemulti-level feature fusionmodules (MLA-
FFM), which fuse features of different levels by utilizing
multi-dimensional contextual information fromdifferent lev-
els of features.

3 Proposedmethod

In this section,we present our proposedmethods in detail.We
first introduce the overall architecture of ZMNet in Sect. 3.1.
Then, we present MLA-FFM in Sect. 3.2, which is used to
fuse features fromadjacent levels. Finally,we introduceBSM
in Sect. 3.3, which is used to optimize the semantic boundary
segmentation.

3.1 Network architecture

As shown in Fig. 2, the architecture of ZMNet follows the
encoder–decoder paradigm. The backbone of encoder can be
any computationally efficient CNN architecture. We choose
STDC [4] as the backbone because of its outstanding per-
formance in real-time semantic segmentation. The decoder
is composed of a sequence of MLA-FFMs that integrate fea-
tures in a top-down manner. To enhance the segmentation
accuracy, we incorporate BSM as a supervision signal to
guide the learning of semantic boundary results during train-
ing. The overall process is as follows:

Firstly, as illustrated in Fig. 2a, the encoder generates a
series of multi-level feature maps, denoted as {x1, . . . , x5}.
It should be noted that during the decoding stage, involving x1
in feature fusion would result in a significant computational
burden due to its large spatial size, and the abundant spatial
information from shallow feature map may hinder feature
aggregation [30]. Therefore, in the decoding stage, we only
utilize x2, x3, x4, and x5 for feature fusion.

Secondly, as shown in Fig. 2b, to integrate spatial details
of shallow features during the upsampling process, the
decoder utilizes lateral connections to perform top-down fea-
ture fusion with MLA-FFMs. To bridge the semantic gap,
MLA-FFM exploits input feature maps’ multi-dimensional
contextual information to generate a soft attention map, then
fuses inputs in a soft selectionmanner. Thedecoder ofZMNet
comprises three decoding stages, each of which utilizes
MLA-FFM to fuse feature maps from different layers and
generate corresponding fused feature map, i.e., {x6, x7, x8}.
We denote the process of MLA-FFM as F(·, ·):

x6 = F(x4, x5)

x7 = F(x3, x6)

x8 = F(x2, x7)

(1)

In the training phase, each MLA-FFM is followed by a
segmentation head (SegHead) and an upsampling operation
to produce segmentation prediction. All segmentation pre-
dictions are supervised by the ground-truth semantic labels.
In this paper, we adopt cross-entropy loss with online hard
example mining (OHEM) [31] to optimize the models. The
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Fig. 2 The architecture overview of the ZMNet. “MLA-FFM” denotes the multi-level feature fusion module, and “BSM” denotes the semantic
boundary supervision module

Fig. 3 The components of a SegHead and bAttnHead. “CBR” denotes
the convolution with batch normalization (BN) and ReLU

joint segmentation loss ls is calculated as follows:

predi = Iu(Si (xi ))

ls =
8∑

i=6

Ls(predi , gt)
(2)

where xi denotes the output feature map at the i-th stage,
and predi ∈ R

N×H×W is the corresponding segmentation
prediction probabilitymap,where N is the number of classes.
Si (·) denotes the i-th SegHead operation, and its structure is
illustrated in Fig. 3a. Note that S6(·) and S7(·) are auxiliary
SegHeads intended to enhance feature representation during
training and they are discarded in the inference phase. Iu(·)
denotes the bilinear upsampling operation. gt ∈ R

1×H×W

denotes the ground-truth semantic labels. Ls(·) denotes the
OHEM [31].

Thirdly, as shown in Fig. 2d, to obtain more accurate
semantic boundaries, we use BSM to derive the seman-
tic boundary ground-truth gtb and the semantic boundary
probability map predb from the ground-truth gt and the
segmentation prediction probability map pred7 of the 7-th

stage. As the pixels on the semantic boundary represent hard
samples due to their relatively small proportion compared to
non-semantic boundary pixels, we utilize focal loss [32] to
increase theweight of hard samples and optimize themodel’s
learning of semantic boundaries. Notably, BSM is a module
designed to guide the learning of semantic boundary predic-
tion during training and is discarded in the inference phase.
The above procedure can be formulated as follows:

{gtb, predb} = B(gt, pred7)

lb = Lb(gtb, predb)
(3)

where B(·, ·) denotes the operation of BSM. Lb(·) denotes
the focal loss [32] function. lb denotes the semantic boundary
loss.

Finally, the overall objective function l is a combination
of segmentation loss ls and semantic boundary loss lb. We
use the trade-off parameter ξ to balance the weight of the
segmentation loss and semantic boundary loss. In our paper,
we set ξ = 0.6.

l = ls + ξ · lb (4)

3.2 Multi-level attention feature fusionmodule

As illustrated in Fig. 4,MLA-FFM receives two different lev-
els of feature maps as inputs, where the shallow-level feature
map xh has a higher resolution than the deep-level feature
map xl . The size of xh and xl is first unified through chan-
nel compression and bilinear interpolation, and the unified
feature maps are denoted as xh′ and xl ′ .
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Fig. 4 The components of MLA-FFM. Where “Spatial Aggregation”
refers to pooling operations along the spatial dimension, “Channel
Aggregation” refers to pooling operations along the channel dimen-
sion. The symbol α represents the weight of the linear combination
between xl ′ and xh′

Next is information aggregation, through pooling oper-
ations to obtain a larger receptive field and capture multi-
dimensional contextual information. Spatial aggregation
and channel aggregation are performed, respectively. Spa-
tial aggregation performs max-pooling operation on spatial
dimension to aggregate spatial-wise context information.
Channel aggregation performs average-pooling on channel
dimension to aggregate channel-wise context information
and avoid the loss of spatial location information in fea-
ture maps. After information aggregation, four feature maps
are generated, i.e., xspl ′ ∈ R

C ′×1×1, xcpl ′ ∈ R
1×H ′×W ′

,

xsph′ ∈ R
C ′×1×1, and xcph′ ∈ R

1×H ′×W ′
.

Then, mix the aggregated information on the spatial and
channel of different resolution features to generate attention
weight tensor. That is, we multiply xspl ′ and xcph′ to obtainm1,
and multiply xsph′ and xcpl ′ to obtain m2. Then, m1 and m2 are
concatenated and fed into the attention head (AttnHead) to
generate an attention weight tensor α:

m1 = SP(xl ′) ⊗ CP(xh′)

m2 = SP(xh′) ⊗ CP(xl ′)

α = T ([m1,m2])
(5)

where SP(·) and CP(·) denote the spatial aggregation and
channel aggregation, respectively. [·, ·] denotes the concate-

Fig. 5 The components of BSM. Where “Laplacian” denotes to the
application of 2D convolution using the Laplacian kernel as the weight,
“Dilation” denotes the dilation operation

nation operation along the channel dimension. T (·) denotes
the AttnHead operation, and its structure is illustrated in
Fig. 3b.

Finally, we perform soft selection on xh′ and xl ′ , and then
use element-wise addition followed by a 3×3 CBR to obtain
fused feature map. The merge procedure can be formulated
as follows:

xh+1 = CBR(xh′ � α + xl ′ � (1 − α)) (6)

3.3 Semantic boundary supervisionmodule

The semantic boundary is crucial for semantic segmentation
tasks. However, down-sampling operations in deep convo-
lutional neural networks cause the loss of spatial detail
information, resulting in rough prediction results of seman-
tic boundaries and their adjacent pixels. To alleviate this
problem, we propose BSM supervise the semantic bound-
ary of segmentation results. Figure5 illustrates the structure
of BSM.

Firstly, a binary boundary mask mb ∈ R
1×H×W is

extracted from the ground-truth semantic labels using a 2D
convolution with the Laplacian kernel as the weight. In the
binary boundarymask, the value is 1 if it is a semantic bound-
ary, otherwise it is 0.

Then, a dilation operation on the binary semantic bound-
ary mask is performed to expand the range of boundary
pixels, in order to treat pixels near the semantic boundary
as part of the semantic boundary. This operation produces a
dilated binary boundary mask, denoted as md ∈ R

1×H×W .
Finally, the dilated binary boundary mask is element-

wise multiplied with both the ground-truth semantic labels
and the predicted probability map to obtain two semantic
boundary maps, i.e., the semantic boundary ground-truth
gtb ∈ R

1×H×W and the semantic boundary prediction
predb ∈ R

N×H×W . It is worth noting that those seman-
tic boundary maps only retain the classification information
of boundary elements, while non-boundary elements are set
to 0. Therefore, unlike [4], BSM can not only optimize the
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semantic boundary but also further optimize the classifica-
tion information of the semantic boundary. We believe this
can achieve better semantic boundary results. The above pro-
cedure can be formulated as follows:

md = ϒ(�(gt))

gtb = md � gt

predb = md � pred

(7)

where �(·) denotes the 2D convolution with the Laplacian
kernel as the weight. ϒ(·) denotes the dilation operation.

4 Experiments

4.1 Datasets

Cityscapes. Cityscapes [33] is one of the most popular
complex urban street scene datasets. It contains 5,000 fine
annotated images and is split into 2,975, 500, and 1,525
images for training, validation, and testing, respectively. The
annotation includes 19 classes of annotation for the semantic
segmentation task. These images have the same challenging
resolution (1, 024 × 2, 048) for real-time semantic segmen-
tation. For a fair comparison, we only use fine annotated
images in our experiments.

CamVid. Cambridge-driving Labeled Video Database
(Camvid) [34] is a road scene dataset that contains 701
images and is partitioned into 367 training, 101 validation,
and 233 test images. All images share the same resolution of
720 × 960. The annotation includes 32 categories, of which
a subset of 11 categories are used in our experiments. Same
setting as [2, 14, 29, 35], we train our model on both the
training and validation sets and validate on the test set.

4.2 Implementation details

Data Augmentation. In the training phase, we all apply
color jittering, random horizontal flip, random resize, ran-
dom crop, etc. For the Cityscapes, the random scale ranges
in [0.125, 1.5], and the cropped resolution is 512 × 1, 024.
For the CamVid, the random scale ranges in [0.5, 2.5], and
the cropped resolution is 720 × 960.

Training Settings. As a common configuration, we use
mini-batch stochastic gradient descent (SGD) [36] as an opti-
mizer which momentum set as 0.9 and the weight decay is
5e−4. Similar to [37, 38], we also utilize “poly” learning rate
policy. In our paper, we set the initial learning rate and power
is 0.01 and 0.9, respectively, and the initial rate is multiplied
by (1− i ter

max_i ter )
power . In addition,we use thewarm-up strat-

egy at the first 1,000, and 300 iterations for Cityscapes and
CamVid, respectively. For the Cityscapes, we set the batch
size as 40, the max iterations are 70,000. For the CamVid, we Ta
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Fig. 6 Visualization of segmentation results with and without BSM on Cityscapes validation set. The column with subscript B denotes predictions
with BSM. Column a shows the input images, b are the ground-truths of input images, c, d demonstrate the predictions without and with BSM

Table 2 Performance
comparison of using different
loss functions in BSM and
inserting BSM at different
stages

w/o BSM Stage6 Stage7 Stage8

FL OHEM FL OHEM FL OHEM

mIoU(%) 77.2 77.4 77.3 77.6 77.3 77.4 77.3

“FL” denotes the BSM with focal loss [32] function. “OHEM” denotes the BSM with OHEM [31] loss
function. Stagei indicates that the BSM is inserted into the i-th stage

set the batch size as 30 and the max iterations are 30,000. We
conduct our all training experiments on NVIDIA GeForce
2080Ti.

Inference Settings. Similar to [2, 4], for the Cityscapes
dataset, we initially resize the image resolution from the
original 1, 024 × 2, 048 to 768 × 1, 536 for inference, and
subsequently, we resize the prediction to the original size
of the input. The time taken for resizing is included in our
reported inference time. For the CamVid dataset, we take the
original image as input.Wemeasure the inference time under
PyTorch−1.6, CUDA 10.2, CUDNN 7.6, and TensorRT on
a single NVIDIA GeForce 1080Ti GPU with a batch size of
1.

Evaluation Metrics. In this paper, we adopt the mean of
class-wise Intersection over Union (mIoU) to evaluate seg-
mentation accuracy and frames per second (FPS) to evaluate
inference speed.

4.3 Ablation study

Effectiveness of BSM. To investigate the effectiveness of
BSM, we conduct ablation experiments with and without
BSM. As shown in Table 1, the model with BSM improves
the segmentation accuracy formost categories. Throughcare-
ful observation, we find that the categories with clear edges

and lines, such as poles, traffic signs, trucks, buses, and
trains, show the most significant improvement in segmen-
tation accuracy. Specifically, the train category has the most
noticeable improvement, with mIoU increasing from 75.2%
to 79.4%, a 4.2% improvement.

To further demonstrate the effectiveness of BSM, we
present some segmentation examples of models with and
withoutBSMfor visual comparison.As shown inFig. 6, com-
paring columns (c) and (d), we can see that the model with
BSM achieves better semantic segmentation performance
than the model without BSM.

Comparison of different loss functions inBSM. In order
to validate the rationality of the selected loss function, we
conduct experimental comparisons in BSM using both the
focal [32] and OHEM [31] loss functions. As shown in Table
2, although both OHEM and focal loss functions are suitable
for addressing issues like class imbalance and hard exam-
ple learning, the experimental results consistently indicate
higher accuracy when employing focal loss function com-
pared to OHEM loss function. Therefore, in this paper, we
choose focal loss as the loss function for BSM.

Comparison of BSM Application Positions. It is worth
noting that BSM is amodule specifically designed to improve
the accuracy of semantic boundaries during model training,
which can be incorporated at various stages. As shown in
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Table 3 Compare the effect of
using auxiliary segmentation
supervision in different
decoding stages

Stage6 Stage7 mIoU(%)

76.8

� 76.9

� 76.9

� � 77.2

Stage6 and Stage7, respectively,
represent the application of aux-
iliary segmentation supervision
in the 6-th and 7-th stages

Table 4 Comparison with other feature fusion methods on the
Cityscapes validation set

Methods mIoU(%) Params (M) FPS

STDC2 + EA 76.6 20.8 100.1

STDC2 + CAT 76.7 20.7 93.2

STDC2 + AFF [5] 77.1 20.8 94.5

STDC2 + FFM [2] 76.2 20.6 84.1

STDC2 + MLA-FFM (ours) 77.2 20.6 97.5

EA: Feature fusion implemented by element-wise addition. CAT: Fea-
ture fusion implemented by channel-wise concatenation.AFF andFFM
represent the fusion method proposed in [5], [2], respectively.

Table 2, when BSM is applied in the 7-th stage, its segmen-
tation accuracy is higher than that of other stages, which
increases the mIoU on the Cityscapes validation set from
77.2% to 77.6%.

Effectiveness of Auxiliary Segmentation Supervision.
Thedecoder ofZMNet consists of three fusion stages, namely
stage 6, stage 7, and stage 8. During the training phase, the
main segmentation supervision is conducted in stage 8, while
the auxiliary segmentation supervision can be performed in
stages 6 and7. In order to evaluate the impact of auxiliary seg-
mentation supervision on segmentation accuracy,we conduct
ablation experiments on the Cityscapes validation set. The
results of the auxiliary segmentation supervision are shown
in Table 3. It can be observed that the incorporation of aux-
iliary segmentation supervision in either stage 6 or stage 7
contributes to the improvement of segmentation accuracy.
The best segmentation performance is achieved when aux-
iliary segmentation supervision is applied in both stage 6
and stage 7, resulting in an increase of mIoU from 76.8% to
77.2%, which is an improvement of over 0.4%.

Effectiveness of MLA-FFM. To validate the effective-
ness of MLA-FFM, we compare it with previously popular
feature fusion methods. For a fair comparison, we set the
input resolution to 768 × 1, 536 for all methods and only
use the feature maps generated by the last three stages of the
encoder for feature fusion. The input and output featuremaps
are aligned using 3 × 3 CBR. The settings of the auxiliary
segmentation supervision are also consistent.

As shown inTable 4, the feature fusionmethod of element-
wise addition (EA) is the fastest fusion method among
all methods. The channel-wise concatenation (CAT) fusion
method performs similarly to EA, but both methods ignored
the importance of multi-dimension contextual information
during fusion. Compared with EA and CAT methods, our
proposedMLA-FFM, respectively, improved 0.6% and 0.5%
mIoU at the cost of a small speed sacrifice.

AFF [5] aggregates spatial contextual information through
spatial pooling during feature fusion. Our method not only
aggregates spatial contextual information through spatial
aggregation but also aggregates channel contextual infor-
mation through channel aggregation, and generates a soft
attention map by combining these two pieces of contextual
information to better fuse features from different levels. By
comparison, we can find that MLA-FFM is faster and more
accurate than AFF [5].

FFM [2] uses contextual information of the channel
dimension to perform attention weighting on the fused fea-
tures. Compared with FFM [2], our method is 13.4 FPS
faster and has a higher mIoU by 0.7%. We believe that such
improvement is due to our use of multi-dimensional contex-
tual information to fuse feature information.

Comparison of different pooling operations in MLA-
FFM. Firstly, as shown in the first row of Table 5, we
remove all pooling operations and correspondingmatrixmul-
tiplication operations in MLA-FFM. We can find that the
modified MLA-FFM does not show any significant impact
on speed but significantly reduce the segmentation accuracy
(by 1.5% mIoU). This indicates that multi-dimensional con-
textual information is beneficial for feature fusion.

Additionally, we compare the effects of different pool-
ing operations in MLA-FFM. As shown in rows two to
five of Table 5, the impact of different pooling opera-
tions on the results is not significant. Among them, spatial
dimension aggregation implemented by max-pooling and
channel dimension aggregation implemented by average-
pooling achieve the best performance.

Comparison of different trade-off parameter ξ val-
ues. In our paper, semantic segmentation loss and semantic
boundary loss jointly optimize our model. We employ a
parameter ξ to balance the trade-off between semantic seg-
mentation loss and semantic boundary loss. As shown in
Fig. 7, the accuracy of our network is improved when ξ takes
smaller value such as 0.3, 0.6, or 1.0. However, when the
value of ξ is set to a larger value, such as 1.5 or 2.0, the
accuracy of the network decreases. This is because when ξ is
larger, the networkmay pay toomuch attention to the seman-
tic boundary area while reducing attention to non-semantic
boundary areas, resulting in a decrease in overall segmenta-
tion accuracy. Experimental results show that when ξ is set
to 0.6, its segmentation performance is optimal.
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Table 5 Comparison of
different pooling operations in
MLA-FFM

Spatial aggregation Channel aggregation mIoU(%) Params (M) FPS

– – 75.7 20.6 98.1

Max-pooling Max-pooling 77.2 20.6 97.5

Average-pooling Average-pooling 77.5 20.6 97.5

Max-pooling Average-pooling 77.6 20.6 97.5

Average-pooling Max-pooling 77.5 20.6 97.5

Fig. 7 Comparison of different trade-off parameter ξ values

Table 6 Comparison with other state-of-the-art real-time methods on
the Cityscapes dataset

Model Backbone mIoU(%)

Val Test FPS

SwiftNet [35] ResNet-18 75.4 75.5 39.9

BiSeNetV1 [2] Xception39 69.0 68.4 105.8

BiSeNetV1-L [2] ResNet-18 74.8 74.7 65.5

BiSeNetV2 [3] – 73.4 72.6 156

BiSeNetV2-L [3] – 75.8 75.3 47.3

SFNet [28] DF1 – 74.5 121

HMSeg [39] – – 74.3 83.2

TinyHMSeg [39] – – 71.4 172.4

STDC1-Seg50 [4] STDC1 72.2 71.9 250.4

STDC2-Seg50 [4] STDC2 74.2 73.4 188.6

STDC1-Seg75 [4] STDC1 74.5 75.3 126.7

STDC2-Seg75 [4] STDC2 77.0 76.8 97.0

GDN [13] GDN - 75.6 113

LSNet [40] ResNet-18 - 73.9 130.2

SENet [26] MobileNetV2 - 77.2 30.8

BFMNet1-M† [10] MobileNetV3 76.2 75.7 72.1

BFMNet2-M† [10] ResNet-18 77.9 77.7 63.7

ZMNet-R18 (ours) ResNet-18 75.0 75.2 80

ZMNet-S (ours) STDC1 75.0 74.9 130.4

ZMNet (ours) STDC2 77.6 77.4 97.5

Methods marked with “†” indicate that they measure FPS on a single
NVIDIA GeForce 2080ti GPU

4.4 Compare with state-of-the-arts

Results onCityscapes.Todemonstrate the ability of our pro-
posed ZMNet for tackling segmentation on complex street
scenes, in Table 6, we illustrate the accuracy and speed of
ZMNet on Cityscapes validation and test sets. We propose
ZMNet-S and ZMNet, which use STDC1 [4] and STDC2 [4]
as backbones, respectively. ZMNet-S has a faster inference
speed, while ZMNet has higher segmentation accuracy. To
further demonstrate the effectiveness of our decoder, we also
proposeZMNet-R18,whichusesResNet-18 [41] as the back-
bone. The backbones used in our experiments are pre-trained
on the ImageNet [42] dataset. To make a fair comparison, at
the test phase, we use both training and validation sets and
make the evaluation on the test set. In the end, we submit
our test set predictions to the Cityscapes online evaluation
server for detailed accuracy results. As shown in Table 6,
ZMNet-R18 achieves 75% and 75.2% mIoU with 79.7 FPS
on validation set and test set, respectively. Although its accu-
racy is slightly lower than SwiftNet [35], its inference speed
is almost twice as fast as SwiftNet [35]. ZMNet-S with 130.4
FPS achieves 75% and 74.9% mIoU on the validation set
and test set, respectively, showing competitive performance
compared to most methods. Moreover, our ZMNet achieves
77.6%mIoU on the validation set and 77.4%mIoU on test
set with 97.5 FPS, respectively. Compared to SENet [26],
not only does ZMNet have higher segmentation accuracy
than SENet, but its inference speed is also three times that of
SENet. Although ZMNet is slightly inferior to BFMNet2-M
[10] on segmentation accuracy, its inference speed is much
faster than BFMNet2-M.

Results on CamVid. We also present the segmentation
accuracy and inference speed results of our proposed meth-
ods on theCamVid dataset. As shown inTable 7, ZMNet-R18
achieves a 73.8% mIoU at 133 FPS, which achieves a more
competitive speed–accuracy trade-off than other methods
that use the same ResNet-18 backbone. ZMNet-S achieve
72.6%mIoU on the CamVid test set at a speed of 213.7 FPS,
which is 8.1% faster than STDC1-Seg [4] while sacrificing
a small amount of accuracy. ZMNet achieved a remarkable
trade-off between accuracy and speed among all methods
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Table 7 Comparison with other state-of-the-art real-time methods on
the CamVid dataset

Model Encoder mIoU(%) FPS

ENet [43] – 51.3 61.2

BiSeNetV1 [2] Xception39 65.6 175

BiSeNetV1-L [2] ResNet-18 68.7 116.3

BiSeNetV2 [3] – 72.4 124.5

BiSeNetV2-L [3] – 73.2 32.7

STDC1-Seg [4] STDC1 73.0 197.6

STDC2-Seg [4] STDC2 73.9 152.2

LSNet [40] ResNet-18 72.3 104.5

BFMNet1† [10] MobileNetV3 74.4 118.6

BFMNet2† [10] ResNet-18 75.6 98.8

ZMNet-R18 (ours) ResNet-18 73.8 133

ZMNet-S (ours) STDC1 72.6 213.7

ZMNet (ours) STDC2 74.0 156.6

Methods marked with “†” indicate that they measure FPS on a single
NVIDIA GeForce 2080ti GPU

by achieving 74% mIoU at a speed of 156.6 FPS. Com-
pared to state-of-the-art methods like STDC [4] andBFMNet
[10], our method demonstrates competitiveness in either
segmentation accuracy or inference speed. The experiment
results demonstrate that our method achieves a good balance
between inference speed and segmentation accuracy.

5 Conclusions

In this paper, we propose a novel real-time network ZMNet to
balance segmentation accuracy and inference speed in real-
time semantic segmentation. First, we design a lightweight
feature fusionmoduleMLA-FFM to effectively fuse features
from adjacent levels. Second, we propose a semantic bound-
ary supervisionmodule BSM to further improve the accuracy
of semantic boundaries. Experiments show that our proposed
ZMNet achieves a state-of-the-art balance between segmen-
tation accuracy and inference speed. Currently, our method
has only been tested for real-time street scene segmenta-
tion in ideal conditions. In the future, we plan to expand
our approach to encompass real-time scene segmentation in
non-ideal conditions such as rainy or foggy weather, aiming
to meet the demands of a wider range of practical application
scenarios.
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