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Abstract
Semi-supervised learning, which entails training a model with manually labeled images and pseudo-labels for unlabeled
images, has garnered considerable attention for its potential to improve image classification performance. Nevertheless,
incorrect decision boundaries of classifiers and wrong pseudo-labels for beneficial unlabeled images below the confidence
threshold increase the generalization error in semi-supervised learning. This study proposes a novel framework for semi-
supervised learning termed consistency-regularized bad generative adversarial network (CRBSGAN) through a new loss
function. The proposed model comprises a discriminator, a bad generator, and a classifier that employs data augmentation and
consistency regularization. Local augmentation is created to compensate for data scarcity and boost bad generators. Moreover,
label consistency regularization is considered for bad fake images, real labeled images, unlabeled images, and latent space for
the discriminator and bad generator. In the adversarial game between the discriminator and the bad generator, feature space
is better captured under these conditions. Furthermore, local consistency regularization for good-augmented images applied
to the classifier strengthens the bad generator in the generator–classifier adversarial game. The consistency-regularized bad
generator produces informative fake images similar to the support vectors located near the correct classification boundary.
In addition, the pseudo-label error is reduced for low-confidence unlabeled images used in training. The proposed method
reduces the state-of-the-art error rate from 6.44 to 4.02 on CIFAR-10, 2.06 to 1.56 on MNIST, and 6.07 to 3.26 on SVHN
using 4000, 3000, and 500 labeled training images, respectively. Furthermore, it achieves a reduction in the error rate on the
CINIC-10 dataset from 19.38 to 15.32 and on the STL-10 dataset from 27 to 16.34 when utilizing 1000 and 500 labeled images
per class, respectively. Experimental results and visual synthesis indicate that the CRBSGAN algorithm is more efficient than
the methods proposed in previous works. The source code is available at https://github.com/ms-iraji/CRBSGAN↗.
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1 Introduction

Thecapturing, recognizing,modeling, analyzing, generating,
and interpreting of images have gained significant impor-
tance in the fields of artificial intelligence (AI) and machine
learning [1]. They play a crucial role in understanding pat-
terns, exploring images, and making informed decisions.
These approaches employ advanced techniques specifically
designed for visual data, allowing for the extraction of valu-
able information and the identification of complex patterns
[2]. They find applications in various domains, including
computer vision,medical imaging, autonomous systems, and
image-based recommendation systems [3]. This is achieved
by leveraging sophisticated algorithms and deep learning
architectures [4].
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Supervised learning, as a subcategory of the machine
learning approaches, employs significant amounts of labeled
images to train predictive models for images. One of the pri-
mary limitations of model training is that manually labeling
images is typically very costly and time-consuming. Cre-
ating a successful learning system is also difficult if there
are only a few labeled examples available [5]. In addition,
unlabeled images are typically abundant and can be obtained
easily or inexpensively. Semi-supervised learning utilizes a
small number of labeled images and a substantial number of
unlabeled images [6], allowing the model to better capture
visual features. However, the crucial question is how semi-
supervised learning with unlabeled images can improve the
performance of a classifier trained solely on labeled images
[7].

Unlabeled images employ artificial pseudo-labels com-
parable to manually annotated image labels, which play a
significant role in semi-supervised learning [8]. Training a
model with labeled images enables self-learning methods to
generate pseudo-labels for unlabeled images [9]. Among the
class labels, the class with the highest predicted probability
is selected as a pseudo-label [10]. Using these pseudo-labels
with a probability greater than a certain threshold as reli-
able labels reduces the amount of error caused by incorrect
pseudo-labels [11]. Nevertheless, the inability to use bene-
ficial unlabeled images below the threshold in the learning
process remains challenging [12]. The reliability of pseudo-
labels for unlabeled training images and as target labels used
in the consistency regularization approach is a further chal-
lenge associated with this method [13].

Consistency regularization adjusts the model to gener-
ate the same class label for input under various tolerable
perturbations and augmentations [14]. Local consistency reg-
ularization involves the unification of unlabeled and labeled
image labels locally and in the neighborhood of each image.
Applying augmentations and perturbations to the original
data is typically utilized to cover the sparse space of the data
[15, 16]. The local augmentations of each image are gener-
ated by weakly augmenting the images arithmetically (such
as translation and rotation for an image) [17] or by incorpo-
rating adversarial noise from the virtual adversarial training
method [18]. Applying local disturbances to images near the
decision boundary will result in the creation of images out-
side the correct boundary of the class label, and the type of
local consistency regularization will decrease learning effi-
ciency [18]. Therefore, correct consistency regularization to
images with a class probability greater than the threshold
(good images) and low-confidence unlabeled images con-
tribute to improving semi-supervised classification tasks.

Recent applications of generative adversarial networks
based on a generator and a discriminator network to semi-
supervised learning have yielded intriguing results [19]. It
is well established that using large amounts of unlabeled

images for semi-supervised generative learning is essential
[20]. Some adversarial learning models use the discrimina-
tor/classifier network to identify real images and predict their
corresponding class labels simultaneously. Another strategy
utilizes the generator and classifier networks to determine
the binary distribution of the label sample [21]. In feature-
matching generative adversarial networks [22], the base
binary discriminator is converted into a (K + 1) class classi-
fier to play two discriminator/classifier roles effectively. This
approach has the disadvantage that the discriminator cannot
effectively perform semi-supervised classification while the
generator produces good fake images simultaneously. As an
improvement to feature-matching generative adversarial net-
works, it has been reported that effective semi-supervised
learning requires a "bad" generator [23]. The planned bad
compliment generator could generate fake data spots in low-
density regions; as a result, the classifier positioned class
boundaries in these regions and augmented the generaliza-
tion performance.

In contrast to the two-player game proposed in [23], the
developers of marginal generative adversarial networks [24]
proposed a three-player game in which the generator was
encouraged to provide "bad" images for semi-supervised
learning. The difficulty of marginal generative adversarial
networks is that they use the maximum likelihood class pre-
diction as the pseudo-label for all unlabeled images without
label smoothing [23]. To our knowledge, consistency regu-
larization and image augmentation for the discriminator, the
bad generator, and the classifier have yet to be performed.
On the other hand, the classifier using the bad generator
is still incapable of detecting the correct decision bound-
ary. Consequently, low-confidence unlabeled images with
wrong pseudo-labelsmay negatively impact the performance
of the model. Given the recent success of non-generative
adversarial network-based approaches to semi-supervised
learning, opportunities exist for future research to adapt
semi-supervised learning elements to generative adversarial
networks [25]. Solutions include consistency regularization
with reliable pseudo-labeling and augmentation anchoring
[26]. Based on the paragraphs above, most proposed semi-
supervised classification methods lack effective utilization
of learning information from unlabeled images, particularly
when the probability falls below a threshold in pseudo-
labeling. This issue becomes evident when the predictions of
themodel are uncertain or less reliable because relying solely
on pseudo-labeling can result in noisy and incorrect labels.
To address these challenges, we propose the incorporation of
consistency regularization into a semi-supervised generative
adversarial network, trained on either good or bad images, to
enhance the accuracy of the semi-supervised learningmodel.
This regularization specifically targets low-density regions
near the decision boundary.
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In this study, we propose a new semi-supervised classifi-
cation framework that aims to enhance stability and diversity
in generating bad fake images through individual consistency
regularization, leading to smoother decision boundaries.
Consequently, it reduces incorrect pseudo-labeling for both
high-confidence and low-confidence unlabeled images, espe-
cially in cases of mislabeled images near the decision
boundary. Finally, we conducted experiments to evaluate
the error margin of the proposed method. The experimen-
tal results on MNIST, CIFAR-10, CINIC-10, STL-10, and
SVHN datasets demonstrate that the performance of the pro-
posed semi-supervised model is superior to that of previous
research. The key contributions of our work are as follows:

1. Wepropose a novel framework that employs local consis-
tency regularization to labeled, unlabeled, and latent data
in three-player bad generative semi-supervised networks
to improve their performance.

2. A novel type of consistency regularization loss for bad
fake images, termed local consistency regularization,
is introduced. The consistent bad generator efficiently
learns the feature space and generates more accurate bad
images (i.e., more informative images) near the true deci-
sion boundary through local consistency regularization
applied to the latent space of bad fake images.

3. The local consistency regularization for good-augmented
images with reliable labels applied to the classifier in
the proposed framework, better adjusts the margin of the
classifier for pseudo-labels generated from fake images.
This action strengthens the bad generator in the genera-
tor–classifier adversarial game.

4. We demonstrate that the applied consistency regular-
ization improves the proposed bad generative semi-
supervised model, reducing the consistency-regularized
semi-supervised classifier error. Reducing incorrect
pseudo-labels for unlabeled images, particularly for
images below the class threshold probability, lessens
model error and strengthens the generalization perfor-
mance of the classifier.

5. We provide a theoretical analysis of empirical risk for
bad semi-supervised generative adversarial networks.

6. We demonstrate that a transformer-based discrimina-
tor provides a better signal to the bad generator in
three-player bad semi-supervised generative adversarial
networks.

This study is structured as follows: An introduction is pro-
vided in Sect. 1. Section 2 reviews related works. Section 3
presents the proposed semi-supervised model by generating
informative fake images with consistency regularization. In
Sect. 4, the experimental results of the proposed algorithm
are presented. Section 5 presents a discussion, and the article
ends with a conclusion.

2 Related works

This section examines previous research on semi-supervised
classification and consistency regularization.

2.1 Non-generative adversarial network-based
approaches to semi-supervised classification

Co-training is one of the semi-supervised algorithms that
utilize pseudo-labeling [27]. The algorithm trains two clas-
sifiers for two different visions of labeled samples, and each
classifier places the unlabeled samples with the highest pre-
diction confidence into the other classifier’s labeled dataset.
Today, consistency regularization is widely used in the field
of semi-supervised learning [28]. The teacher–student struc-
ture is the most prevalent regularization of the consistency
of semi-supervised learning methods [29]. The model simul-
taneously learns like a student and generates labels like a
teacher. The model produces potentially inaccurate targets
and yields a significant error rate when applied as a learner.
Reducing this risk is possible by improving the target label’s
quality and adjusting its generation’s consistency using sev-
eral techniques [30].

The ladder network [31] was the first to employ the
teacher–student approach [32] that resulted from combining
an encoder and a noise remover [33]. De-noising subordi-
nates and unsupervised de-noising the error square were
considered for consistency regularization in each decoder
layer. Another method, the � model, employed the propaga-
tion of the unlabeled instance forward twice in every cycle of
the training process. Random data perturbation was applied
to the unlabeled sample, and a random drop was input to the
network layer. Forward propagations of a sample resulted in
predictions that the�model expected to have the same class
[34]. Additionally, the output of the temporal ensemble idea
[35] included the exponential moving average of the his-
torical class-label predictions in different training periods.
The � model required sending samples twice per training
iteration. This overhead was reduced by the temporal ensem-
ble model’s use of an exponential moving average to collect
class-label predictions during the period [36].

Virtual adversarial training [37] was developed to regu-
larize the distribution of conditional labels around any given
input against local perturbations. The model must carry the
same label as the original images for local perturbations sur-
rounding each image. The local augmentation of the images
near the boundary transfers the images to the other side of
the class boundary; consequently, this model fails to pro-
vide the required efficiency in points near the correct class
boundary. The Remixmatch method employs consistency
regularization, promoting matching predictions for multiple
significantly enhanced input images with those for a singu-
lar image subjected to weak augmentation [38]. Fix-match
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[39] utilized "hard" labels (i.e., model output argmax) whose
class probability exceeded a predefined threshold as pseudo-
labels for each weak augmentation of an unlabeled instance.
The model prediction was expected to be the same for this
reliable weakly augmentation and strongly augmented ver-
sion of the same input. Consistency regularization was not
performed for pseudo-labels of unlabeled images which had
confidence below the threshold limit. In addition, the chal-
lenge in the supervised part was the weak augmentation of
labeled images near the decision boundary.

The authors [40] proposed DSSLDDR, a discriminative
semi-supervised learning model that combines dictionary
representation and deep learning to address limited labeled
data. It reconstructs input data, extracts discriminative fea-
tures, and balances class estimation using entropy regulariza-
tion. The study also introduces DSSLDDR + , incorporating
consistency/contrastive learning for improved class estima-
tion accuracy. However, a limitation is the integration of
dictionary learning only in the classification layer, limiting
its potential benefits across all layers of the model.

In [41], researchers proposed dual pseudo-negative
label learning (DNLL), a novel semi-supervised classifica-
tion framework consisting of two sub-models that gener-
ate pseudo-negative labels for each other. This approach
improves the utilization of unlabeled data and reduces param-
eter coupling compared to traditional methods. The study
introduced a selection mechanism based on uncertainty
estimation to rank the pseudo-negative labels, enhancing
performance and generalization. However, addressing label
quality and potential dependence on specific selection crite-
ria are limitations of the method.

2.2 Generative adversarial network-based
approaches to semi-supervised classification

Recently, semi-supervised generative learning has been
evolving. A typical generative adversarial network [25]
includes a generator G and a discriminator D. The objec-
tive of generator G is to learn the distribution of fake images
pg from real images px using noise variables with the dis-
tribution pz(z). A semi-supervised generative adversarial
network simultaneously trains a generator and discrimina-
tor/classifier. Combining the loss function of an unsupervised
basic generative adversarial network [42] with a supervised
loss function (cross-entropy) results in the presentation of a
simple semi-supervised learning method [43]. The classifier
network can consist of k + 1 output units corresponding to
classes y1, y2, … yk+1, where yk+1 represents the labels of
the generator’s images. An improved generative adversarial
network solves the (K + 1) class classification problem by
matching features to reduce the disparity between real and
generated sample characteristics [44].

Consistency regularization for generative adversarial net-
works [45] is based on the improved generative adversarial
network and uses a combination of local consistency, a
mean teacher consistency model, and interpolation consis-
tency [46]. Since augmentations are only performed on
real images, one of the main issues with consistency reg-
ularization for generative adversarial networks is that the
discriminator could "mistakenly believe" that the augmen-
tations are real features of the target set. To circumvent this
issue, regularization for generative adversarial networks [47]
recommends augmenting the generated samples before they
enter the discriminator so that the discriminator is uniformly
regularized. The discriminator pays attention to both real and
fake augmentations and thus focuses on meaningful visual
information. The algorithm is implemented on the basic gen-
erative adversarial network in a two-player game with the
objective of enhancing the image quality produced by good
generators (high-confidence images).

Triple adversarial generative networks [48] are charac-
terized as a three-player game. This structure has three
components: a) a generator with a neural network to pro-
duce fake samples conditioned on real labels, b) a classifier
that generates pseudo-labels for imported real images, and c)
a discriminator that determines whether an image-label pair
from the data set has a real label or not. Due to the imbalance
between real and fake pairs, the discriminator tends to over-
remember labeled real samples. In addition, the classifier
made false predictions on unlabeled images. A class condi-
tional generative adversarial network with random regional
replacement (R3-CGAN) [21] was developed based on the
triangle generative adversarial network (Triangle-GAN) [49]
to address these issues. The architecture of the R3-CGAN
consists of four components: 1- A generator G to generate
fake images combined with given class labels, 2- A classifier
C for classifying real and fake samples into k classes, 3- A
discriminator (d1) to identify real or fake pairs and another
discriminator (d2) to distinguish between two types of fake
images. One consists of generated fake images paired with
specific labels, while the other comprises an unlabeled sam-
ple paired with its pseudo-label. CutMix [24] is applied to
inter-class examples and inter-real-fake samples to achieve
consistency regularization. Each pair of randomly selected
images is merged by replacing a rectangular region with
another image. The replacement region is determined by the
beta distribution of the random variable γ. Consistency regu-
larization is based on the sample-class pairwise distribution
and a good generator.

The generator and discriminator of the improved gener-
ative adversarial network had inconsistent loss functions;
thus, the generator and discriminator failed to be simulta-
neously optimal [44]. The generator was unable to produce
images thatwere sufficiently realistic for the semi-supervised
classifier to function optimally. The authors [23] suggested
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that a generator was required to create fake images closely
resembling real ones. Poorly generated samples necessitated
the placement of the discriminator boundary between data
manifolds of various categories, which reduced the discrim-
inator’s generalization error. An adversarial network with a
potent bad generator would learn how to use a bad genera-
tor effectively to generate bad samples. CCS-GAN utilized
unlabeled image clustering in conjunction with a bad gen-
erator to produce a more accurate discriminating boundary
[50]. Choosing the appropriate distance criterion for clus-
tering and time-consuming for high-dimensional data are
the limitations of this method. Margin generative adversarial
network (margin GAN) was designed to generate bad sam-
ples in a three-player structure [51]. The discriminator was
trained to distinguish genuine samples from those generated
by the generator. Similar to [23], the classifier attempted to
increase themargin of real sampleswhile decreasing themar-
gin of fake ones. In contrast, the generator’s objective was
to provide realistic examples with large margins to deceive
the classifier anddiscriminator simultaneously.Nevertheless,
applying consistency regularization to bad GAN models can
still improve semi-supervised learning in low-density areas.

3 Consistency-regularized bad
semi-supervised generative adversarial
networks (CRBSGAN)

The bad generator provides "informative" images near the
true decision boundary with high precision, such as sup-
port vectors, and improves the generalization performance
marginally [23]. In this case, in addition to the base GAN
adversarial gamebetween the discriminator and the generator
[25], the generator produces images with a large margin, and
the classifier aggressively makes predictions for these gen-
erated fake images with a small margin [51]. Despite efforts,
the classification boundary exceeds the correct decision
boundary, resulting in the mislabeling of unlabeled images.
These incorrect pseudo-labels diminish the performance of
the semi-supervised classifier [52]. Figure 1 demonstrates
that three images have incorrect pseudo-labels and are mis-
classified despite border detection using a bad generator.
We wish to ensure the accuracy of decision-making by
combining image augmentation and consistency regular-
ization in a bad generator (Fig. 2). The research question
is, to what extent can consistency regularization with a
semi-supervised generative adversarial network improve the
accuracy of a semi-supervised learning model based on good
or bad images?

We propose a three-layer architecture, namely
consistency-regularized bad semi-supervised generative
adversarial networks (CRBSGAN), consisting of a dis-
criminator, a bad generator, and a classifier. The method

Labeled Images

Unlabeled Images

Bad Fake Images

Wrong Label

Misclassified Images

Decision Boundary

Fig. 1 Three unlabeled triangle class images were incorrectly labeled
as circle pseudo-labels

Labeled Images

Unlabeled Images

Bad Fake Images

Wrong Label

Augmented Images

Misclassified Images

Decision Boundary

Fig. 2 Using bad images to augment images to reduce the number of
erroneous pseudo-labels

incorporates weak image augmentations and consistency
regularization to distinguish between fake and real images
and predict pseudo-labels for unlabeled images. Local (indi-
vidual) consistency regularization is applied to both the bad
generator and discriminator, facilitating efficient learning
of the feature space. Additionally, the model introduces
self-learning-based augmentation anchoring to strengthen
the classifier, particularly for good images. Figure 3 depicts
the proposed model’s overview. Each model component is
described in detail in the sections that follow.

3.1 Regularized discriminator

In an adversarial game, the discriminator D is a deep neural
network that attempts to stimulate the generator to produce
images closely resembling the real distribution. Model dis-
criminator loss functions include adversarial loss function
[25] and regularization loss function [47]. In the adversarial
loss function, the discriminator recognizes labeled xl ∼ preal

xl

and unlabeled images xu ∼ prealxu as real (labeled 1) and
images produced by the generator xg � G(z) ∼ pfakexg as
fake (labeled 0) (Eqs. 1 and 2).

We consider weak image augmentation to address data
scarcity and improve the performance of deep networks [15,
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Fig. 3 Architectural overview of the CRBSGAN based on three players

A�er consistency

Before consistency

Fig. 4 The degree to which the augmented image resembles the actual
image following consistent regularization in the discriminator view

16]. By applying local consistency regularization to the dis-
criminator [53], the distance between the augmented images
and their accessible original images ismuch closer than itwas
prior to consistency regularization (Fig. 4). Generated local
augmentations (α is a function such as rotate) are applied to
real labeled and unlabeled images, as well as fake samples. In

the consistency regularization loss function, the discrimina-
tor must assign them the same label as their original images
(Eq. 3). In addition, the consistency regularization loss can
be computed using the L2norm function (Eq. 4) [54].

From the discriminator’s view, images generated from the
latent space and local changes to the latent space have the
same label and are, therefore, fake. The β function calculates
the local deviation of the sample’s latent vector. β function is
the addition of a vector of random numbers with a mean ofμ
and a variance ofσ (such as the addition of a vector of random
numbers with μ �0, σ �0.07 for CIFAR-10). Label con-
sistency regularization of the aforementioned improves the
learning of the feature space and the performance of the dis-
criminator [55] and bad generator. The discriminator’s final
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loss function is provided by Eq. 5.

(1)

Ldiscriminator−adversarial � LCE

(
D

(
xl

)
, 1

)

+ LCE
(
D

(
xu

)
, 1

)

+ LCE (D (G (z)) , 0)

where

Cross Entropy (CE) Loss � LCE(y, C(x))

� −
nc∑
i�1

yi log
(
C(x)i

)
,

nc � number of class (2)

Ldiscriminator−consistency−regularization

� LR(D(G(z)), D(G(β(z))))

+ LR(D(G(z)), D(α(G(z))))

+ LR

(
D

(
xl

)
, D

(
α
(
xl

)))
+ LR

(
D

(
xu

)
, D

(
α
(
xu

)))

(3)

Regularization (R) Loss � LR
(
y, y′) � L2 norm

(
y, y′)

� Ey∼py y − Ey′∼py′ y
′2
2

(4)

Ldiscriminator � LCE

(
D

(
xl

)
, 1

)
+ LCE

(
D

(
xu

)
, 1

)
+ LCE(D(G(z)), 0) + λ1LR(D(G(z)), D(G(β(z))))

+ λ2

[
LR(D(G(z)), D(α(G(z)))) + LR

(
D

(
xl

)
, D

(
α
(
xl

)))
+ LR

(
D

(
xu

)
, D

(
α
(
xu

)))]
(5)

3.2 Regularized classifier

Using consistency regularization, the multi-class classifier C
is a deep neural network that attempts to predict image labels
and improve the classification accuracy of semi-supervised
learning. For labeled images, the classifier receives the true
data label (xl , y)∼ preal

(xl , y)
and uses the supervised loss func-

tion of cross-entropy to bring its predictions C
(
xl

) � ŷxl
closer to the true class y (Eq. 6). In fact, the margin for the
labeled image class increases. The difference between the
likelihood of the correct class and the maximum likelihood
of the incorrect classes is referred to as themargin [56].When
the classifier makes a confident prediction, the possibility of
the correct class is maximum, and the margin value is high.
However, when the classifier makes an uncertain prediction,

the probability distribution of the classes is flat, and the mar-
gin value is minimal [51].

Lclassifier−supervised � LCE

(
C

(
xl

)
, y

)
(6)

In an adversarial game with the generator, the classifier
attempts to assist in producing images with uncertain labels
near the decision boundary. These images serve as a support
vector in determining the predicted decision boundary. A
classifier with inverse cross-entropy loss decreases the mar-
gin on the predicted label of generated images C(G(z)) �
ŷxg (Eqs. 7 and 8). For these generated examples, the pseudo-
labels are considered the target label as a one-hot vector with
the maximum class probability argmax(C(G(z))) � ỹxg
[57]. Due to the limited number of labeled images, the classi-
fier utilizes a large number of unlabeled images to improve its
classification performance. The classifier with cross-entropy
loss attempts to bring its predictions C(xu) � ŷxu closer to
the prediction using (one-hot vector) maximum class proba-
bility arg max(C(xu)) � ỹxu as pseudo-labels (Eq. 9).

Lclassifier−adversarial � L ICE(C(G(z)), arg max(C(G(z))))
(7)

Inverse Cross Entropy (ICE) Loss

� L ICE(y, c(x)) � −
nc∑
i�1

yi log
(
1 − c(x)i

)
,

nc � number of class (8)

Lclassifier−unsupervised � LCE
(
C

(
xu

)
, arg max

(
C

(
xu

)))
(9)

For reliable labeled samples, we employ consistency reg-
ularization to cover the data scarcity [58]. A reliable sample
consists of data for which the predicted class probability is
greater than a threshold I(max

(
pc

(
y|(xl)) ≥ τ

)
. The clas-

sifier utilizing a consistency regularization loss function
endeavors to align the predicted label of a weak augmenta-
tion of the reliably labeled image with its original true label
(Eq. 10). The final loss function of the classifier is found by
solving Eq. 11.

Lclassifier−consistencyregularization

� I(max
(
pc

(
y|

(
xl

))
≥ τ

)
)LR

(
C

(
xl

)
, C

(
α

(
xl

)))

(10)

Lclassifier � LCE

(
C

(
xl

)
, y

)
+ L ICE(C(G(z)), arg max(C(G(z))))

123



M. S. Iraji et al.

+ LCE
(
C

(
xu

)
, arg max

(
C

(
xu

)))

+ I(max
(
pc

(
y|

(
xl

))
≥ τ

)
)LR(C

(
xl

)
, C

(
α
(
xl

))

(11)

3.3 Regularized bad generator

Generator G is a deep neural network with inverse convolu-
tion layers that generates bad images near the boundary. This
generator engages in an adversarial game with the discrimi-
nator by attempting to make its generated images appear real
to said discriminator [25]. A latent vector of z ∼ pz is pro-
vided to the generator, and the parameters of the generator
are updated by sending the created image (fake image G(z))
as the real image to the discriminator (labeled 1, whereas dur-
ing training, labeled 0) (Eq. 12). The generator then attempts
to produce images with a large margin in a second adver-
sarial game with the classifier and desires the classifier to
have high confidence in these images [51]. Consequently,
the generator’s parameters are changed so that the classifi-
cation predictions on the generated images C(G(z)) � ŷxg
are close to their pseudo-label, i.e., the class with the high-
est probability argmax(C(G(z))) � ỹxg , which is a one-hot
vector (Eq. 13).We define the consistency regularization loss
for the bad generator so that it generates distinct fake images
for local latent vector deviations (Eqs. 14 and 15). Thus, the
mode collapse problem [59] for the bad generator is mit-
igated. The combined loss terms of the bad generator are
written in Eq. 16.

Lgenerator−adversarial−1 � LCE

⎛
⎜⎜⎜⎜⎜⎜⎝
D(G(z)︸︷︷︸

x ′︸ ︷︷ ︸
ŷd

, 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

Lgenerator−adversarial−2 � LCE(C(G(z)), arg max(C(G(z))))
(13)

Lgenerator−consistency regularization � L IR(G(z), G(β(z))) (14)

Labeled Images

Unlabeled Images

Bad Fake Images

Wrong Label

Augmented Images
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Fig. 5 Reducing the number of incorrect pseudo-labels via image aug-
mentation and consistency regularization using bad samples
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(
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)

+ λ3L IR(G (z) , G (β (z))

The consistency regularization applied to the discrimina-
tor, bad generator, and classifier facilitates the refinement
of the semi-supervised model’s decision boundary through
the utilization of information-rich generated images (Fig. 5).
Comparing Figs. 2 and 5 indicates the improved performance
from the classifier view in the semi-supervised model based
on the bad generator combinedwith image augmentation and
consistency regularization. Algorithm 1 presents the pseudo-
code of the proposed CRBSGAN.
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Algorithm 1 Consistency-regularized bad semi-supervised generative adversarial networks (CRBSGAN)
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4 Experiments

4.1 Data sets

Toevaluate the effectiveness of the proposed semi-supervised
model, we conducted experiments on three well-known
datasets: MNIST [60], SVHN [61], CINIC-10 [62], and
CIFAR-10 [63], STL-10 [64].

• TheMNIST (Modified National Institute of Standards and
Technology database) contains 60,000 training samples
and 10,000 test samples consisting of handwritten digit
images 0–9.

• The SVHN (Street ViewHouse Numbers) dataset is a real-
world image dataset consisting of 73,257 training samples
and 26,032 test samples of house numbers from 0 to 9,
captured on various backgrounds.

• The CIFAR-10 (Canadian Institute for Advanced
Research) dataset contains 50,000 training images and
10,000 test images, corresponding to ten classes of natu-
ral objects: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck.

• The CINIC-10 dataset expands upon CIFAR-10 by
integrating images sourced from ImageNet, providing
a larger-scale benchmarking option. CINIC-10 encom-
passes around 270,000 images and is partitioned into
training, validation, and test subsets, each containing
90,000 images, making it roughly 4.5 times larger than
CIFAR-10.

• The STL-10 dataset is an extension of the CIFAR-10
dataset, sharing the same ten classes as CIFAR-10. It
includes 5,000 labeled training samples, 100,000 unla-
beled training samples, and 8,000 test samples.

The MNIST dataset is a grayscale dataset with a single
channel and images that are 28 × 28 pixels in size. On the
other hand, the SVHN, CIFAR-10, CINIC-10, and STL-10
datasets consist of RGB images with three channels. The
SVHN and CIFAR-10, CINIC-10 datasets have images that
are 32 × 32 pixels in size, while the STL-10 dataset has
higher-resolution images with a size of 96 × 96 pixels.

In semi-supervised learning, a number of the training
images are labeled with their corresponding class, while the
remaining training images are left unlabeled. It allows the
model to learn from labeled and unlabeled images, which
can improve its performance compared to using only labeled
images. In the case of generative adversarial training with
these datasets, a number of training images, including labels,
are considered real labeled images, and the rest of the training
images without labels are considered real unlabeled images.
Overall, the use of these datasets in the evaluation of the
proposed semi-supervised model provides a comprehensive

assessment of the model’s performance on a range of image
classification tasks.

4.2 MNIST results

The CRBSGAN model was proposed based on the bad gen-
erator, the discriminator, and the classifier. The margin GAN
[51] model, which was considered to be the base model to
compare with the proposed method, also used the same net-
works. Figure 6 shows the architecture of the discriminator,
generator, and classifier adopted from [51] for the MNIST
data. The training images for 100, 600, 1000, and 3000 were
labeled, while the rest were unlabeled. The learning rate for
the classifier was set to 0.1, the discriminator to 0.0002, and
the generator to 0.0002. The hidden vector length was 62,
and the batch size was 64. The model’s error rate means
and deviations were evaluated on the test images over five
runs. The mean error rate percentages of 2.99± 0.19, 2.46±
0.25, 2.35± 0.41, and 1.56± 0.23 were achieved using 100,
600, 1000, and 3000 labeled training images, respectively.
The confusion matrices of two classifiers trained with 100
and 3000 labeled training examples on MNIST test images
are depicted in Fig. 7. An accuracy of 96.54 and 98.56 was
calculated for 59,900 and 57,000 unlabeled training images,
respectively (Fig. 8). Additionally, Fig. 9 depicts the images
created by the bad generator.

4.3 SVHN, CIFAR10 results

The proposed algorithm was executed on a computer with
a 24 GB NVIDIA GeForce RTX 3090 graphics card, a
4.00 GHz Intel Core i7-6700 K processor, and 32 GB of
RAM. Figure 10 depicts the discriminator and generator
architecture for three-channel color images [51]. Similar to
the basic article, a classifier with 12 residual blocks and
Shake-Shake regularization [65] was utilized (Fig. 11). Table
1 contains the model’s parameters. The dimension of the
latent vector z was 100, and the batch size was set to 128.
The classifier learning ratewas assigned 0.05 andmomentum
0.9.

We conducted experiments for 100 SVHN epochs and 150
CIFAR10 epochs. As labeled images for classifier training,
500 of the SVHN training images and 1000 and 4000 of the
CIFAR10 training images were randomly selected. The error
rate percentage over five runs for test images on the SVHN
andCIFAR10 datasets was calculated. Themean error rate of
the test images on the CIFAR10 data set with 1000 and 4000
labeled training samples, respectively, was 7.62 ± 0.35 and
4.02 ± 0.24%. The proposed method for the SVHN dataset
with 500 labeled training samples achieved a mean error rate
of 3.26 ± 0.11.

We conducted ablation studies on the data sets to deter-
mine the impact of the important variance hyper-parameter
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Fig. 6 The architecture of the a discriminator, b generator, and c classifier for the MNIST

Table 1 The proposed model
parameters Parameters Data

MNIST SVHN CIFAR10 CINIC-10 STL-10

lrD 0.0002 0.0002 0.0002 0.0002 0.0002

lrG 0.0002 0.0002 0.0002 0.0002 0.0002

lrC 0.1 0.05 0.05 0.1 0.1

Momentum 0.5 0.9 0.9 0.9 0.9

Beta1 0.5 0.5 0.5 0.5 0.5

Beta2 0.999 0.999 0.999 0.999 0.999

Batch_size 64 128 128 128 100

β function:(μ, σ ) (0,1) (0,0.03) (0,0.07) (0,1) (0,1)

z_dim 62 100 100 100 100

epochs 50 100 150 400 50

The best results are highlighted by bolding the values

(σ ) on the latent space of a bad generator. Other neural net-
work parameters (including layer type, training epochs, and
filter size) in the proposed model were kept constant, and the
error as a performance indicator was measured. The variance
(σ ) values versus error of the CRBSGAN on the SVHN and
CIFAR10 datasets with 500 and 4000 labeled training sam-
ples, respectively, are depicted in Fig. 12. On the SVHN and
CIFAR10 datasets, we observed that σ �0.03 and 0.07 are
the optimal values, resulting in less classification error. Addi-
tionally, Fig. 13 depicts the fake images generated by the bad

generator in conjunction with consistency regularization for
the SVHN and CIFAR10 datasets.

4.4 CINIC-10 results

The classifier training for the proposed model on the CINIC-
10 dataset involved selecting 7,000 and 10,000 labeled
training images. The performance of the CNN-13 classifiers
on the CINIC-10 test set is depicted in Fig. 14 through the
confusion matrices. Evaluation of the classifier trained with
7,000 labeled images on the CINIC-10 test data revealed
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Fig. 7 Confusion matrices for classifiers trained with
a and b 100 and 3000 labeled training images on the MNIST
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Fig. 8 Confusion matrices via classifiers a and b for 59,900 and 57,000
unlabeled training images on the MNIST

accurate detection values of 8092, 7479, 7345, 6980, 7132,
5982, 8236, 7887, 7853, and 7469 for the ten output classes.
In contrast, the classifier trained with 10,000 labeled images
exhibited enhanced detection values of 8032, 7551, 7703,
7143, 7277, 6608, 8337, 8041, 8018, and 7495 for the cor-
responding classes. Additionally, Fig. 15 illustrates the bad Fig. 9 Fake images generated by bad generators a, b, c, and d on the

MNIST dataset where classifiers were trained with 100, 600, 1000, and
3000 labeled training images, respectively
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generated images that were used for the classifiers. Further-
more, Fig. 16 displays the accuracy curve obtained from the
CINIC-10 data. This curve provides visual evidence that sup-
ports the model’s convergence.

4.5 STL-10 results

Previous experiments in the preceding sections were con-
ducted on low-resolution images (32 × 32 pixels). However,
it should be noted that this choice of resolution was made to
demonstrate the effectiveness and efficiency of our approach
in a controlled experimental setting, in line with previous
studies in the field. Therefore, it does not imply that our pro-
posed method is limited to such images. To provide a more
comprehensive analysis, we performed additional experi-
ments on higher-resolution images with a resolution of 96
× 96 pixels. These new experiments were conducted on the
STL10dataset and aimed to showcase the scalability andgen-
eralization of our proposed method across different image
resolutions.

We evaluated the proposed model using a classifier with
a six-layer convolution [66] on the STL-10 dataset, which
consists of 5,000 labeled training data and 100,000 unla-
beled training data. Figure 17 shows the confusion matrix
of the classifier’s predictions on the 8,000 test data. Similar
to [38, 67], we followed the base papers bad Gan [51] and
ICT [46] and adopted many of their hyper-parameters. We
empirically set the coefficients of the consistency losses as
λ1 � 5, λ2 � 10, λ3 � 0.5. The confusion matrix includes
the detection values 732, 724, 643, 748, 596, 671, 504, 693,
637, and 746 for the ten classes. Additionally, Fig. 18 show-
cases the images generated by the regularized bad generator,
which supported the classifier. Furthermore, Fig. 19 show-
cases the convergence of the accuracy curve obtained from
the model on the STL-10 data.

4.6 Vision transformer results

To further enhance the performance of our CRBSGAN
framework, we investigated the integration of vision trans-
formers, which have emerged as a powerful alternative to
convolutional neural networks (CNNs) in computer vision
[68]. In our study, we incorporated the vision transformer
method into the discriminator of CRSSGAN to leverage its
ability to capture long-range dependencies and model global
image context. Our main objective was to improve the dis-
criminating power and feature representation of the model
by replacing specific components of the discriminator with
vision transformers.

In our experiment, we replaced the original discriminator
with a vision transformer-based discriminator. The genera-
tor and classifier remained consistent throughout the entire
experiment. The discriminator transformer was configured

with a patch size of 4, three input channels, and a single output
class. The vision transformer itself had a hidden dimension
of 384 and four attention heads [69]. During the training pro-
cess, we utilized the gradient penalty loss and estimated the
accuracy of the STl-10 data. Due to the limitations of our
8 GB GPU memory, we had to limit the batch size to 8 to
ensure smooth execution.

Figures 20 and 21 depict the results, including the con-
fusion matrices and generated images, obtained using a
discriminator with/without a transformer on STL-10 images
after 10 epochs. The model performance and quality of the
generated images improved significantlywith the application
of the transformer. Additionally, our model, via the discrim-
inator transformer after 10 epochs with a batch size of 8,
reduced the error rate from 0.35 to 0.29. This integration
allowed us to harness the attention mechanisms and self-
attention mechanisms of vision transformers, resulting in a
more comprehensive and informative signal being provided
to the generator.

5 Discussion

5.1 Quantitative discussion

In order to demonstrate the effectiveness and originality
of our proposed method, we conducted a comparison with
SOTA baseline approaches. This comparison was initially
conducted on theMNISTdataset,whichwas chosen due to its
simplicity in comparison to other databases such as CIFAR-
10 and SVHN. Additionally, we ensured a fair comparison
by using uncomplicated and identical network architectures.
To establish the superiority of our proposed approach, we
compared it with existing methods based on bad generators,
whichwe considered to be the SOTAmethods for theMNIST
dataset.

The CRBSGAN model was developed by incorporating
local image augmentation, consistency regularization, and
adversarial training into the bad generator, discriminator, and
classifier. The architecture of the discriminator, bad genera-
tor, and classifier used for the MNIST data was based on the
margin GAN model [51], which was used as the base model
for comparison. However, the base model did not apply local
image augmentation or consistency regularization. Table 2
presents the mean error rate percentages achieved using the
CRBSGAN method on the MNIST dataset with 100, 600,
1000, and 3000 labeled training images, which were 2.99,
2.46, 2.35, and 1.56, respectively. In comparison, the base
model achieved error rates of 3.53, 3.03, 2.87, and 2.06
with the same number of images [51]. The proposed semi-
supervised CRBSGAN model outperforms the basic margin
model [51], the CCS-GAN model [50], and the ICT method
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Fig. 10 The architecture of the a discriminator, b generator for SVHN, CIFAR-10

Fig. 11 Architecture of a the classifier for SVHN and CIFAR-10, b Shake-Shake 96 block details

[46], which used identical discriminator, generator, and clas-
sifier network parameters, as demonstrated in Table 2. The
improvement results from regularizing the bad generator’s
fake informative and augmented images. By enlarging the
images in Fig. 9, it is evident that the class of the samples
can only be determined with a low degree of certainty. This

observation suggests that the samples exhibit shared features
between multiple classes. With the help of the visual insights
from these images near the decision boundary, it was possi-
ble to increase the accuracy of the classifier and improve
pseudo-labeling for unlabeled samples.
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Fig. 13 Generated fake images by bad generators for a CIFAR-10 and
b SVHN

To compare the effectiveness of our proposedmethodwith
existing approaches on the CIFAR-10 and SVHN datasets,
we used bad GANs and the most recent good GANs with
the same neural network architecture (shake-shake). Com-
pared to theMNISTdataset, these datasets aremore complex.
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Fig. 14 Confusion matrices for classifiers trained with a and b 700 and
1000 labeled images per class on the CINIC-10 test images

Table 3 presents the mean error rates of the test images on
the CIFAR-10 dataset with 1000 and 4000 labeled training
samples using our proposedCRBSGANmethod, whichwere
7.62% and 4.02%, respectively. These results were obtained
using the same number of labeled images and conditions as
the base model (10.39% and 6.44%), as reported in [51].
In contrast, the Triple-GAN-v2 (shake-shake) [74] and the
AFDA model [75] achieved error rates of 8.41% and 6.05%,
respectively.

For the SVHN dataset with 500 labeled training samples,
our proposed method improved the mean error rate by 3.26%
compared to the base model’s error rate of 6.07% [51] and
outperformed the Triple-GAN-v2’s error rate of 3.61% [74].
Our proposed method improves performance by using local
image augmentation, consistency regularization, and adver-
sarial training to boost the bad generator.

Table 4 presents a comprehensive comparative analysis of
the performance results on the CINIC-10 dataset. It com-
pares the proposed approach with the currently available
SOTA semi-supervised learning algorithms such as ICT [46],
DSSLDDR + MT [40], and DNLL [41] methods. The semi-
supervised ICT method [46], leveraging unlabeled images,
achieved the following error rates: 25.81 ± 0.16 and 23.19
± 0.21. The DSSLDDR + MT method [40] exhibited error
rates of 23.96 ± 0.42 and 21.81 ± 0.16, while the DNLL
method [41] resulted in error rates of 22.11± 0.28 and 19.38
± 0.17. Furthermore, the CRBSGAN method proposed in
this study demonstrated enhancements in the predicted error
rates. It achieved values of 17.28 ± 0.19 and 15.32 ± 0.14
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Fig. 15 Fake images generated by bad generators a and b on the CINIC-
10 dataset where classifiers were trained with 700, and 1000 labeled
images per class, respectively
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Fig. 16 The accuracy curve on the CINIC-10 data

using the CNN-13 classifier and 700 and 1000 labels per
class, respectively.

In Table 5, a comparative analysis of the model perfor-
mance, including several semi-supervised models, on the
STL-10 test data is presented. The CNN-6 layer classifier,
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Fig. 17 Confusion matrix for the classifier trained with 500 labeled
images per class on the STL-10 test images

Fig. 18 Fake images generated by the bad generator on the STL-10
dataset
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Fig. 19 The accuracy curve on the STL-10 data

trained using 5,000 labeled images, achieved an error rate
of 29.3. On the other hand, CRBSGAN with the assistance
of a bad generator and discriminator using unlabeled data,
resulted in error rates of 16.34 ± 0.07. As a result, this
modification expanded the capabilities of our framework
and facilitated a thorough comparison and evaluation of the
advantages and trade-offs associated with utilizing trans-
formers within the CRBSGAN framework.
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Fig. 20 Confusion matrices for classifiers trained with a discriminator
via/without transformer a and b on the STL-10 test images

5.2 Qualitative discussion

By studying the related works section, the main differ-
ence between non-generative adversarial network-based
approaches and generative adversarial network-based
approaches to semi-supervised classification is how they
leverage unsupervised learning to improve classification
performance. Non-generative adversarial network-based
approaches typically rely on techniques such as self-training,
co-training, and multi-view learning to utilize unlabeled
images for semi-supervised classification [11]. These meth-
ods often involve training multiple classifiers on different
subsets or views of the images and iteratively refining the
classification boundaries based on the labeled and unla-
beled images. However, good GANs refer to GANs that
are well-trained and produce high-quality generated images
that are visually similar to real images. The advantage of
good generative adversarial network-based approaches is
that they can potentially generate an unlimited number of
synthetic samples, providing a rich source of additional train-
ing images for semi-supervised learning, while bad GANs
can refer to GANs that have poor generators and produce
low-quality generated images that have information about
decision boundary.

The CRBSGAN method builds a new approach to semi-
supervised learning, particularly in generating bad fake
images as support vectors to reduce wrong pseudo-labeling.
However, it introduces several novel elements that differenti-
ate it fromprevious approaches and contribute to its improved
performance.

Fig. 21 Bad generated images via a/without b transformer on STL-10
data set after 10 epochs

1. One key difference is the use of local image augmenta-
tion, which generates more informative bad fake images
near the decision boundary to improve the accuracy of
pseudo-labels for low-confidence unlabeled images. This
approach is more effective than previous methods that
generate fake images uniformly across the feature space.
By generating more informative bad fake images near
the decision boundary, the CRBSGAN model can bet-
ter capture the distribution of the underlying images and
improve its ability to generalize to new images.

2. Another novel element is the use of consistency regular-
ization, which encourages the model to produce similar
outputs for perturbed versions of the input. It helps to
reduce over-fitting and improve the generalization per-
formance of the model. Previous methods have used
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Table 2 Means and standard
deviation (SD) of the error rates
(%) for the MNIST test images
(over five runs)

Reference Model Number of labels

100 600 1000 3000

[70] NN 25.81 11.44 10.70 6.04

[70] SVM 23.44 8.85 7.77 4.21

[70] CNN 22.98 7.68 6.45 3.35

[70] TSVM 16.81 6.16 5.38 3.45

[70] EmbedNN 16.86 5.97 5.73 3.59

[71] DBN-rNCA – 8.70 – 3.30

[72] CAE 13.47 6.30 4.77 3.22

[73] MTC 12.03 5.13 3.64 2.57

[57] dropNN 21.89 8.57 6.59 3.72

[57] + PL 16.15 5.03 4.30 2.80

[57] + PL + DAE 10.49 4.1 3.46 2.69

[51] Base model bad GAN 3.53 ±
0.57

3.03 ± 0.6 2.87 ±
0.71

2.06 ± 0.2

[50] CCS-GAN 8.34 3.81 3.37 2.49

[46] ICT 6.96 ±
0.45

4.48 ±
0.02

3.34 ±
0.33

2.21 ± 0.09

Ours Consistency- Regularized
bad GAN

2.99 ±
0.19

2.46 ±
0.25

2.35 ±
0.41

1.56 ± 0.23

The best results are highlighted by bolding the values

Table 3 Comparison of Means and SD of the error rate (%) for the SVHN and CIFAR10 test images (over five runs)

Reference Model Number Of labels

SVHN (500) CIFAR-10(1000) CIFAR-10(4000)

[76] Ladder – – 20.04 ± 0.47

[77] CatGAN – – 19.58 ± 0.58

[78] FM GANs 18.44 ± 0.48 19.61 ± 0.20 18.63 ± 2.32

[48] Triple-GAN – – 18.82 ± 0.32

[79] SGAN – – 17.26 ± 0.69

[80] π model 6.83 ± 0.66 27.36 ± 1.20 13.20 ± 0.27

[23] Bad GAN (share layers) 6.20 ± 0.07 18.37 ± 0.55 14.5 ± 0.26

[51] Base model bad Gan(3player) 6.07 ± 0.43 10.39 ± 0.43 6.44 ± 0.10

[75] AFDA – 9.40 ± 0.32 6.05 ± 0.13

[18] VAT + Ent – – 10.55 ± 0.05

[46] ICT – 15.48 ± 0.78 7.29 ± 0.02

[50] CCS-GAN 5.19 ±0.13 15.80 ± 0.22 14.01 ± 0.15

[74] Triple-GAN-v2 (shake-shake) 3.61 ±0.26 8.41 ± 0.19 6.54 ± 0.08

Ours Consistency-Regularized bad GAN (3player-shake-shake) 3.26 ± 0.11 7.62 ± 0.35 4.02 ± 0.24

The best results are highlighted by bolding the values
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Table 4 Average error rate (%)
for the CINIC-10 test data
obtained from five runs

Reference Model Number Of labels

CINIC-10 (700) CINIC-10 (1000)

[80] π model 29.66 ± 1.12 27.04 ± 0.85

[35] TE 30.38 ± 1.01 27.35 ± 0.86

[35] MT 28.41 ± 0.29 25.71 ± 0.12

[46] ICT 25.81 ± 0.16 23.19 ± 0.21

[40] DSSLDDR 29.35 ± 0.31 26.75 ± 0.24

[40] DSSLDDR + MT 23.96 ± 0.42 21.81 ± 0.16

[41] DNLL 22.11 ± 0.28 19.38 ± 0.17

Ours Consistency-Regularized bad GAN 17.28 ± 0.19 15.32 ± 0.14

The best results are highlighted by bolding the values

consistency regularization, but the CRBSGAN approach
extends it by incorporating local image augmentation
and adversarial training for bad generators further to
improve the consistency of the model’s outputs. The
CRBSGAN approach also utilizes adversarial training,
which involves training a discriminator to distinguish
between bad fake and real images. It helps to improve
the diversity and quality of the bad fake images, leading
to better performance on the classification task.

3. The CRBSGAN model utilizes consistency regulariza-
tion to boost the model’s classifier and reduce the
classifier’s margin on pseudo-labels generated for fake
images, which are used to train the model in adversarial
training. This approach is more effective than previous
methods in that the classifier’s prediction in adversarial
training was not reinforced. They had included noisy and
irrelevant margins on pseudo-labels for bad fake images,
which degraded the model’s performance.

4. The CRBSGAN incorporated a transformer-based dis-
criminator that enhances the performance of the bad
generator through transformer attention in the three-
player bad semi-supervised generative adversarial net-
work framework.

These elements combine to improve the efficiency, accu-
racy, and robustness of the model, leading to significant
improvements in classification performance compared to
previous SOTA methods.

5.3 Theoretical discussion

Suppose we have training images S� (X , Y ) �
{(xi , yi )|xi ∈ R

d∗d , yi ∈ {1 . . . K }}Ni�1 with prealX , Y dis-

tribution. Real images (X , Y ) are divided into labeled XL �
(XL , Y) ∼ preal

(xl , y)
� {(

xli , yi
)|xli ∈ R

d∗d , yi ∈ {1 . . . K }}V
i�1

and unlabeled images XU∼ prealxu � {(xui
)|xui ∈

Table 5 Average error rate (%) for the STL-10 test data obtained from
five runs

Reference Model STL-10 (5000)

[66] CNN 29.3 ± NA

[66] CNN + Adversarial attacks 25 ± NA

[46] ICT 27 ± 0.18

[51] bad GAN 28.2 ± 0.23

Ours Consistency-Regularized bad
GAN

16.34 ± 0.07

The best results are highlighted by bolding the values

R
d∗d}Qi�1whereV + Q � N , V 	 Q, and fake images

XG∼ pfakexg � {(
xgi

)|xgi ∈ R
d∗d}M

i�1 are generated by a bad
generator. The total images are set T � S∪XG . There may
be many predictors h : X → Y that map input X to output
Y in supervised classification. We are seeking a predictor ĥ
that minimizes the empirical risk R � EXL , Y I[Y �� h(XL )]
on XL (Eq. 17).

ĥ � argmin
h

R (17)

In semi-supervised classification, the predictive model ĥ
aims to minimize the empirical risk for less labeled images
and more unlabeled images. The p function of the model ĥ
provides a probability vector belonging to each class for unla-
beled images qU � p

(
Y |XU

)
. The model ĥ aims to bring

the class probability vector to the maximum probability class
Ŷ=arg max (qU ) closer via cross-entropy [57]. In reference
[23], it is shown that a bad generator in the two-player game
reduceswrong pseudo-labeling and empirical risk ĥ (Eq. 18).

ĥ � arg min
h

EXL , Y I[Y �� h(X)] + EXU LCE

(
qU , Ŷ

)
(18)
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Labeled and unlabeled real images XL , XU are provided
to the discriminator with label 1 and generated fake images
XGwith label 0. A weak augmentation set B is generated
for these images, and label consistency regularization is
performed. Assume that set Bcontains invariant label aug-
mentations α(T ) on the labeled, unlabeled, and fake images
Tas

[
h(T ) � h(α(T )), α is a tolerable augmentation function

]
(Eqs.19–22). The proposed model’s discriminator, genera-
tor, and classifier are deep neural networks. According to
[55], the consistency-regularized discriminator

...
h d shows

less empirical risk and generalization error than the usual
discriminator ĥd , which causes the production of more
informative images through the consistency-regularized bad
generator. We define an upper bound for the consistency-
regularized discriminator

...
h d and classifier

...
h c based on [55],

per Eqs. 23 and 24. These theoretical findings suggest that
image augmentation and consistency regularization may aid
in the improvement of bad generative adversarial networks.

X AL �
(
X AL , Y

)
∼ paument - real

(xl , y) �
(
xali , y

)

�
{
α
(
xli , yi

)
|
(
xli , yi

)
∈ (XL , Y ), α is weak

augmentation function, h
(
XL

)
� h

(
α
(
XL

))}O∗V
i�1

,

O is augmentation factor (19)

XAU ∼paument - real
xu � (

xaui
)

�
{
α
(
xui

)|xui ∈ XU , α is weak augmentation function,

h
(
XU

)
� h

(
α
(
XU

))}O∗Q
i�1

(20)

XAG ∼paument - fake
xg � (

xagi
)

�
{
α
(
xgi

)|xgi ∈ XG , α is weak augmentation function,

h
(
XG

)
� h

(
α
(
XG

))}O∗M
i�1

(21)

B � α(T ) � X AL ∪ X AU ∪ X AG (22)

R
(...
h d

) − R
(
ĥd

)
≤

√
2 log 2 + log

( 1
δ

)

N
(23)

R
(...
h c

) − R
(
ĥc

)
≤

√
K log K + log

( 1
δ

)

N
(24)

6 Conclusion

Data scarcity is detrimental to supervised machine learning.
Correct pseudo-labeling can enhance the classifier’s per-
formance when leveraging unlabeled images. This research
aimed to address the problem of incorrect pseudo-labeling
of unlabeled images using a novel three-player framework
termed CRBSGAN achieved through a new loss function.
The proposed model includes bad generators that produce
low-quality images, which contain information about the
decision boundary. A bad fake image augmentation and a
good image augmentation better covered the data space in
bad GAN. Additionally, a novel consistency-regularized bad
generator was developed using the new consistency regular-
ization of bad fake images. The discriminator, bad generator,
and classifier components were strengthened by proposed
consistency regularizations. Also, replacing the transformer-
based discriminator with a pure discriminator improved the
generation of bad images. This study demonstrated that
the consistency-regularized bad semi-supervised GAN is
effective at pseudo-labeling for unlabeled images, and the
proposed model outperformed previous research in terms of
error rate. By improving the classification performance using
unlabeled images, our research contributes to the develop-
ment of AI models that can better understand and analyze
visual information.

The proposed approach has various applications in
computer-generated imagery (CGI) and virtual worlds. It
enables diverse content generation, improves visual analysis,
and enhances the fidelity and consistency of style transfer
or artistic rendering algorithms in CGI and virtual worlds.
Additionally, it results in more accurate identification and
tracking of objects, precise segmentation, realistic lighting
effects, and enhanced visual aesthetics. These applications
demonstrate the versatility and potential impact of the sug-
gested method in these domains.

Using advanced architectures of deep networks, such
as changing network depth and layer type in the genera-
tor, discriminator, and classifier, may yield better results in
future research. Additionally, the consistency regularization
of deep network weights for the generator, discriminator, and
classifier will almost certainly produce impressive results.
Furthermore, the performance of the proposed model could
be improved by adjusting hyper-parameters such as the initial
weights of deepnetwork layers, the size of convolutionfilters,
and the coefficients of losses using meta-heuristic algo-
rithms. This approachmay lead to improved results and better
adaptability of the model across different datasets. Another
potential avenue is to explore integrating Mobile-Sal’s effi-
cient feature extraction capabilities, particularly leveraging
depth information, into a bad GAN architecture to enhance
the quality and diversity of generated samples [81]. One of
the study’s limitations is unbalanced data processing, which
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can be investigated using custom loss functions or data bal-
ancing methods. In instances where high-quality unlabeled
images are limited, employing a good generator to produce
such data is anticipated to enhance model efficiency.

Authors’ contribution Iraji and Tanha proposed the Consistency-
Regularized Bad Semi-Supervised Generative Adversarial Networks
approach. Iraji executed the approach and analyzed the results.
Iraji, Tanha, Balafar, and Feizi-Derakhshi were responsible for the
manuscript’s conceptualization, validation, resources, and editing. All
authors read and authorized the final manuscript.

Data availability Data will be made available on request.

Declarations

Competing interest The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Ethical and informed consent This article does not contain any studies
with humanparticipants or animals performedby anyof the authors. The
datasets used in the manuscript are derived from publicly available data
sets and may be obtained from the appropriate authors upon reasonable
request.

References

1. Qin, Y., et al.: GuideRender: large-scale scene navigation based
on multi-modal view frustum movement prediction. Vis. Comput.
39(8), 3597–3607 (2023)

2. Sheng, B., et al.: Accelerated robust Boolean operations based on
hybrid representations. Comput. Aided Geom. Des. 62, 133–153
(2018)

3. Jiang, J., et al.: Real-time hair simulation with heptadiagonal
decomposition onmass spring system. Graph.Models 111, 101077
(2020)

4. Ertugrul, E., et al.: Embedding 3D models in offline physical envi-
ronments. Comput. Anim. Virtual Worlds 31(4–5), e1959 (2020)

5. Huo,X., et al.: Attention regularized semi-supervised learningwith
class-ambiguous data for image classification. PatternRecogn.129,
108727 (2022)

6. Jian, C., Yang, K., Ao, Y.: Industrial fault diagnosis based on active
learning and semi-supervised learningusing small training set. Eng.
Appl. Artif. Intell. 104, 104365 (2021)

7. Chang, J.-H., Weng, H.-C.: Fully used reliable data and attention
consistency for semi-supervised learning. Knowl.-Based Syst. 249,
108837 (2022)

8. Ren, Q., et al.: A framework of active learning and semi-supervised
learning for lithology identification based on improved naive
Bayes. Expert Syst. Appl. 202, 117278 (2022)

9. Gu, X.: A self-training hierarchical prototype-based approach for
semi-supervised classification. Inf. Sci. 535, 204–224 (2020)

10. Lu, L., et al.: Uncertainty-aware pseudo-label and consistency for
semi-supervisedmedical image segmentation. Biomed. Signal Pro-
cess. Control 79, 104203 (2023)

11. Zhang, Y., et al.: Multi-view classification with semi-supervised
learning for SAR target recognition. Signal Process. 183, 108030
(2021)

12. Emadi, M., et al.: A selection metric for semi-supervised learning
based on neighborhood construction. Inf. Process. Manage. 58(2),
102444 (2021)

13. Wei, X., et al.: FMixCutMatch for semi-supervised deep learning.
Neural Netw. 133, 166–176 (2021)

14. Zhang, B., et al.: Flexmatch: Boosting semi-supervised learning
with curriculum pseudo labeling. Adv. Neural. Inf. Process. Syst.
34, 18408–18419 (2021)

15. Arantes, R.B., Vogiatzis, G., Faria, D.R.: Learning an augmenta-
tion strategy for sparse datasets. Image Vis. Comput. 117, 104338
(2022)

16. Xiu, Y., et al.: FreMix: Frequency-based mixup for data augmen-
tation. Wirel. Commun. Mob. Comput. 2022 (2022)

17. Gan, Y., et al.: Deep semi-supervised learning with contrastive
learning and partial label propagation for image data. Knowl.-
Based Syst. 245, 108602 (2022)

18. Miyato, T., et al.: Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE Trans.
Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

19. Gangwar, A., et al.: Triple-BigGAN: Semi-supervised generative
adversarial networks for image synthesis and classification on sex-
ual facial expression recognition. Neurocomputing 528, 200–216
(2023)

20. He, R., et al.: Generative adversarial network-based semi-
supervised learning for real-time riskwarning of process industries.
Expert Syst. Appl. 150, 113244 (2020)

21. Liu, Y., et al.: Regularizing discriminative capability of CGANs
for semi-supervised generative learning. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
(2020)

22. Li, Y., et al.: The theoretical research of generative adversarial
networks: an overview. Neurocomputing 435, 26–41 (2021)

23. Dai, Z., et al.: Good semi-supervised learning that requires a bad
gan. Adv, Neural Inf. Process. Syst. 30 (2017)

24. Yun, S., et al.: Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In: Proceedings of the IEEE/CVF
international conference on computer vision. (2019)

25. Goodfellow, I., et al.: Generative adversarial networks. Commun.
ACM 63(11), 139–144 (2020)

26. Wang, R., et al.: Better pseudo-label: Joint domain-aware label and
dual-classifier for semi-supervised domain generalization. Pattern
Recogn. 133, 108987 (2023)

27. Kim, D., et al.: Multi-co-training for document classification using
various document representations: TF–IDF, LDA, and Doc2Vec.
Inf. Sci. 477, 15–29 (2019)

28. Yu, K., et al.: A consistency regularization based semi-supervised
learning approach for intelligent fault diagnosis of rolling bearing.
Measurement 165, 107987 (2020)

29. Liu, L., Tan, R.T.: Certainty driven consistency loss on multi-
teacher networks for semi-supervised learning. Pattern Recogn.
120, 108140 (2021)

30. Ke, Z., et al.: Dual student: Breaking the limits of the teacher in
semi-supervised learning. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. (2019)

31. Deng, W., et al.: Deep ladder reconstruction-classification network
for unsupervised domain adaptation. Pattern Recogn. Lett. 152,
398–405 (2021)

32. Xiao, H., et al.: Semi-supervised semantic segmentation with cross
teacher training. Neurocomputing 508, 36–46 (2022)

33. Li, B., Pi, D., Lin, Y.: Learning ladder neural networks for semi-
supervised node classification in social network. Expert Syst. Appl.
165, 113957 (2021)

34. Chen, J., Yang, M., Ling, J.: Attention-based label consistency for
semi-supervised deep learning based image classification. Neuro-
computing 453, 731–741 (2021)

35. Meel, P., Vishwakarma, D.K.: A temporal ensembling based semi-
supervised ConvNet for the detection of fake news articles. Expert
Syst. Appl. 177, 115002 (2021)

123



M. S. Iraji et al.

36. Ding, W., Abdel-Basset, M., Hawash, H.: RCTE: A reliable and
consistent temporal-ensembling framework for semi-supervised
segmentation of COVID-19 lesions. Inf. Sci. 578, 559–573 (2021)

37. Wang, J., et al.: Adversarial attacks and defenses in deep learning
for image recognition: A survey. Neurocomputing 514, 162–181
(2022)

38. Berthelot, D., et al.: Remixmatch: Semi-supervised learning with
distribution alignment and augmentation anchoring. Int. Conf.
Learn. Represent. (ICLR), (2020)

39. Sohn, K., et al.: Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. Adv. Neural. Inf. Process. Syst.
33, 596–608 (2020)

40. Yang, M., et al.: Discriminative semi-supervised learning via
deep and dictionary representation for image classification. Pat-
tern Recogn. 140, 109521 (2023)

41. Xu, H., et al.: Semi-supervised learning with pseudo-negative
labels for image classification. Knowl.-Based Syst. 260, 110166
(2023)

42. Li, X., et al.: Feature-aware conditional GAN for category text
generation. Neurocomputing 547, 126352 (2023)

43. Rubin, M., et al.: TOP-GAN: Stain-free cancer cell classification
using deep learning with a small training set. Med. Image Anal.
57, 176–185 (2019)

44. Mao, J., et al.: Pseudo-labeling generative adversarial networks
for medical image classification. Comput. Biol. Med. 147, 105729
(2022)

45. Chen, Z., Ramachandra, B., Vatsavai, R.R.: Consistency regular-
ization with generative adversarial networks for semi-supervised
learning (2020). arXiv preprint arXiv:2007.03844

46. Verma, V., et al.: Interpolation consistency training for semi-
supervised learning. Neural Netw. 145, 90–106 (2022)

47. Zhao, Z. et al.: Improved consistency regularization for gans. In:
Proceedings of the AAAI Conference on Artificial Intelligence
(2021)

48. Li, C. et al.: Triple generative adversarial nets. Adv. Neural Inf.
Process. Syst. 30 (2017)

49. Gan, Y. et al.: Generative adversarial networks with adaptive learn-
ing strategy for noise-to-image synthesis. Neural Comput. Appl.
35(8), 6197–6206 (2022)

50. Wang, L., Sun, Y., Wang, Z.: CCS-GAN: A semi-supervised gen-
erative adversarial network for image classification. Vis. Comput.
38(6), 2009–2021 (2022)

51. Dong, J., Lin, T.: MarginGAN: Adversarial training in semi-
supervised learning. Adv. Neural Inf. Process. Syst. 32 (2019)

52. Gu, X., Angelov, P.P.: Semi-supervised deep rule-based approach
for image classification. Appl. Soft Comput. 68, 53–68 (2018)

53. Zhang, H. et al.: Consistency regularization for generative adver-
sarial networks. Proc. Int. Conf. Learn. Represent. (2020)

54. Yang, M., et al.: Deep neural networks with L1 and L2 regulariza-
tion for high dimensional corporate credit risk prediction. Expert
Syst. Appl. 213, 118873 (2023)

55. Yang, S. et al.: Sample efficiency of data augmentation consistency
regularization. In: International Conference on Artificial Intelli-
gence and Statistics. PMLR (2023)

56. Feng,W., et al.: Newmargin-based subsampling iterative technique
in modified random forests for classification. Knowl.-Based Syst.
182, 104845 (2019)

57. Lee, D.-H.: Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In: Workshop on chal-
lenges in representation learning, ICML. (2013)

58. Liu, Z., et al.: Dual-feature-embeddings-based semi-supervised
learning for cognitive engagement classification in online course
discussions. Knowl.-Based Syst. 259, 110053 (2023)

59. Li, W., et al.: Tackling mode collapse in multi-generator GANs
with orthogonal vectors. Pattern Recogn. 110, 107646 (2021)

60. LeCun, Y., et al.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

61. Netzer, Y. et al.: Reading digits in natural images with unsuper-
vised feature learning. In: NIPS workshop on deep learning and
unsupervised feature learning. 2011, Granada, Spain.

62. Darlow, L.N. et al.: Cinic-10 is not imagenet or cifar-10 (2018).
arXiv preprint arXiv:1810.03505

63. Krizhevsky, A., Hinton, G.: Learning multiple layers of features
from tiny images (2009)

64. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks
in unsupervised feature learning. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. (2011)

65. Qiu, S., et al.: Adversarial attack and defense technologies in natu-
ral language processing: A survey. Neurocomputing 492, 278–307
(2022)

66. Zoppi, T., Ceccarelli, A.: Detect adversarial attacks against
deep neural networks with GPU monitoring. IEEE Access 9,
150579–150591 (2021)

67. Bao, J. et al.: CVAE-GAN: fine-grained image generation through
asymmetric training. In: Proceedings of the IEEE international con-
ference on computer vision. (2017)

68. Wu,Y.-H. et al.: P2T: Pyramid pooling transformer for scene under-
standing. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

69. Jiang, Y., Chang, S., Wang, Z.: Transgan: Two pure transformers
can make one strong gan, and that can scale up. Adv. Neural. Inf.
Process. Syst. 34, 14745–14758 (2021)

70. Weston, J., Ratle, F., Collobert, R.: Deep learning via semi-
supervised embedding. In: Proceedings of the 25th international
conference on Machine learning. (2008)

71. Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by
preserving class neighbourhood structure. In:Artificial Intelligence
and Statistics. PMLR (2007)

72. Ranzato, M.A. et al.: Unsupervised learning of invariant feature
hierarchies with applications to object recognition. In: 2007 IEEE
conference on computer vision and pattern recognition. IEEE
(2007)

73. Rifai, S. et al.: The manifold tangent classifier. Adv. Neural Inf.
Process. Syst. 24 (2011)

74. Li, C., et al.: Triple generative adversarial networks. IEEE Trans.
Pattern Anal. Mach. Intell. 44(12), 9629–9640 (2021)

75. Mayer, C., Paul, M., Timofte, R.: Adversarial feature distribu-
tion alignment for semi-supervised learning. Comput. Vis. Image
Underst. 202, 103109 (2021)

76. Rasmus, A. et al.: Semi-supervised learning with ladder networks.
Adv. Neural Inf. Process. Syst. 28 (2015)

77. Springenberg, J.T.: Unsupervised and semi-supervised learning
with categorical generative adversarial networks. Proceedings of
International Conference on Learning Representations (ICLR),
(2016)

78. Salimans, T. et al.: Improved techniques for training gans. Adv.
Neural Inf. Process. Syst. 29 (2016)

79. Deng, Z. et al.: Structured generative adversarial networks. Adv.
Neural Inf. Process. Syst. 30 (2017)

80. Tarvainen, A., Valpola, H.: Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised
deep learning results. Adv. Neural Inf. Process. Syst. 30 (2017)

81. Wu, Y.-H., et al.: MobileSal: Extremely efficient RGB-D salient
object detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(12),
10261–10269 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2007.03844
http://arxiv.org/abs/1810.03505


Image classification with consistency-regularized bad semi-…

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Mohammad Saber Iraji is a
faculty member of the Computer
Science Department at PNU
University in Iran. His research
areas include semi-supervised
classification, pattern recogni-
tion, image processing, feature
selection, fuzzy logic, and game
theory.

Jafar Tanha obtained his Bache-
lor’s degree in Computer Science
in December 1999 and his Mas-
ter’s degree in Computer Science
and Applied Mathematics in June
2002 from the Department of
Computer Science and Mathe-
matics of the University of Amir
Kabir (Polytechnic Tehran). He
received a Ph.D. degree in the
Computer Science Department
from the University of Amster-
dam. He is currently a Professor
at the Faculty of Computer Engi-
neering, University of Tabriz,

Iran. His research interests include learning (artificial intelligence),
pattern classification, semi-supervised learning, pattern clustering,
complex networks, and game theory.

Mohammad-Ali Balafar is
currently a Professor at the Fac-
ulty of Computer Engineering,
University of Tabriz, Iran. His
research interests include fea-
ture extraction, biomedical MRI,
brain, convolutional neural nets,
face recognition, fuzzy set the-
ory, image classification, image
enhancement, image motion anal-
ysis, image representation, image
resolution, image segmentation,
image sensors, image sequences,
image texture, medical image
processing, Bayes methods,

probability, and wavelet transforms.

Mohammad-Reza Feizi-
Derakhshi received a B.S. degree
in software engineering from the
University of Isfahan, Iran, and
an M.Sc. and Ph.D. degree in
artificial intelligence from the
Iran University of Science and
Technology, Tehran, Iran. He is
currently a Professor at the Fac-
ulty of Computer Engineering,
University of Tabriz, Iran. His
research interests include natural
language processing, optimization
algorithms, deep learning, social
network analysis, and intelligent

databases.

123


	Image classification with consistency-regularized bad semi-supervised generative adversarial networks: a visual data analysis and synthesis
	Abstract
	1 Introduction
	2 Related works
	2.1 Non-generative adversarial network-based approaches to semi-supervised classification
	2.2 Generative adversarial network-based approaches to semi-supervised classification

	3 Consistency-regularized bad semi-supervised generative adversarial networks (CRBSGAN)
	3.1 Regularized discriminator
	3.2 Regularized classifier
	3.3 Regularized bad generator

	4 Experiments
	4.1 Data sets
	4.2 MNIST results
	4.3 SVHN, CIFAR10 results
	4.4 CINIC-10 results
	4.5 STL-10 results
	4.6 Vision transformer results

	5 Discussion
	5.1 Quantitative discussion
	5.2 Qualitative discussion
	5.3 Theoretical discussion

	6 Conclusion
	References


