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Abstract
Recent advancements in deep neural networks have shown great potential in generating realistic data and performing clustering
tasks. This is due to their ability to capture intricate patterns. However, current generative models face challenges such as
poor performance and computational complexity caused by the issue of dimension disaster. The variational autoencoder
(VAE), a commonly used method, also encounters problems such as posterior collapse and poor performance in multiclass
classification when using the latent variables of VAE. Our goal in this study is to tackle the issue of effective disentanglement
in image generation, classification and clustering tasks. We develop a generative network based on VAE incorporating a
Gaussian mixture distribution as the prior. This enhancement improves the representation of latent variables and helps to
overcome the challenges of matching the ground truth posterior. To further improve clustering performance, we introduce the
total correlation as a kernel for computing latent features between embedding points and cluster centers. This technique is
particularly useful in cases with complex latent variables and can also be applied for hierarchical disentanglement. Moreover,
we employ the Fisher discriminant as a regularization term to minimize the within-class distance and maximize the between-
class distance for samples, which has an important effect on the performance of our model viewed from the experimental
results. We evaluate our proposed network on four datasets, and the experimental results demonstrate its effectiveness across
multiple metrics.

Keywords Variational autoencoder · Disentanglement · Representation learning · Gaussian mixture distribution

1 Introduction

One of the fundamental goals in machine learning research
is to construct models that possess a comprehensive under-
standing of the world. In the realm of supervised machine
learning, two prominent methodologies have emerged: gen-
erative approaches and discriminative approaches, which
give rise to generative models and discriminative models,
respectively. Generative models, relying on joint distribu-
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tions, capture a broader spectrum of data information and
exhibit greater universality, whereas discriminative models
focus on conditional distributions. Over the past few decades,
significant efforts have been directed toward the explo-
ration of generative models for image generation. Notable
approaches include the utilization of generative adversar-
ial networks (GANs) [1–4], variational autoencoder (VAE)
[5–7], PixelCNN [8, 9], or diffusion models [10–12]. The
encoder and decoder modules of autoencoder (AE) and
VAE network architectures have found extensive applica-
tion in various neural network frameworks. Additionally,
the investigation of the variational lower bound serves as
a typical implementation of optimal transport theory, and
advancements in this aspect hold the potential to propel the
development of optimal transport theory. Among these mod-
els, research onVAEmodels is regarded asmore foundational
and significant than others [6, 7, 15, 32].

From a modeling perspective, the VAE follows an
autoencoder-like architecture consisting of an encoder and
a decoder [13]. The objective is to not only achieve effec-
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tive reconstruction of the input but also generate a latent
representation that is meaningful and informative [14]. In
the vanilla VAE, the approximate posterior is restricted
to be a multivariate Gaussian with a diagonal covariance
structure.However, thismodeling approach suffers fromnon-
identifiable. To address this issue, we sample from a more
flexible distribution, specifically a mixture of Gaussians,
which allows for a richer latent space representation. By
incorporating a Gaussian mixture model (GMM) [15], com-
prisingmultipleGaussian distributions, themodel’smarginal
distribution over observed variables better captures the data
characteristics. The effectiveness of Gaussian mixture VAE
(GMVAE) has been demonstrated in various existing works.
DLGMM [16] employs a mixture of Gaussian distribution
as the approximate posterior for VAE, while VaDE [17]
replaces the single Gaussian prior of VAE with a mixture
of Gaussians, making it suitable for clustering tasks. Simi-
larly, GMVAE [18] assumes a multimodal prior distribution
to model complex data. Lee et al. [19] apply variational
inference and a mixture of Gaussian prior optimized using
the expectation–maximization (EM) algorithm for meta-
learning. Additionally, Bai et al. [20] adopt a Gaussian
mixture VAE and incorporate a contrastive loss to capture
latent correlations for classification. Other works, such as
Figueroa et al. [21] for semi-supervised learning, Collier et
al. [22] for unsupervised clustering with continuous relax-
ation of discrete variables, Yang et al. [23]for handling
complex spread in deep latent space using graph embed-
ding, and Abdulaziz et al. [24] employing GMVAE with
auxiliary loss functions, have also utilized GMVAE for vari-
ous applications. In this paper, we focus on the generative
manner, aiming to improve image synthesis performance
with GMVAE. To the best of our knowledge, while some
methods combine these approaches, there are distinctions in
our specific modeling approach, resulting in superior results
compared to existing methods.

In the quest to discover encoding functions that dis-
entangle [25] high-level concepts from each other, the
consciousness prior is regarded as one among several tools
to guide the learner toward better high-level representations
[26]. In the context of VAE-based models, the objective
is to capture factors in the latent space through indepen-
dent variables in the representation, which can be valuable
for various downstream tasks. A notable attempt in this
direction is the β-VAE [27], which introduced a regularizer
hyperparameter, β, limit the capacity of the latent chan-
nel and exert implicit pressure for independence in the
learned posterior. Theoretical analysis of β-VAE based on
the information bottleneck principle [28] was provided by
Burgess et al. [29]. Hu et al. explored that constraining
mean variable alone can achieve better disentanglement and
reconstruction performance and introduced mean constraint
VAE [30]. Other models, such as FactorVAE [31], β-TCVAE

[32], and InfoVAE [33], adopted different regularization
approaches, including mutual information reweighting and
Hilbert–Schmidt independence criterion (HSIC) [34], to
encourage disentanglement and independence between latent
variables. Drawing inspiration from the work of Esmaeili et
al. [35],who employed a factorized decomposition to encour-
age independence between groups of latent variables, we
apply a similar approach to our loss function. While a deep
hierarchy of latent stochastic variables can lead to a more
expressive model, no direct connection has been established
between disentangling sub-Gaussian distributions within a
GMM and introducing the total correlation (TC) term. In our
approach, by incorporating the TC term, we establish inter-
dependencies among the sub-Gaussian distributions after the
hierarchical decomposition. This enables the decoupling of
several components within the sub-Gaussian distributions,
and we add an extra regularization term to prevent posterior
collapse.

Another challenging issue in the latent space of Gaus-
sian mixture models is the overlapping and hard-to-classify
nature of different sub-distributions. Existing loss func-
tions are insufficient to address this problem effectively.
Geometrically, minimizing the variances of sub-Gaussian
distributions andmaximizing the distances between different
sub-Gaussian distributions can effectively tackle this issue,
aligning with the principles of Fisher discriminant analysis.
The geometric interpretation and optimization framework of
Fisher distance have been extensively studied by experts in
the field [36]. Building upon this, we establish a theoretical
relationship between Fisher distance and Gaussian mixture
models. By introducing the Fisher term, our aim is to con-
strain the distances between samples, thereby maximizing
within-class differences and minimizing between-class dis-
tances. Through comprehensive experiments and an ablation
study, we demonstrate the effectiveness of incorporating the
Fisher term.

In summary, our contributions are as follows:

• Our first contribution is to utilize a more powerful repre-
sentation model, the Gaussian mixture model (GMM),
for fitting the ground truth distribution, and derives
ELBO from the Bayesian equation. We enhance the
expressiveness of the latent space by constructing a
one-sample-one-GM approach, in contrast to the one-
sample-one-standard Gaussian distribution in the vanilla
VAE. However, validated by experiments, our model
is more effective. Furthermore, we also found that the
distribution of the coefficient vectors depends on the
dimensionality of the latent variables, which results in
different distributions of coefficient vectors needing to
be chosen for different datasets as well as tasks.

• Our second contribution is to introduce the decoupling
of the total correlation (TC) term into the Gaussian mix-
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Fig. 1 Variational autoencoder
network architecture with
Gaussian mixture prior

ture model, which results in the decoupling of individual
Gaussian components. We apply the total correlation
term to Gaussian mixture distributions, enabling the
decoupling of individual sub-Gaussian distributions. In
the case of complex latent variables, such as 2 or higher
for the dimension of the latent variables, this technique
can also be used for hierarchical disentanglement to
achieve improved fidelity and diversity.

• Our third contribution is to address the challenge of hard-
to-classify samples. We use the Fisher discriminant as
a regularization term. This method helps to minimize
within-class distance and maximize between-class dis-
tance, which improves clustering quality.

Our experiments and ablation study with various datasets
demonstrate the model’s improved performance.

2 Theory andmethods

2.1 Gaussianmixture prior

A Gaussian mixture model (GMM) can be seen as a combi-
nation of T individual Gaussian models, providing enhanced
expressive capabilities by leveraging various probability
distributions. Let z = (z1, z2, . . . , zT ) denote the set of
sub-Gaussian distributions, where zi ∼ N (μi , σ i ). The
weighting factor for each sub-Gaussian distribution is w =
(w1, w2, . . . , wT ), where wi ∈ R. The calculation method
for the latent variable x is as follows:

x =
T∑

i=1

wi zi = wT z (1)

At this moment, the latent variable follows a Gaussian
mixture distribution.

In standard VAE, the posterior distribution is combined
with a parameter-free isotropic Gaussian prior. The training

Fig. 2 Probabilistic graphic model for the Gaussianmixture variational
autoencoder (GMVAE) showing the generative model (left) and the
variational family (right)

process involves optimizing two losses simultaneously: the
KL divergence and the reconstruction loss. However, cal-
culating the KL divergence between two Gaussian mixture
models poses a significant challenge.

Our modeling approach differs from that of Nat et al. [18].
In their experiments, the global data sample is modeled as
a Gaussian mixture model, with individual samples belong-
ing to one of the sub-Gaussian distribution spaces. However,
their modeling approach is inaccurate, as individual sam-
ples still follow a certain Gaussian distribution. In contrast,
our model calculates the corresponding K sub-Gaussian
distributions and their coefficients from a single sample,
yielding a weighted Gaussian mixture distribution. Theoreti-
cally, employingmore complexmodeling techniques leads to
improved representation, and the generated data align more
closely with real data. Our experiments demonstrate that the
images generated by our proposed method are clearer and
more distinguishable than those generated by other models.

The generation and inference processes of the GMVAE
generative model, as depicted in Fig. 1, are trained using
the variational inference objective, specifically the evidence
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lower bound (ELBO), expressed as follows:

LELBO = Eq

[
log

p( y, x,w, z)
q(x,w, z| y)

]
. (2)

where generativemodel p( y, x,w, z)= p(w)p(z)p(x|w, z)
p( y|x), cognition model q(x,w, z| y) = q(x| y)q(w| y)
q(z|x,w).

Considering the factorization of the probabilistic graphic
model and the nature of logarithmic computation, the ELBO
of the GMVAE-generated model can be decomposed as:

LELBO =
∫

q(x,w, z| y) log p(w)

q(w| y) · p(z)
q(z|x,w)

· p(x|w, z)
q(x| y) · p( y|x)dq(x,w, z| y)

= − K L(q(w| y)||p(w))︸ ︷︷ ︸
w−prior

− Eq(x| y)q(w| y)[K L(q(z|x,w)||p(z))]
︸ ︷︷ ︸

z−prior

− Eq(w| y)q(z|x,w)[K L(q(x| y)||p(x|w, z))]
︸ ︷︷ ︸

conditional prior

+ Eq(x| y)[log p( y|x)]
︸ ︷︷ ︸

reconstruction term

(3)

Subsequently, we can identify four sub-terms within the
ELBO: w-prior, z-prior, conditional prior, and reconstruc-
tion term. The w-prior and z-prior terms impose constraints
on the sub-Gaussian distributions and their correspond-
ing coefficients, respectively. These terms aim to align the
sub-Gaussian distributions as closely as possible with the
standard Gaussian distribution, thereby bringing the Gaus-
sian mixture model closer to the true underlying distribution
in the latent space. The conditional prior term ensures that
the distribution obtained by sampling from the ground truth
aligns as closely as possible with the distribution obtained
by sampling from the latent space. Lastly, the reconstruction
term evaluates the faithfulness of themodel bymeasuring the
proximity of the generated data to the ground truth data. The
objective is to generate data that closely resembles the real
data, thus enhancing the fidelity of the generative process.

1. W-prior : The weight coefficients of the sub-Gaussian
obey different distributions, and the w-prior is calculated
differently.

• Assuming thatw follows a Gaussian distribution, the
w-prior term is expressed as KL divergence, and the
model is denoted as HGMVAE-G.

• Assuming that w is uniformly distributed, the degen-
eracy of the w-prior term is the information entropy,
and the model is denoted as HGMVAE-U.

2. Z-prior : Unlike GMVAE [18], our approach decom-
poses the z-prior by introducing a total correlation term.
It makes each sub-Gaussian distribution be independent
from others, decouple from the latent space, and has
stronger controllable generative ability. See the next sec-
tion for decomposition in detail.

3. Conditional prior : Conditional prior restricts that the
latent variables computed from the samples are similar
to those obtained by sampling from the mixed Gaussian
distribution. In this paper, theKLdivergence of themixed
Gaussian model can be expressed as a weighted sum
of the KL divergence of the sub-Gaussian distribution,
expressed by the formula:

Eq(w|y)q(z|x,w)[K L(q(x |y)||p(x |w, z))]
=

∑

i

∑

j

wi ŵ j K L(N (μi ,�i ),N (μ̂ j , �̂ j )) (4)

μi , �i denotes the mean and variance calculated from
the sample, and wi denotes the mixing coefficient of the
sub-Gaussian distribution in the mixed Gaussian model.

4. Reconstruction term : The computation of the recon-
struction termdiffers dependingon the appliance domain.
If the downstream task is to generate the data of 0-1
black and white image, the reconstruction term can use
the binary cross-entropy loss function. If the generated
image is a grayscale or color image, the reconstruction
term can use the mean square error (MSE) loss function.

2.2 Methods of disentanglement

In order to make the distributions in GMVAE and their vari-
ables disentangleable, we introduce the total correlation (TC)
term,which is inspired byhierarchically factorizedVAE [35].
For z-prior term,

− K L(q(z|x,w)||p(z))
= −Eq(z|x,w)

q(z|x,w)

p(z)

= −Eq(z|x,w)

[
log

q(z|x,w)∏
k q(zk |x,w)

+ log

∏
k q(xk |y)∏
k p(zk)

+ log

∏
k p(zk)
p(z)

]

= Eq(z|x,w)

[
log

p(z)∏
k p(zk)

− log
q(z|x,w)∏
k q(zk |x,w)

]

︸ ︷︷ ︸
A

−
∑

k

K L (q(zk |x,w)|p(zk))
︸ ︷︷ ︸

B

(5)
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In the above equation, z = (z1, . . . , zk), where zi denotes
the sub-latent variables sampled from the sub-Gaussian dis-
tribution, and z denotes thematrix consisting of the sub-latent
variables.

we can decompose it into two sub-components A and B.
Term A matches the total correlation between variables in
the inference model relative to the total correlation in the
generative model. The total correlation can be calculated by
the following equation:

TC(z) = Eqφ(z)

[
log

qφ(z)∏
k qφ (zk)

]

= KL

(
qφ(z)‖

∏

k

qφ (zk)

)
(6)

which introduces disentanglement mechanism naturally.
Term B minimizes the KL divergence between the inference
marginal and prior marginal for each distribution of GMM
zk , which is formally identical to Eq. 5.

In cases with complex latent variables, such as when the
dimension of the latent variables is 2, the variable of dis-
tribution zk contains sub-variables zk,i , which means zk =(
zk,1, . . . , zk,d

)
, and we can recursively decompose the KL

on the marginals zk .

− K L (q(zk |x,w)|p(zk))
= Eq(z|x,w)

[
log

p(zk)∏
k p(zk,d)

− log
q(zk |x,w)∏
d q(zk,d |x,w)

]

︸ ︷︷ ︸
C

−
∑

d

K L
(
q(zk,d |x,w)|p(zk,d)

)

︸ ︷︷ ︸
D

(7)

Although Hierarchical KL decomposition has already
appeared in hierarchically factorized VAE [35], our use
case is not quite the same. Equation 5 makes the individ-
ual sub-Gaussian distributions of the mixed Gaussian model
statistically independent of each other by introducing a TC
term, and Eq. 7 makes the individual components of the
sub-Gaussian distributions independent from each other by
introducing a total correlation term. If zk,d is sufficiently
complex, which means zk,d = (zk,d,1 . . . zk,d,e), we can still
continue the hierarchical decomposition similar to hierar-
chically factorized VAE [35]. But this operation imposes a
greater computational cost.

2.3 Fisher term for regularization

In Nat’s experiment [18], each value of w corresponds to
a specific style of the digit, indicating that different sub-
Gaussian distributions control different styles. To ensure that

each feature is as independent as possible during sampling,
it is desirable for samples of the same style to be close to
each other and samples of different styles to be far away
from each other. This implies that the within-class distance
variance should be minimized for samples within the same
sub-Gaussian distribution, while the between-class distance
should be maximized.

Consequently, the objective becomes one of minimizing
the between-class distance and maximizing the within-class
distance, aligning with the principles of Fisher discriminant
analysis. Building upon this idea, we adopt a latent space
consisting of K classes, corresponding to K sub-Gaussian
distributions in this paper. Each sub-Gaussian distribution
follows N (wiμi , w

2
i �i ), where wi represents the mixture

weight of each sub-Gaussian distribution, and μi and �i

denote the mean and variance of the sub-Gaussian distribu-
tion, respectively.

Let ni be the number of samples sampled from each sub-
Gaussian distribution, denoted as zi, j for the i-th class and
the j-th sample. By constructing the samples set D = {zi, j },
where the total number of samples is N = ∑

k ni , we can
proceed to define the between-class covariance matrix SB

and the within-class covariance matrix SW .
First, within-class distance Sk ∈ R is defined as:

Sk =
∑

ni

(zi − wiμi )(zi − wiμi )
T

= niw
2
i �i

(8)

Within-class covariance matrix SW is defined as the sum
of the covariance matrices of each class:

SW =
∑

k

Sk (9)

Thus, the definition of the between-class covariance
matrix SB is obtained as:

SB =
K∑

k=1

nk(wkμk − m)(wkμk − m)T (10)

In the training process of this paper, the global mean of the
data after processing is 0 using normalization. In the imple-
mentation, a weak assumption is introduced: the global mean
vectorm = 0. Then, the between-class covariancematrix SB

can be written as:

SB =
K∑

k=1

nkw
2
kμkμ

T
k (11)

Wewant tomaximize the between-class variance andmin-
imize the within-class variance, so we can define the Fisher
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regularization term Freg as:

tr(S−1
W SB) = tr

⎛

⎝
(

K∑

k=1

nkw
2
k�i

)−1 (
K∑

k=1

nkw
2
kμkμ

T
k

)⎞

⎠ (12)

Assuming that the number of samples sampled from each
sub-Gaussian distribution is the same, i.e., n1 = n2 = · · · =
nk . The calculation of the Fisher regularization term could
be simplified as follows:

Freg = tr

⎛

⎝
(

K∑

k=1

w2
k�i

)−1 (
K∑

k=1

w2
kμkμ

T
k

)⎞

⎠ (13)

So, the total loss can be written as:

L = −K L(q(w | y)‖p(w))︸ ︷︷ ︸
w− prior

− Eq(x |y)q(w|y)[K L(q(z | x,w)‖p(z))]
︸ ︷︷ ︸

z− prior

− Eq(x |y)
[
log

p(x | w, z)∏
k p (xk | w, z)

− log
q(x | y)∏
k q (xk | y)

]

︸ ︷︷ ︸
A

−
∑

k

K L (q (xk | y) ‖p (xk | w, z))︸ ︷︷ ︸
B

+ Eq(x |y)[log p(y | x)]
︸ ︷︷ ︸

reconstruction term

+Freg (14)

3 Experiments and evaluations

In this section,we validate the effectiveness of ourHGMVAE
model on several downstream clustering (3.1), classification
(3.2) and generation (3.3) tasks. The conventional VAE typ-
ically employs fully connected neural networks to compute
the latent variables, which can result in over-fitting and a
larger number of data parameters. To address this, we uti-
lize convolutional neural networks (CNNs) in our network
architecture. Our CNN model consists of five convolutional
layers with a kernel size of 3× 3, followed by two fully con-
nected layers. Notably, we exclude fully connected neural
networks and pooling layers in order to retain the essential
information of the data. The network is trained using stochas-
tic gradient descent (SGD) optimization, minimizing the KL
divergence cost, and initialized with the network parame-
ters from the VAE. Despite the simplicity of our model, it
demonstrates excellent performance on the datasets used in
this paper. To ensure reliable results, all experiments were
conducted 10 times with the same network structure, and the
quantitative experimental results were obtained by averaging
the outcomes.

3.1 Clustering results

3.1.1 Setup

For our clustering experiments, we primarily utilize the
MNIST [37] dataset. We evaluate the performance using
three metrics: Silhouette Coefficient (SC) [38], Calinski
Harabasz Index (CH) [39], and Davies Bouldin Index (DB)
[40]. The SC measures the similarity between samples
within the same category and the dissimilarity between sam-
ples of different categories. A value closer to 1 indicates
high similarity within categories and significant dissimilar-
ity between categories. The CH Index assesses the clustering
quality based on the within-class covariance (within-cluster
variance) and between-class covariance (between-cluster
variance). A higher value signifies smaller within-class
covariance, larger between-class covariance, and better clus-
tering performance. The DB Index evaluates the clustering
by considering both the within-class distance (within-cluster
distance) and between-class distance (between-cluster dis-
tance). A smaller value indicates smaller within-class dis-
tances and larger between-class distances, reflecting
improved clustering results.

3.1.2 Visualization of learned embeddings

We compare our model of different z-prior with GMVAE
[18]. The results are presented in Table 1, where the best-
performingmodel is indicated in bold. Across different latent
space dimensions, the proposed model in this paper outper-
forms the GMVAE model.

In analyzing unsupervised clustering, the behavior of dif-
ferent models across varying latent dimensions can be seen
in Fig. 3. Results indicate that clustering with weight coef-
ficients following a Gaussian distribution outperforms when
latent variable dimensions are less than 16, while clustering
with weight coefficients following the uniform distribution
is better for dimensions greater than or equal to 16. This
can be explained by the fact that in lower dimensionalities,
encoding processes losemore information for different latent
variables, creating different importance levels. Conversely, in
higher dimensionalities, the information contained in latent
variables is relatively consistent, resulting in similar impor-
tance levels and learned weight distributions that obey the
uniform distribution.

The clustering performance of models with various
dimensions on the MNIST dataset is displayed in Fig. 3.
The figure reveals that dimension 8 yields the most favor-
able clustering outcomes. In terms of information encoding,
a latent variable with too short dimension results in a loss
of information and worsens clustering performance. On the
contrary, a latent variable with too long dimension introduces
excessive noise and also deteriorates clustering performance.
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Table 1 The clustering results on the MNIST dataset

Metrics Model L-dim.

2 4 8 16 32 64 128

SC↑ GMVAE 0.143 0.382 0.404 0.413 0.290 0.213 0.172

HGMVAE-G 0.259 0.467 0.442 0.415 0.289 0.178 0.190

HGMVAE-U 0.257 0.408 0.427 0.433 0.363 0.292 0.271

CH↑ GMVAE 1154.896 2958.787 3428.849 3386.021 1893.010 1175.965 1132.841

HGMVAE-G 1967.923 3782.171 3930.585 3173.546 2039.884 1224.031 1361.923

HGMVAE-U 1987.279 3290.893 3775.829 3736.877 2693.011 2227.500 1931.504

DB↓ GMVAE 6.556 1.026 0.956 0.868 1.646 3.735 4.068

HGMVAE-G 3.768 0.767 0.853 0.996 1.823 3.452 2.749

HGMVAE-U 5.021 0.939 0.893 0.868 1.333 1.810 1.493

L-dim. denotes the dimension of latent space
Bold indicates best, bolditalic indicates second best, italic indicates third best

Fig. 3 Experimental results of GMVAE, HGMVAE-G, and HGMVAE-U for clustering in latent dimensions of 2, 4, 8, 16, 32, 64, and 128,
respectively. From left to right are Silhouette Coefficient (SC), Calinski Harabasz Index (CH), and Davies Bouldin Index (DB), respectively

Conducting comparative experiments on the dataset can help
identify the optimal latent variable dimensions. To facilitate
a clearer observation of the clustering effect in latent space,
we present a visualization of the clusters onMNIST in Fig. 4.

3.2 Classification results

Based on our clustering task, we find that clustering is most
effective when using 8 dimensions for the latent variables.
In our experimentation with the CIFAR10 and MINIST
datasets, we train for 10 epochs using 8 dimensions for the
latent variables, a learning rate of 0.001, and the AdamW
optimizer. We use SVM as our classifier and then compare
the impact of the latent variables obtained fromdifferentVAE
variants in the classification task.

The evaluation metric employed in this paper is classifi-
cation accuracy. On the CIFAR10 test dataset, HGMVAE_G
exhibited an improvement of 1.8% and 3.6% over VAE
and GMVAE, respectively. On the MNIST test dataset, both
HGMVAE_G and HGMVAE_U outperformed other models
in accuracy.

3.3 Generation results

3.3.1 Setup

The most important metric for evaluating the generated task
is to calculate the similarity between the generated image and
the original image. In this paper, we use four different eval-
uation metrics. we include four metrics: Fréchet Inception
Distance (FID), Structural Similarity (SSIM), Multi-Scale
Structural Similarity (MS-SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS). FID is primarily used to
measure the difference between generated images and real
images. SSIM and MS-SSIM are used to measure the struc-
tural similarity between two images. SSIM is a single-scale
metric, while MS-SSIM considers multiple scales. LPIPS is
a deep learning-basedmetric for assessing the perceptual dif-
ference between images. It is used to evaluate the perceptual
quality of images. We validate on four datasets: 3D Chair
[42], CelebA [43], MNIST [37], and Fashion MNIST [44].

Table 3 shows the generation performance obtained by
these baselines; in most cases, our model is the best.
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Fig. 4 Latent space of 10-class dataset with full labels projected by t-SNE [41]

Table 2 The results of classification task on MNIST and CIFAR10 datasets

VAE Beta-VAE GMVAE SWAE WAE_MMD WAE_RBF HGMVAE_G HGMVAE_U

CIFAR10 0.957 0.959 0.961 0.883 0.896 0.873 0.975 0.965

MINIST 0.978 0.964 0.985 0.983 0.98 0.979 0.996 0.981

Bold indicates best, bolditalic indicates second best, italic indicates third best

3.3.2 Visualization results

The results are obtained by training 10 epochs with the
dimensions of the latent variables chosen as 128, the learning
rate chosen as 0.001, and the optimizer chosen as AdamW.
Figure 5a shows the fidelity of every two rows. Figure 5b
shows gradual change in 2-D latent space, including changes
of gender, hair color, hair length, background color, smile
angle, and face orientation.

In order to validate whether a generative model learns
disentangled representations, we test its ability to recognize
independent components underlying the data. In digit dataset
(Fig. 6a), it represents as keeping content unchanged and
varying angle, handwritten stroke, width, and thickness of
digits. In CelebA (Fig. 6b), it characterized by transforma-
tions of size, style of legs or back, material, azimuth, etc.

3.4 Ablation study

We conducted ablation experiments on the clustering and
generation tasks using the proposed model in this paper. Our
experiments compared different w-prior terms and Fisher
regularization terms to determine their impact on perfor-
mance.

Based on the results presented in Tables 1, 2, and 3, we
find that using a more robust Gaussian mixture model for
modeling the hidden space can lead to superior performance.
However, different distributions of the prior terms also have
different effects on performance. Specifically, our results in
Tables 4 and 5 show that the one-sample-one-GMMmodel-
ing approach outperforms the approach using the Gaussian
distribution.

Furthermore, we investigate the impact of the Fisher
regularization term on our experiments. We find that incor-
porating this term makes sub-Gaussian distributions more
independent, improving clustering performance. On the gen-
eration task, our model without the regularization term has
a similar performance as GMVAE, but incorporating the
regularization term results in substantial improvements in
metrics. For example, on the 3D Chair dataset, HGMVAE-G
w/o Freg shows a 59.84% improvement in FID, HGMVAE-U
w/o Freg shows a 65.76% improvement in FID compared to
HGMVAE-G, and HGMVAE-U w/o Freg shows an increase
in FID.
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Table 3 Reconstruction performance comparison

VAE beta-VAE GMVAE SWAE WAE_IMQ WAE_RBF HGMVAE-G HGMVAE-U

3D Chair FID↓ 154.098 144.263 103.343 106.848 196.952 106.727 92.201 88.605

SSIM↑ 0.903 0.926 0.968 0.963 0.872 0.966 0.717 0.975

MS-SSIM↑ 0.933 0.957 0.986 0.982 0.887 0.986 0.932 0.991

LPIPS↓ 0.125 0.099 0.042 0.046 0.166 0.040 0.122 0.030

CelebA FID↓ 115.438 117.074 121.693 98.670 134.997 92.816 92.201 86.353

SSIM↑ 0.546 0.530 0.568 0.758 0.458 0.766 0.717 0.757

MS-SSIM↑ 0.834 0.821 0.849 0.947 0.764 0.951 0.932 0.949

LPIPS↓ 0.194 0.202 0.185 0.099 0.243 0.101 0.122 0.102

MNIST FID↓ 50.465 61.032 43.089 32.374 36.731 39.790 37.973 30.958

SSIM↑ 0.834 0.774 0.941 0.965 0.966 0.962 0.930 0.966

MS-SSIM↑ 0.959 0.930 0.983 0.991 0.992 0.990 0.986 0.991

LPIPS↓ 0.119 0.142 0.054 0.021 0.031 0.037 0.084 0.029

Fashion MNIST FID↓ 104.231 111.043 101.992 95.150 96.954 93.800 86.890 79.415

SSIM↑ 0.706 0.687 0.752 0.813 0.795 0.790 0.766 0.816

MS-SSIM↑ 0.847 0.827 0.884 0.921 0.917 0.918 0.912 0.934

LPIPS↓ 0.113 0.122 0.104 0.071 0.087 0.091 0.091 0.069

Bold indicates best, bolditalic indicates second best, italic indicates third best

Fig. 5 a Image reconstructions
on MNIST. Every two lines
represents a reconstruction, the
original image is above, while
the generated image from ours is
below. b Latent manifold on
CelebA. Give four images at
corners to generate a
transformation process between
them

Fig. 6 Latent traversals on
MNIST and 3D Chair
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Table 4 Ablation experiment on clustering

Metric Model L-dim.

2 4 8 16 32 64 128

SC↑ GMVAE 0.143 0.382 0.404 0.413 0.29 0.213 0.172

HGMVAE-G 0.259 0.467 0.442 0.415 0.289 0.178 0.19

w/o Freg −0.051 0.289 0.361 0.38 0.289 0.281 0.266

HGMVAE-U 0.257 0.408 0.427 0.433 0.363 0.292 0.271

w/o Freg −0.003 0.282 0.36 0.409 0.312 0.187 0.192

CH↑ GMVAE 1154.896 2958.787 3428.849 3386.021 1893.01 1175.965 1132.841

HGMVAE-G 1967.923 3782.171 3930.585 3173.546 2039.884 1224.031 1361.923

w/o Freg 325.915 1782.553 3167.959 2748.083 2308.934 2065.936 1906.594

HGMVAE-U 1987.279 3290.893 3775.829 3736.877 2693.011 2227.5 1931.504

w/o Freg 582.317 2134.179 2792.347 3241.303 1961.919 1461.447 1321.775

DB↓ GMVAE 6.556 1.026 0.956 0.868 1.646 3.735 4.068

HGMVAE-G 3.768 0.767 0.853 0.996 1.823 3.452 2.749

w/o Freg 7.558 3.913 1.139 1.629 2.108 3.132 3.639

HGMVAE-U 5.021 0.939 0.893 0.868 1.333 1.81 1.493

w/o Freg 6.835 2.573 1.33 1.09 3.864 4.49 4.255

A comparison of HGMVAE of two kinds of w-prior (Gaussian and uniform distribution) with and without (w/o) Fisher regularization in clustering
on four datasets. The bold indicated the best results
Bold indicates best, bolditalic indicates second best, italic indicates third best

Table 5 Ablation experiment on generation

Dataset Metric GMVAE HGMVAE-G HGMVAE-U G w/oFreg U w/o Freg

3D Chair FID↓ 103.343 40.986 37.778 103.076 110.321

SSI↑ 0.968 0.966 0.975 0.966 0.956

MS-SSIM↑ 0.986 0.985 0.991 0.985 0.98

LPIPS↓ 0.042 0.037 0.03 0.04 0.052

CelebA FID↓ 121.693 52.663 44.545 99.977 91.225

SSIM↑ 0.568 0.717 0.757 0.709 0.739

MS-SSIM↑ 0.849 0.932 0.949 0.929 0.943

LPIPS↓ 0.185 0.122 0.102 0.127 0.107

MNIST FID↓ 43.089 37.973 30.958 39.36 41.697

SSIM↑ 0.941 0.93 0.966 0.91 0.9

MS-SSIM↑ 0.983 0.986 0.991 0.987 0.986

LPIPS↓ 0.054 0.084 0.029 0.087 0.087

Fashion MNIST FID↓ 101.992 86.89 79.415 95.707 94.828

SSIM↑ 0.752 0.766 0.816 0.718 0.763

MS-SSIM↑ 0.884 0.912 0.934 0.893 0.911

LPIPS↓ 0.104 0.091 0.069 0.107 0.1

A comparison of HGMVAE of two kinds of w-prior (Gaussian and uniform distribution) with and without (w/o) Fisher regularization in generation
on four datasets. The bold indicated the best results
Bold indicates best, bolditalic indicates second best, italic indicates third best
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4 Conclusion

In this paper, we introduce the hierarchical disentanglement
in Gaussian mixture variational autoencoder (HGMVAE) as
a novel approach for disentangled representation learning
tasks. HGMVAE combines the learning of Gaussian mixture
latent spaces and the hierarchical disentanglement of fea-
ture and label embeddings. Not only does HGMVAE achieve
better performance, but it also provides insights into unsu-
pervised clustering and model interpretability. However, it
is important to acknowledge that the modeling of the latent
space as a Gaussian mixture model and the hierarchical dis-
entanglement of the variational lower bound lead to increased
computational costs compared to standardVAEs.Despite this
limitation, the benefits and advancements brought about by
HGMVAE outweigh these challenges.
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