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Abstract
Facial expression recognition (FER) holds significant practical implications in real-world scenarios such as human–computer
interaction, fatigue driving detection, and learning engagement analysis. Nonetheless, acquiring large-scale and high-quality
annotated facial expression datasets is profoundly challenging due to the inherent ambiguity of facial images and concerns
over privacy. Consequently, this paper introduces a self-supervised facial expression recognition method based onmask image
modeling. Thismethod can learnmulti-level facial feature representationswithout expensive labels and achieves commendable
facial expression recognition performance through further fine-grained feature selection. Specifically, we propose the multi-
level feature selector (MFS). The MFS comprises two pivotal components: the multi-level feature combiner and the feature
selector.During the pre-training stage, themulti-level feature combiner is employed to integratemulti-level features, effectively
addressing the vision transformer’s deficiencies in capturing high-frequency facial semantics. Subsequently, in the fine-tuning
stage, the feature selector can automatically differentiate highly discriminative regions, extracting fine-grained features.
Subsequently, we use graph convolutional networks to further mine the latent connections among fine-grained features,
ultimately deriving an integrated feature with enhanced discriminative capabilities. Through such fine-grained facial feature
selection, we canmitigate performance degradation induced by inter-class similarities and intra-class variations. Experimental
results on the RAF-DB, AffectNet, and FER + datasets demonstrate that our approach significantly outperforms other self-
supervised methods in recognition performance and closely approaches the state-of-the-art methods in supervised learning.
The code is available at https://github.com/Greysahy/MFS.
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1 Introduction

Facial expression recognition is a computer vision technique
that facilitates emotion recognition in uncontrolled envi-
ronments based on facial feature analysis. As one of the
most potent signals in humans, facial expressions play a piv-
otal role for computers to decipher human emotional states
and behavioral intentions. Hence, achieving accurate facial
expression recognition is paramount in developing intelli-
gent systems (such as smart robots and virtual reality) that
can perceive and respond to human emotions.
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In recent years, researchers have achieved significant
advancements in facial expression recognition thanks to the
development of deep learning technologies and the avail-
ability of large-scale facial expression datasets. Supervised
learning methods based on convolutional neural networks
(CNNs) and Vision Transformers have been introduced
to facial expression recognition tasks, demonstrating out-
standing performance. Some research methodologies have
ventured to incorporate intricate attention mechanisms [1,
2] or to utilize prior knowledge (such as facial landmarks) to
guide the networks [3–5], subsequently attaining even greater
accuracy in facial expression recognition.

While these methods have effectively enhanced network
performance, they all face a substantial limitation: they
primarily focus on supervised learning. The visual complex-
ity of facial expression images, coupled with their marked
inter-class similarities and intra-class variations, means that
a significant amount of time and specialized expertise is
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required for annotating facial images. Moreover, consider-
ing the privacy-sensitive nature of facial expressions and
the subjective annotation biases among different graders,
the constructed datasets demand rigorous validation pro-
cesses. This makes the acquisition of large-scale annotated
facial expression data exceedingly challenging, suggesting
that future approaches should lean toward reduced label
dependency, such as semi-supervised [6] or self-supervised
methods.

The Mask Auto encoder [7], in its application to visual
representation learning, has successfully transferred BERT-
style pre-training strategies to the domain of computer vision.
This method realized high-quality unsupervised representa-
tion learningby establishing an asymmetric encoder–decoder
structure based on the vision transformer. Nevertheless, due
to the absence of image-specific inductive biases in the
vision transformer, its core multi-head attention mechanism
tends to focus more on global information, often overlooking
low-level, high-frequency details. This characteristic poses
challenges for pixel-level facial unit reconstruction tasks,
making it difficult to acquire high-quality facial represen-
tations during the pre-training phase.

To address the deficiencies in existing facial expression
recognition efforts, this paper introduces a novel train-
ing strategy for facial expression recognition models: the
multi-level feature selector (MFS). This method can learn
multi-level facial representations in unlabeled data and car-
ries out unsupervised fine-grained feature selection during
the fine-tuning phase, achieving high-precision facial expres-
sion recognition. During the pre-training phase, we designed
the multi-level feature combiner. It aims to integrate multiple
latent features within masked images, compensating for the
vision transformer’s shortfall in high-frequency information,
thereby aiding the model in acquiring rich facial representa-
tions. In the fine-tuning phase, we devised the feature selec-
tor. During the learning process, this module can adaptively
filter out non-discriminative features based on the discrim-
inative power of the feature units themselves, consequently
highlighting highly discriminative regions. Considering that
highly discriminative regions are spatially distributed in a
discrete manner, we will obtain a set of sparse data follow-
ing feature filtration. Merely concatenating these features
and employing multi-layer perceptron (MLP) for aggrega-
tion would lead to a substantial loss of spatial information.
When dealing with sparse data, some studies have employed
graph structures to aggregate node information, generating
enhanced feature representations [8]. By successfullymodel-
ing the intricate high-order feature interactions among sparse
data, these methodologies have achieved commendable per-
formance. We conceptualize the filtered features as a graph
structure. Employing graph convolutional networks, we have
achieved efficient graph feature extraction on the discrimina-
tive feature map, thereby delving into the latent connections

among discriminative feature units. With the Feature Selec-
tor, we can capture granular facial details, thus overcoming
the intrinsic inter-class similarities and intra-class variations
of facial expressions. The primary contributions of this paper
can be summarized as follows:

(1) We propose a self-supervised facial expression recog-
nition algorithm named MFS. During the pre-training
phase,with the assistance of themulti-level feature com-
biner, the backbone network can learn multi-level facial
feature representations without the need for expensive
labeling.

(2) Wedesigned theFeature Selector,which, throughmetic-
ulously crafted granular feature selection and feature
aggregation strategies, assists the network in learning
superior decision boundaries, addressing the inherent
ambiguities associated with facial expressions.

(3) We evaluated the proposed MFS across multiple
datasets. Experimental results indicate that MFS signif-
icantly outperforms other self-supervised methods and
closely approaches the results of state-of-the-art super-
vised techniques.

The structure of this paper is organized as follows:
Section 2 provides an overview of the related work on facial
expression recognition; Section 3 delves into the specific
implementation details ofMFS; Section 4 presents the exper-
imental results and ablation studies of MFS on the RAF-DB,
AffectNet, and FER + datasets; In Sect. 5, we discuss vari-
ous attempts and explorations undertaken during the research
process. Finally, Sect. 6 summarizes the primary contribu-
tions of this study.

2 Related work

From the earlymethods based on handcrafted features [9, 10]
to those based on end-to-end learning [11–14], facial expres-
sion recognition has always garnered significant attention.
Notably, the majority of research aimed at improving facial
expression recognition still focuses on extracting distinc-
tive facial expression features using advanced computational
models under supervised settings [15–19]. While these stud-
ies have achieved commendable accuracy, they heavily rely
on labeled training data. Consequently, these methods might
suffer substantial performance degradation when faced with
low-quality and noisy labels. To address this issue, some
researchers have proposed corresponding methodologies to
reduce the network’s reliance on fine-grained labels. For
instance, Li et al. [20, 21] reclassified the seven basic facial
expressions into four coarse-grained classes and employed
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coarse labels to assist in fine-grained label supervised learn-
ing and contrastive learning, thereby mitigating the perfor-
mance degradation caused by the similarity of facial expres-
sions. [22] Designed a training paradigm that employed
contrastive learning for self-supervised facial expression
recognition in multi-view images. Although effective, the
scalability of this method is constrained due to its heavy
dependence on specific datasets. Subsequently, Shu et al.
[23] applied a contrastive self-supervised learning approach
to static single-view facial images, effectively enhancing the
performance of self-supervised learning in facial expression
recognition tasks. Recently, many studies have started to
adopt mask image modeling as a self-supervised framework
to learn effective facial representations [24–26]. Ma et al.
[24] utilized aMask Auto Encoder pre-trained on large-scale
facial images and achieved state-of-the-art performance in
facial action unit analysis tasks.

In addition, to address performance degradation stemming
from pose variations, facial occlusions, inherent intra-class
variability, and inter-class similarity in facial expressions,
some studies have suggested employing fine-grained fea-
tures for facial recognition [27, 28]. These methods can be
broadly categorized into those based on facial landmarks
[3–5, 29] and those leveraging attention mechanisms [1,
30, 31]. Zheng et al. [3] utilized a pre-trained facial land-
marks detector to locate facial landmarks during the data
preprocessing stage. They then inputted the salient regions
containing these facial landmarks as prior knowledge into
the feature extractor, guiding the feature extraction process.
Shi et al. [5] introduce a multi-pose block occlusion face
recognition method grounded on feature point location. This
method segments the face based on facial landmarks and
occlusion regions, thereby proficiently mitigating the influ-
ences of pose variations and occlusion on face recognition
performance. In [30], an end-to-end network architecture for
facial expression recognition based on attention mechanisms
was proposed. This design emphasized focusing attention on
the face while ignoring background noise. [31] Proposed an
encoder–decoder attention operation that can focus more on
the regions of muscle movements beneath the facial skin,
such as the mouth, eyes, and nose, allowing the network
to extract deep facial expression features better. Similarly,
Wang et al. [1] introduced a region-based attention network
architecture that, by capturing local facial features, displayed
robustness against facial occlusions and pose variations.

Our MFS is a self-supervised training approach that does
not require expensive labels. Compared to the Mask Auto
encoderwith a vanilla vision transformer as its backbone, this
method can integratemulti-level features during pre-training,
achieving superior facial representation learning. Addition-
ally, we have designed an unsupervised feature selection
strategy that can adaptively choose highly discriminative
fine-grained facial features during the fine-tuning process

while simultaneously disregarding non-salient regions. This
differs from previous methods based on facial landmarks or
those utilizing complex attention mechanisms.

3 Methodology

The overall framework of MFS is illustrated in Fig. 1. The
entire training process is divided into two stages: The pre-
training stage (a) and the Fine-tuning stage (b). The detailed
structure of the Multi-level Feature Combiner is depicted on
the right side(c).

In the initial phase, we employed a vision transformer
backbone augmented with a multi-level feature combiner
for self-supervised pre-training. This approach facilitated the
network to acquire multi-level facial representations. Subse-
quently, in the second phase, we inherited the weights of
the encoder from the first phase (without freezing) and per-
formed fine-tuning of the entire network’s parameters based
on fine-grained features extracted by the Feature Selector,
resulting in the ultimate model. Detailed training specifics
for each phase will be further elucidated in the following
section.

3.1 Multi-level facial feature learning

This paper employs an asymmetric encoder–decoder struc-
ture of the Mask Auto encoder as the primary framework for
self-supervised learning. For a given facial image I C×H×W ,
we divide it into n patches. Among these, (n−k) patches are
masked; while, the remaining k visible patches are fed into
the encoder to encode latent features. Subsequently, these
latent features are passed into a lightweight decoder to recon-
struct the masked pixels.

As the backbone architecture for the encoder, the Vision
Transformer excels at modeling global information with its
core multi-head self-attention mechanism. However, due to
the low-pass filtering nature of multi-head attention [32],
Vision Transformers may lack emphasis on high-frequency
features. Considering that the masked facial images exhibit
noticeable sparsity at the semantic level, high-frequency
texture features hold significant value for pixel-level facial
reconstruction tasks.

The structure of the multi-level feature combiner is
depicted on the right side of Fig. 1. "When the facial image
I C×H×W is fed into the vision transformer encoder, we
obtain an intermediate feature set F � { f 0, f 1, f 2, . . . . . . ,
f i }, where f i represents the output feature of the i-th
transformer block. The multi-level feature combiner selects
features from different levels within F and projects them
using affine layers to align them in the feature space with
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Fig. 1 Overall framework of MFS

the deepest layer’s feature. In the end, we obtain the inte-
grated multi-level concatenated feature Fm:

Fm � stack
(
affine

(
f i

)
, f n−1

)
(1)

where n represents the number of transformer blocks in the
encoder. Subsequently, we compute the fused feature F̂ by
taking a weighted average of Fm using an average weighted
layer:

F̂ � ∑

i
(F

m, i

· wi ) (2)

wherewi represents the weight of the i-th level feature in the
fused feature. We initialize all wi values to be the same and
dynamically optimize them during the subsequent training
process.

Finally, the fused feature F̂ is fed into the decoder to
reconstruct the masked pixels, resulting in the reconstructed
image Ir. The reconstruction loss L reconstruction is defined as
the pixel-wise mean squared error loss between the recon-
structed image and the input image:

L reconstruction � 1
N

N∑

i�1

(
pixelr , i − pixelinput, i

)2
(3)

where N represents the total number of pixels in a single
image, and pixelx , i represents the i-th pixel value of imagex.

It is important to note that in the multi-level feature com-
biner, simply fusing features from all levels may lead to
information redundancy and introduce noise, resulting in a
degradation of the model’s performance. In this paper, for
facial expression recognition, we have chosen to select the
output features fromBlock0, Block2, Block4, andBlock6 and

fuse them with the deepest layer features. Detailed experi-
ments regarding this choice will be further discussed in Sect.
5.

3.2 Fine-grained feature fine-tuning

After splitting facial images into n patches, we can observe
that not all regions exhibit significant discriminative informa-
tion (Fig. 2). Regions that solely contain hair and clothing
or are nearly monochromatic are commonly found in facial
images across different expression categories. If these areas
were used for recognition, their predicted probabilitieswould
likely exhibit a relatively flat distribution. Conversely, select-
ing regions that contain facial landmarks for recognition
yields more discriminative prediction probabilities.

Based on the previous analysis, to make more effective
use of the multi-level facial feature representations learned
during the pre-training phase, we introduced a feature selec-
tor during the fine-tuning stage. The purpose of this design is
to adaptively filter out background noise and focus on critical
fine-grained facial features, thereby achieving more precise
parameter optimization.

The Feature Selector treats each token input to the net-
work as an independent feature unit and performs feature
filtering based on the discriminative capacity of each feature
unit itself. We use the features extracted by the vision trans-
former encoder, represented as f i ∈ RL×D, as the input to
the Feature Filter, whereL represents the length of the feature
sequence, andD represents the output dimension of the trans-
former block. In the feature filter, we first project the input
features into a C-dimensional space (where C is the total
number of predicted categories). Subsequently, we apply the
Softmax function to calculate the category prediction scores
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Fig. 2 Discriminative/non-
discriminative in facial
image

for each feature unit:

logitsi � Projection(D, C)( f i ), si � Softmax
(
logitsi

)

(4)

Among all the feature units, we select the top s units
with the highest confidence as discriminative features; while,
the remaining L-s units are considered non-discriminative
features. Since the selected discriminative features exhibit
notable local and sparse characteristics, we treat them as a
discrete feature map. In the feature fusion stage, to preserve
their original spatial scale and spatial structure integrity, we
employ a Graph convolutional network (GCN) to process
the discriminative feature map, further exploring potential
relationships between different features:

f ′
i � σ (AadaptiveW fi ), fi ∈ RC×s (5)

Leveraging a graph convolutional network allows us to
learn the influence between different feature units and incor-
porate this influence into the final output features, enabling
effective graph feature extraction. Subsequently, by using an
aggregator to consolidate the featuremap, we ultimately feed
the fused features into a classifier to obtain facial expression
recognition results. Graph convolutional networks (GCNs)
can effectively integrate relationships between multiple
facial feature units without disrupting the original feature
structure. This enables the model to learn more precise deci-
sion boundaries.

Based on the earlier analysis, we aim to achieve more
precise recognition results by relying on fine-grained dis-
criminative features. Therefore, we employ cross entropy to
compute the classification loss for the logits corresponding
to discriminative features:

Lselect � LCE(targeti , logitsi ) (6)

Meanwhile, for the features corresponding to non-
discriminative regions, we consider them as "background"
information. As these features contribute relatively little to
classification, we anticipate their prediction probabilities to
exhibit a relatively flat distribution. Therefore, we define the

flatten loss as follows:

Lflatten � 1
N

N∑

i�1

(
tanh

(
logitsi

)
+ 1

)2 (7)

Through the backpropagation of Lflatten, we aim to drive
the logits’ values toward negative infinity, thereby obtaining
a flat prediction probability distribution.

Based on the above, the overall loss, denoted as L, can be
expressed as:

L � λs Lselect + λ f Lflatten (8)

where λs and λ f are the weighting parameters for Lselect and
Lflatten, respectively. In our experiments, we set λs � λ f �
1.

The objective of designing the feature selector is to
enable the model to automatically learn highly discrimina-
tive regions within images without relying on pre-extracted
facial landmarks or other fine-grained semantic information.
Furthermore, it seeks to achieve finer and more accurate
recognition by mining the latent relationships between dis-
criminative features.By extractingfine-grained features from
facial images, we can more effectively distinguish those
facial expressions that exhibit confusion.

4 Experiment

4.1 Experiment settings

Datasets
RAF-DB [11] is one of the most renowned benchmark

datasets in facial expression recognition. This dataset com-
prises 29,672 facial images meticulously annotated by 40
trained annotators. We only utilized 15,339 images that were
labeled with six basic emotions and neutral expressions. Out
of this subset, 12,271 images were allocated for training pur-
poses; while, the remaining 3068were designated for testing.

AffectNet [33] stands as the largest facial expression
recognition dataset to date, offering annotations for both clas-
sification and emotional valence-arousal dimensions. This
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dataset was assembled by querying facial expression-related
keywords in three search engines, resulting in a collection
of over one million images, with manual annotations for
450,000 images. It encompasses eight emotion categories,
including seven primary facial expressions and the additional
category of contempt.

FER + [34], derived from the FER2013 dataset, features
28,709 training samples, 3589 validation samples, and 3589
testing samples. All images are in grayscale format and were
collected via the Google search engine. The images have
a uniform resolution of 48 × 48 pixels. Each image was
independently annotated by ten different annotators. Like
AffectNet, the facial images in FER + are also annotated
for eight different expressions.

Implementation details
The facial images used for training were resized to 224

× 224 pixels. During the pre-training phase, we conducted
training for 400 epochs with a batch size of 16. Subsequently,
we performed fine-tuning for 50 epochs with a batch size 32.
The training process employed the AdamW optimizer with
an initial learning rate of 1e-3. The initial 10% of epochs
were designated as the warm-up stage. Following that, we
employed a cosine annealing learning rate scheduler. The
proposedmethodwas implemented using the PyTorch frame-
work.

4.2 Experimental results

Comparison with self-supervised learning methods
In this study, we conducted a systematic evaluation of the

performance differences between the proposedMFSmethod
and other self-supervised learning methods. Initially, we car-
ried out pre-training on the AffectNet dataset and further
fine-tuned the model on multiple diverse datasets (with ran-
dom sampling) to obtain evaluation results. Additionally,
we assessed the effectiveness of MFS’s pre-training on the
RAF-DB dataset. It is worth noting that due to the limited
information contained in the 48× 48-pixel grayscale images
in the FER + dataset, we did not perform pre-training evalu-
ation on the model using the FER + dataset.

According to Table 1, our MFS not only excels in fine-
tuning but also demonstrates outstanding performance in
cross-dataset transfer learning tasks. MFS achieved the high-
est accuracy rates of 63.49%, 60.75%, 91.45%, and 90.16%
on four different datasets, significantly surpassing other
self-supervised learning methods. These results further con-
firm the ability of MFS to learn facial representations with
stronger robustness and broader generalization capabilities.

Comparison with supervised learning state-of-the-art
methods

In this section,we further explored the performance differ-
ences between MFS and state-of-the-art supervised learning
methods. Specifically, we selected a backbone pre-trained

on AffectNet and fine-tuned it under class-balanced sam-
pling/random sampling conditions. The choice of sampling
strategywas relevant to the sample distribution in the dataset.
As observed in Table 2, MFS demonstrates competitive per-
formance.OnAffectNet7,AffectNet8,RAF-DB, andFER+ ,
MFSexhibits performancedifferences of only 0.98%, 0.89%,
0.76%, and 0.70%, respectively, compared to state-of-the-art
methods. Furthermore,MFScan rapidly adapt the pre-trained
backbone to other data domains with minimal computational
overhead, a feat that traditional supervised learning methods
struggle to achieve.

4.3 Ablation study

To investigate the impact of different components of the
MFS on the final results, we conducted extensive ablation
experiments on the RAF-DB dataset, where MFC denotes
multi-level feature combiner, and FS denotes feature selec-
tor (Table 3).

When MFC and FS were not utilized, the model achieved
an accuracy of 86.27%. When MFC and FS were used
individually, the accuracy increased by 1.83% and 0.89%,
respectively. However, when MFC and FS were combined,
the accuracy improved to 89.41%. This improvement is not
simply the mechanical summation of the two components
but rather a result of their synergistic enhancement. By inte-
grating these two techniques, the network can perform fine
selection among a richer set of facial representations, leading
to a significant performance gain.

Furthermore, we explored the number of discriminative
features selected (denoted as ‘s’ in Eq. 5). The results indi-
cated that the Vision Transformer backbone with a patch size
16 performed best when selecting 128 features. We specu-
late that this is related to the characteristics of facial images,
where approximately 60%of the information in aligned facial
images is crucial. This finding may provide valuable insights
for future research.

We also attempted to visualize the regions the model
focusedonusingGrad-CAM[46] to further analyze the effec-
tiveness of the feature selector.

In Fig. 3, we can observe the impact of not using Fea-
ture Selector. (b) and using feature selector (c) on the model.
Compared to (b), (c) can pinpoint more discriminative and
fine-grained facial features within the facial image. This
further demonstrates that Feature Selector can significantly
enhance the network’s ability to extract fine-grained features.

In addition, we investigated the model’s confusion matri-
ces (Fig. 4) when utilized both without and with the Feature
Selector.

As Fig. 4 shows, noticeable inter-class and intra-class
confusions were observed within the Fear and Disgust cat-
egories. Upon integrating the feature selector, accuracy was
substantially improved by 23% and 7% for Fear and Disgust,
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Table 1 Experimental result of
self-supervised learning methods
with random sampling

Method Pre-trained Fine-tuning/transfer learning

AffectNet7 AffectNet8 RAF-DB FER +

SimCLR[35] AffectNet 51.80 48.11 83.51 81.48

MoCo[36] AffectNet 53.69 50.17 80.74 83.58

MoCoV2[37] AffectNet 56.00 53.40 85.46 86.74

SimSiam[38] AffectNet 59.97 56.79 85.53 86.58

BYOL[39] AffectNet 57.09 55.31 87.65 87.63

MFS(Ours) AffectNet 63.49 60.75 91.45 90.16

RAF-DB 60.04 57.49 89.41 88.84

Table 2 Comparison with
supervised learning methods.
Experiments on AffectNet used
class-balanced sampler

Method Year AffectNet7 AffectNet8 RAF-DB FER +

pACNN[16] ICPR 2018 55.33 – 83.27 –

gACNN[40] TIP 2018 58.78 – 85.07 –

RAN[1] TIP 2020 – 59.50 86.90 88.55

SCN[41] CVPR 2020 – 60.23 88.14 88.01

DAN[17] 2023 65.69 62.09 89.70 –

Efficient-Face[18] AAAI 2021 63.70 59.89 88.36 –

MA-Net[2] TIP 2021 64.53 60.29 88.40 –

KT[21] TIP 2021 63.97 – 88.07 90.49

HO Loss[42] TVC 2022 64.02 – 89.47 89.03

Meta-Face2Exp[43] CVPR 2022 64.23 – 88.54 –

APViT[44] TAC 2022 66.91 – 91.98 90.86

MM-Net[45] TVC 2023 65.05 – 89.77 89.34

POSTER[3] ICCV 2023 67.31 63.34 92.05 –

POSTER + + [4] 2023 67.49 63.77 92.21 –

MFS(Ours) 2023 66.51 62.88 91.45 90.16

Bold is employed to denote the optimal performance under different methods/settings

Table 3 Ablation on each
component of MFS Pre-trained MFC FS Feature selected RAF-DB

RAF-DB × × 196 86.27√ × 196 88.10

× √
128 87.16√ √
32 88.27√ √
64 88.49√ √
128 89.41√ √
160 88.46

Bold is employed to denote the optimal performance under different methods/settings

respectively.Concurrently, the confusions betweenFear,Dis-
gust, and other categories notably decreased. These outcomes
indicate that the feature selector aids the network in cap-
turing subtler distinctions among similar facial expressions,
thereby mitigating performance deterioration resulting from
inter-class similarities and intra-class variations to a certain
extent.

5 Discussion

In this section, we will delve into various attempts and
explorations made during the research process, laying the
foundation for future studies.
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Fig. 3 Attention visualization via Grad-CAM, wherein a represents the input, b is without the application of Feature Selector, and c is with the
incorporation of feature selector

Fig. 4 Confusion matrix of model without (a)/with (b) feature selector

Table 4 Experimental results of different fusion solutions

Fusion blocks(ViT-base) Acc. (%)

0, 2, 4, 11 88.95

0, 2, 4, 6, 11 89.41

0, 2, 4, 6, 8, 11 89.05

0, 2, 4, 6, 8, 10, 11 88.69

Bold is employed to denote the optimal performance under different
methods/settings

5.1 Transformer blocks used inmulti-level feature
combiner

Regarding facial representation learning, we experimented
with the fusion of multiple hierarchical features. We used

features from five different levels as the final fusion scheme
based on the results (Table 4).

Furthermore, we examined the weights assigned to each
layer in Fig. 5. In this analysis, it was observed that the fea-
tures from the deepest layer consistently held the highest
weight. Inmost cases, theweights of Block0 closely approxi-
mated theweights of the deepest-level features. For shallower
features, theirweights decreased as the layers became deeper.
In the case of the fusion of seven layers of features, the
features from Block10 displayed negative weights. These
findings suggest that: (1) Shallow features contribute sig-
nificantly to the final output, particularly the features from
Block0. (2) If too many layers are involved in the fusion,
redundant information may be introduced into the network.

123



Self-supervised facial expression recognition with fine-grained…

Fig. 5 Weights of features from different transformer blocks

5.2 Mask strategy

Students who only practice simple problems will find it
challenging to handle complex exams. In order to enable
the model to learn a better facial feature representation, we
attempt to guidemask generation during the pre-training pro-
cess based on the attention maps of a well-trained model,
which sets a higher challenge for the Mask Image Modeling
task.

Given the input features f ∈ RB×L×D for Block11.
During the self-attention computation, f undergoes three
independent linear mapping layers, respectively generating
the Q, K , and V matrices. Subsequently, through the scaled
dot-product attention computation, we obtain the attention
matrix Ah ∈ RL×L . We take the average attention matrices
from multiple heads to obtain the averaged attention matrix
Â.

Ai � softmax

(
QKT
√
D

)
V , Â � 1

h

h∑

i�1
Ai (9)

In the attention matrix Â, each row corresponds to the
attention distribution of a token. We extract the attention
vector associated with the class token from the first row and
resize it into a square shape. This results in the attention map
M ∈ R

(√
L−1

)×(√
L−1

)
associatedwith the class token.Based

on M , we propose the following two masking strategies:

(1) Attention-high: Prioritize masking patches with high
attention scores.

(2) Attention-clue: While masking high-attention-score
patches, retain a certain percentage of the patches with
the highest attention scores as reference clues for sub-
sequent reconstruction (Fig. 6).

Experimental results indicate that using attention maps to
guidemask generation significantly increases the difficulty of
the mask image modeling task (as shown in Fig. 7). The loss
value for pre-training with the attention-high and attention-
clue masking strategies is notably higher than that with the
random strategy. Regrettably, the increased task difficulty did
not lead to enhanced performance.

Based on Table 5, we can observe that models using ran-
dom masking significantly outperform those following the
attention-high and attention-clue strategies in terms of recog-
nition accuracy. Upon further analysis, it seems unwise to
increase task difficulty during the early stages of training.
A more ideal approach might be incrementally raising the
challenge once the model has accumulated a foundational
knowledge base. However, pinpointing the exact moment to
escalate this difficulty remains a challenge.Amorepromising
strategymight involve adopting a learnable maskingmethod,
allowing the model to autonomously adjust the difficulty of
the task. Therefore, designing a learnable masking strategy
tailored explicitly for facial representation learning will be
the central direction of our future research.

5.3 Flatten loss

We explored several strategies to make the prediction prob-
ability distribution of non-discriminative features more uni-
form. Specifically, we applied an activation to the logits and
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Fig. 6 Investigation of masking
Strategies: a input b attention
map c random d attention-high
e attention-clue

Fig. 7 Loss curves under various
masking strategies

Table 5 Experimental results of different masking strategies

Mask strategy Mask ratio(clue ratio)(%) Acc. (%)

Random 75 89.41

Att. high 75 84.94

Att. clue 75(15) 87.06

Bold is employed to denote the optimal performance under different
methods/settings

guided all activation values to converge to a fixed label value
gradually:

Lflatten � MSE(Activation(logits), label) (10)

The experimental results are shown in Table 6. After com-
prehensive comparison and analysis, we found that among
all tested combinations, (tanh/−1) produced the best results.
Based on this observation, we chose this combination as the
flatten loss.

6 Conclusion

In this paper, we propose a self-supervised training strategy
for facial expression recognition calledMFS (multi-level fea-
ture selector). During the pre-training phase, we employ the
multi-level feature combiner to achievemulti-level facial rep-
resentation learning. Subsequently, utilizing a meticulously

Table 6 Experimental results of
different flatten loss Act./Label ReLU/0 Variance/0 Tanh/-1 None/(1/num of classes)

Acc. (%) 88.52 87.74 89.41 88.49

Bold is employed to denote the optimal performance under different methods/settings
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designed feature selector, the network can adaptively filter
out fine-grained features with discriminative solid power.
These features are then fed into a graph convolutional net-
work for graph feature extraction and aggregation. MFS
effectively addresses challenges in facial expression recogni-
tion related to relying on large-scale annotated data, handling
inter-class similarities, and intra-class variations. Experi-
mental results onmultiple FER benchmarks demonstrate that
the proposedMFS outperforms the supervised learning base-
line and other self-supervised methods.
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