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Abstract
Significant interest and progress have been drawn to the recent advancements in image creation using deep generative model,
but the field of automatic three-dimensional shape creation is largely under-developed and inspires a great deal of research
activity across a wide variety of disciplines. We add a new kind of previously named variational mixture of posteriors into the
adversarial network using geometric data described as volumetric grids. Our main contribution is the introduction of a new
type of prior called variational mixture of posteriors prior into the adversarial network, dubbed VampPrior- 3DGAN, in a
mathematic principled way. Specifically, we leverage an encoder as a regularizer to penalize missing modes, while introduce
a variational mixture of posterior prior as the latent variable distribution of GAN to dynamically and adaptively update its
prior distribution. The key intuition behind this architecture is that the latent variables should retain information about the
data to minimize the undue impact of the prior assumptions. This seemingly simple modification to the GAN framework
is surprisingly effective and results in models which enable diversity in generated samples, although trained with limited
data. Realistic 3D objects can be easily generated by sampling the VampPrior-3DGAN’s latent probabilistic manifold. For
validation, we apply our method on tasks from the fields of three-dimensional volumetric generation, reconstruction from a
single RGB image and partial shape completion from a single perspective view, and show that it is on par with or outperforms
the state-of-the-art approaches, both quantitatively and qualitatively.

Keywords Shape generation · Variational mixture of posteriors prior · GAN · Diversity

1 Introduction

The three-dimensional (3D) content creation involves coor-
dinatedworkwith artists, modelers, designers and animators.
One of the key challenges of the industry is to create a
seamless pipeline. The virtual reality, robotics and com-
puter graphics industry understands this process to be time-
consuming and cumbersome. Many collection of 3D models
are created and published on online repositories such as
ShapeNet [1] and ModelNet [2]. These online reposito-
ries contain large-scale useful information that details about
textures, styles, structures and poses of object classes. This
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information can be helpful to designers in the modeling pro-
cess. Thus, leveraging this informationwith tools can enforce
data-driven constraints, providing completions of partially
designed objects, or even through the synthesis of whole
shape from an image or merely a random noise vector.

One of the key challenges faced by the current academic
research is to develop algorithms that canunderstand, analyze
and auto-generate 3D content. Generative models address
this issue [3, 4]. Currently, one of the hottest topics in deep
learning and computer vision is generative adversarial net-
works (GAN) [5–7] or variational auto-encoder (VAE) [8,
9] for shape generation. These generative models serve as
a test-bed for high-quality representation learning, feature
extraction and unsupervised recognition using probabilistic
spaces and manifolds.

While deep generative model acts as a generic mathemat-
ical framework which is very flexible and provides immense
expressive power, the performance of VAE or GAN-based
methods still leaves much to be desired when faced with
challenging conditions. A downside to the 3D-VAE [4] is
that it uses directmean squared error instead of an adversarial
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network, so the network tends to produce unreliable recon-
struction, corresponding to more blurry images in image
generation. Moreover, choosing a too simplistic prior like
the standard normal distribution is known to result in over-
regularized models with only few active latent dimensions,
as a result, with very poor hidden representations. 3D-GAN
[3] is based upon the original GAN architecture and training
approach, which is well known to suffer from instability. The
coexistence of instability is that GAN can easily result in a
problem called missing mode, that is, the generation of the
network G in GAN will be easily confined to some modes,
but not rich.

An important factor in the aforementioned problem is the
lack of control on the discriminator during GAN’s training.
Inspired by the observation that the optimization objectives
for supervised learning are more stable, we suggest adding a
supervised signal as a regularizer on top of the target of the
discriminator. In the recent literature [10–12], we have noted
that prior distribution of latent variable in fact plays a crucial
role in generative models. The selection of an appropriate
prior for GAN is, however, not trivial. Specifically, choosing
an appropriate prior depends on the following criteria:

• The prior should have an expressive distribution and is
flexible enough to capture a-priori knowledge, e.g., by
Gaussian mixture models (GMMs).

• The prior should retain information from real samples as
much as possible to create a both richer and informative
prior.

These insights helped us to introduce the variational mix-
ture of posteriors prior (VampPrior) as the distribution of the
latent variable. The multimodal nature benefits our prior to
achieve superiority over many other simple priors in terms of
training complexity and expressiveness. Specifically, in con-
trast to modeling prior directly as Gaussian mixture models
(GMMs), the VampPrior consists of a mixture distribution
with components given by variational posteriors conditioned
on a set of learnable pseudo-inputs (Eq.2). Importantly, the
prior and posterior are coupled inVampPriorwhich implic-
itly incorporates the real data information into the generator
network. This will simultaneously facilitate the variety and
fidelity of generator-generated false samples. Therefore, the
GANs can benefit dramatically from this novel prior. More-
over, incorporating pseudo-inputs into VampPrior prevents
the GANs from bearing the risk of potential overfitting,
which makes the model less expensive to train. Thus, such
priors provide a good compromise between computational
convenience and flexibility. Therefore, we suggest a novel
generative model, called VampPrior- 3DGAN, integrating
this concept with the above solution to compensate for the
missing modes.

Contributions Our principal contributions are:

• We introduce the prior, named as variational mixture of
posterior prior [11], as the distribution function of the
latent variable in GAN. It can enrich the prior and encode
more information of the real samples.

• Our encoder serving as a regularizer to penalize missing
modes, thus, can improve GAN’s training stability and
sample qualities.

• We propose the VampPrior- 3DGAN which allows
learningprior fromdata and thusmodelingmultimodality
for 3D generation tasks. Our method can learn multi-
modal distribution and generate high-fidelity, diverse 3D
shapes.

• We showcase that our models have favorable properties,
like enjoying high compatibility in the network architec-
ture from dynamic shape generation to image-to-shape
reconstruction.

The rest of the paper is organized as follows. Section2
describes some related studies. Section3 details the proposed
method. Section4 presents and discusses the results and find-
ings. Section5 concludes the paper.

2 Related work

Shape generation There are two main schools of work on
shape generation: (a) the native 3D school. This school is
characterized by training directly on 3D datasets such as
ShapeNet [1], and is based on 3D data from training to
inference. Some interestingworks are: 3D-GAN [3], GET3D
[13], TextCraft [14] (which implements text conditioning),
AutoSDF [15], MeshDiffusion [16], etc. Such methods tend
to be fast and no problem at all in generating the cate-
gories present in thedataset.However, generatingmodels that
require ‘imagination’ remains challenging. (b) 2D upscaling
school. Some approaches draw on the imaginative powers
of 2D generative AI to drive the generation of 3D content.
Work in this genre has recently made a lot of progress riding
on breakthroughs in 2D deep generative models such as Ima-
gen [17] and stable diffusion (SD [18]). OpenAI Point·E [19]
takes text as input, generates an image using the 2D diffusion
model GLIDE [20], and then generates a point cloud based
on the input image using the 3D point cloud diffusion model.
DreamFusion [21] generates multiple perspectives by a 2D
generative model (e.g., Imagen [17]) and then reconstructs
it with NeRF [22]. The authors came up with a GAN-like
approach, where NeRF and Imagen iterate back and forth.
The advantage is that there is more diversity. Magic3D [23]
cleverly divides the reconstruction process into two steps: the
first step uses only NeRF for rough shape generation, and the
second step uses a differentiable rasterizer to refine.
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Point cloud complementationThepioneeringwork Point-
Net [24, 25] has led to a boom in 3D vision that has gen-
erated many subsequent studies. PointNet directly inspires
researchers to focus on learning global feature embeddings
from point clouds for point cloud generation (PSG [26]) and
point cloud complementation [27, 28]. However, predicting
local details and thin shape structures remains a challenge.
To address these challenges, research efforts [29–32] utilize
multi-scale local point features to reconstruct complete point
clouds with fine-grained geometric details. With the help of
attention mechanism, some works have provided impressive
complementation results [31, 32]. As a challenging condi-
tional generation problem, point cloud complementation is
still an open problem. In the last two years, the diffusion
model (DDPM [33], stable diffusion [18]) has made many
breakthroughs and has become a big hit in the field of 2D
AIGC. In the field of 3D content generation, however, the dif-
fusion model is just in the exploration stage. Luo & Hu [34]
is the first to use DDPM for unconditional point cloud gen-
eration. Lyu [35] and Zhou et al. [36] further use conditional
DDPM for point cloud completion. The major difference is
that Zhou et.al. do not refine or upsample the coarse point
cloud generated by DDPM like Zhaoyang Lyu does.

Single-view reconstruction Significant progress has been
made in the field of single-view 3D reconstruction. The
choice of representation is clearly critical to the quality of
shape reconstruction.Volume-basedmethods [3, 37, 38] con-
tain most of the work for single-view 3D reconstruction. Due
to their memory consumption limitations, however, these
methods lack the scalability needed to reconstruct high-
resolution and detailed shapes. Point cloud-based methods
[26, 39, 40] have a smaller memory footprint. But because
point clouds lack topological connectivity information, they
require post-processing to obtain shapes from these point
clouds. Mesh-based methods [41–43] utilize connectivity
information, but are greatly dependent on the underlying
model they are deforming. In general, there is no direct
way to change the topology of the underlying mesh during
the reconstruction process to achieve better edge and mesh
flow,which facilitates better shape quality.Methods based on
implicit surfaces (level set [44], SDF [45], occupancy [46]
and implicit fields [47]) have recently received increasing
attention. This is due to their desirable properties in single-
view 3D reconstruction. However, due to the inefficiency of
sampling methods, implicit surface-based methods usually
lead to over-smoothed reconstructions. It is worth noting that
new implicit representations are constantly being proposed.
One of the most promising representations is the neural radi-
ance fields (aka NeRF [22, 48, 49]). In the near future, one
will continue towitness various novel breakthroughs inNeRF
research efforts, such as single-view 3D reconstruction [50]
[51].

Fig. 1 Generative adversarial network

Regularization of latent space Another branch of related
works, which perhaps more closely relates to our work,
involves the regularization of GAN and the learning of
a meaningfully structured latent space. [52] proposes two
novel regularizer for the GAN training target: geometric
metrics regularizer and mode regularizer. GM-GAN [53]
incorporates a sparse prior-knowledge into the model, by
sampling latent vectors using a multimodal probability dis-
tribution which better matches the sparse characteristics of
the data space.

3 Methodology

In this section, we first provide two intuitions and then
the corresponding solutions for our specific variant of 3D-
GAN, dubbed VampPrior- 3DGAN, which mainly serves
to address themode collapse issue to improve samples’ diver-
sity.

Geometric intuition Canonically, the GAN Fig. 1 training
procedure can be viewed as a non-cooperative two-player
min–max game, in which the discriminator D attempts to
distinguish real and generated examples, whereas the gener-
atorG tries to fool the discriminator by pushing the generated
samples toward the direction of higher discrimination values.

We argue that training the discriminator D can be inter-
preted as training an evaluation metric on the sample space.
Then, the generator G has to take advantage of the local gra-
dient ∇ log D(G) provided by the discriminator to improve
itself, namely to move toward the data manifold. The value
function describing the GAN’s min–max game can be for-
mally formulated by

min
G

max
D

V (D,G) = Ex∼pdata [log D(x)] + Ez∼pz [log(1 − D ◦ G(z))] (1)

where pdata is the data generating distribution, z ∈ R
dz is a

latent variable drawn from distribution p(z) such asN (0; I )
or U[−1; 1].

Upon comparison with the objective for the GAN genera-
tor, the optimization targets for supervised learning are more
stable, from an optimization point of view. The difference
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is clear: the optimization target for the GAN generator is a
learned discriminator. While in supervised models, the opti-
mization targets are distance functions with nice geometric
properties. The latter usually provides much easier training
gradients than the former.

These insights empower us to incorporate a supervised
training signal as a regularizer on top of the discriminator
target. Assume the generator G(z) : Z → X generates sam-
ples by sampling first from a fixed prior distribution in space
Z followed by a deterministic trainable transformationG into
the sample space X . Together with G, we also jointly train
an encoder E(x) : X → Z . Assume d is some similarity
metric in the data space, we add Ex∼pdata[d(x,G ◦ E(x))] as
a metric regularizer.

The geometric motivation for this metric regularizer is
straightforward. We are trying to match the generated man-
ifold to the real data manifold by geometric distances, in
addition to the gradient provided by the discriminator D.
The idea of adding an encoder is equivalent to first training a
point to point mapping G(E(x)) between the two manifolds
and then trying to minimize the expected distance between
the points on these two manifolds.

In addition to the metric regularizer, we propose a prior
regularizer intuition to further penalize missing modes.

Latent prior intuition In traditional GANs, the opti-
mization target for the generator is the empirical sum∑

i ∇ log D(G(zi )). The missing mode problem is caused
by the conjunction of two facts: (1) the areas near missing
modes are rarely visited by the generator, by definition, thus
providing very fewexamples to improve the generator around
those areas [52], and (2) bothmissingmodes andnon-missing
modes tend to correspond to a high value of D, because the
generator is not perfect so that the discriminator can take
strong decisions locally and acquire a high value of D even
near non-missing modes. For most z, the gradient of the dis-
criminator ∇ log D(G(z)) implicitly pushes the density of
the generator distribution toward themajormode. Onlywhen
G(z) is very close to the minor mode can the generator get
gradients to push itself toward this minor mode. However,
it is possible that such z is of low or zero probability in the
prior distribution pz(z). We argue that this problem can be
solved by two ways.

First solution: Increase the depth of generator network.
We argue that the rationale why we would like to extend the
depth of the generator is because the vanilla 3D-GAN [3], in
essence, attempts to learn a mapping from a simplistic prior
distribution pz(z) ∼ N (0, I ) orU[−1; 1] to the complicated
three-dimension data distribution. Such mapping requires a
deep generator which can decode this single simplistic guas-
sian (or uniform) to disentangle the underlying diversemodes
or factors of variation within the real three-dimension data
and encourage its samples’ diversity. This, in turn, transfers
into the requirement of large amounts of input data. However,

when real three-dimension data is limited, yet originates from
a diverse modality, increasing the network depth becomes
infeasible. Furthermore, this also ends up in overfitting.

Second solution:Rather than raising the generator’s depth,
we instead recommend to enrich the prior distribution pz(z)
to strengthen the generator. Even if our central idea—
utilizing a mixture model for latent variable— has been
suggested in various papers mostly in the context of vari-
ational inference, for instance, GMVAE [10], yet, in the
context ofGANs,we havemore considerations, i.e., at the top
of a richer distribution, wewould like our prior to take advan-
tage of the information from the real samples. Concretely, if
the prior is learned enough that to assign separate regions
in the latent space to each datapoint, this effect should help
the generator to decode a hidden representation to its corre-
sponding voxel representation much easier. Combining this
insight with the above approach meant to penalize the miss-
ing modes, we propose a hybrid architecture for the GAN
objective, where we, in particular, propose the prior distri-
bution of the latent vector of GAN as a variational mixture
of posterior prior (VampPrior), which was first introduced
by [11] to extend the VAE. The VampPrior consists of a
mixture distribution with components given by variational
posteriors conditioned on learnable pseudo-inputs:

pλ(z) = 1

K

K∑

k=1

E(z | uk), (2)

where K is the number of components, and uk is a parameter-
ized vector referred as a pseudo-input which can be learned
through backpropagation and can be thought of as hyperpa-
rameters of the prior, alongside parameters of the posterior
φ, λ = {u1,u2, . . . ,uk, φ}.

Importantly, the VampPrior is multimodal. It makes the
prior of GAN more expressive, thereby preventing the over-
regularization of the prior. By incorporating pseudo-inputs,
it prevents from potential overfitting once we pick K � N ,
which makes the model cost-effective to train. More specif-
ically, the prior and posterior are coupled in VampPrior
which implicitly incorporates the training data information
into the generator network. Moreover, the learnable pseudo-
inputs will fine-tune and tweak the prior to best suit the data
distribution automatically.

Next, we describe this intuition more precisely.

3.1 VampPrior-3DGAN

In this section, we train a voxel-based VAE jointly with the
GAN model. The model architecture is presented as Fig. 2.

Learned pseudo-input The previous observation suggests
to prefer an expressive prior, so that the generator can eas-
ily decode a hidden representation on a voxel grid. In other
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Fig. 2 Flowchart of VampPrior- 3DGAN for shape generation, completion and reconstruction

words, the encoder should be trained in order to have large
variance. To achieve this effect, the VampPrior should be
attracted by dissimilar pseudo-inputs and assigns separate
regions within the latent space. Within this framework, we
select the real samples as the weight of the deep neural net-
work. A random noise vector n with the same dimension of
x is then added to x element-wisely. Subsequently, we lever-
age the backpropagation procedure to tune these weights so
as to learn these pseudo-inputs. The input of the deep neural
network is an identity matrix with an order K , referred as
idle-input. The schematic representation is in Fig. 3.

LossGiven a batch of training samples, we first pass these
samples through encoder E and then reparameterize the out-
put of the encoder to provide the input of the generator G.
After jointly training the encoder and generator, we then
dynamically sample fromEq.2 on the latent space of encoder
E . Sampling then from this dynamic and far more power-
ful mixture prior distribution in space Z , the generator G at
this time can generate more diverse samples, which are then
judged by the discriminator D. We then update the generator
G and the discriminator D, alternately. The encoder and gen-
erator update their parameters by minimizing the following
loss:
Lg
gan = Ex∼pdata [α1d(x,G ◦ E(x)) + α2log D(G ◦ E(x))]

− Ez∼pλ(z)[log D(G(z))], (3)

Le
vae = Ex∼pdata[α1d(x,G ◦ E(x))]

+ α3K L(pλ(z)‖E(z | x)), (4)

where Ex∼pdata [log D(G ◦ E(x))] is the mode regularizer to
encourageG◦E(x) tomove toward a nearbymode of the data
generating distribution and K L(·) is the KL divergence. α1,
α2 and α3 are the trade-off parameters controlling the fidelity
and diversity of the fake samples. In this way, we can achieve
fair probabilitymass distribution across different modes. The
discriminator updates its parameters by minimizing the fol-
lowing loss:

Ld
gan = −Ex∼pdata [log(D(x)) + log(1 − D(G ◦ E(x)))]

− Epλ(z)[1 − log(D(G(z)))], (5)

where D(·) is the probability of the input being a real vol-
umetric shape, and 1 − D(·) that of a synthetic one. The
second component denotes the probability of the input being
a synthetic shape generated by an encoder and generator net-
work. Meanwhile, the third component denotes the one of
the input being a synthetic shape generated directly from the
VampPriordistribution.We implement D as a convolutional
neural networks, whose last layer outputs the probability of
the sample being a synthetic shape. For training this network,
each mini-batch comprises of randomly sampled synthetic
shape x̃ from the VampPrior distribution pλ(z) and real
shape x. The target labels for the cross-entropy loss layer
are 0 for every x j , and 1 for every x̃i . Then, the parameter
of discriminator D for a mini-batch is updated by taking a
stochastic gradient descent (SGD) step on themini-batch loss
gradient.

3.2 Shape reconstruction

We tackle the problem of reconstructing objects from RGB
images in a novel training methodology. The reconstructive
model enjoys the same architecture as used for shape genera-
tion (see Fig. 2 and Table 1). In contrast to shape generation,
the input herein is an image. The encoder converts an image
into a 200-dimensional vector of means and variances. We
then dynamically fit a variational mixture of posterior model
from the latent space of the encoder network to produce our
noise vector. The latent vector is then passed through the
generator network to generate a reconstructed object, which
is then given to the discriminator to pass judgment on its
validity.

The same generator and discriminator networks as used
for shape generation (VampPrior-3DGAN) are imple-
mented into this system and the encoder network is a simple
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five layer convolution neural network. During training, the
discriminator and encoder networks are trained at every batch
while the generator only learns every two batches. This last
point is key to the integration of the systems, since if the
encoder is not trained alongside the discriminator at every
iteration, the system will not converge. This makes sense
since both networks should learn similar features about the
objects being created at approximately the same rate.

3.3 Partial shape completion

We discuss the issue of voxel form completion from sparse
point clouds in this paper as well. This issue arises when
only a single view of an individual object is given, or large
parts of the object are occluded as in robotic applications. In
order to form informed decisions (e.g., for path planning and
navigation), it is of utmost importance to efficiently establish
a representation of the environment which is as complete as
possible. We accurately reconstruct an object’s complete 3D
shape and volume when presented with only a part of the
object from a single perspective. We tackle this problem to
show the generative power of our system, to highlight that
our model is applicable to realistic robotic problems, and
to demonstrate that our system is easily applicable to tasks
involving reproducing 3D shapes from multiple input types.

4 Experiments

In this section, we verify that our novel architecture performs
on par with or even better than the state-of-the-art generative

framework. To assess the quality of our proposed neural gen-
erative model for 3D shapes, we conduct several extensive
experiments. In Sect. 4.2, we investigate our model’s ability
to generate diverse samples. Following this, in Sect. 4.3, we
test ourmodel’s ability to reconstruct real-world image, com-
paring our results to 3D-R2N2 [37] andNRSfM [55]. Finally,
we demonstrate the shape completion from the output of a
single perspective scan from a depth sensor.

4.1 Datasets

• MODELNET There are two variants of the ModelNet
dataset,ModelNet10 and ModelNet40, introduced in
[2], with 10 and 40 target classes, respectively.Model-
Net10 has 3D shapes which are pre-aligned with the
same pose across all categories. In contrast, Model-
Net40 (which includes the shapes found in Model-
Net10) features a variety of poses. In order to assess the
ability of our model to handle 3D forms of great variety
and complexity, we augment each class of ModelNet10
with a maximum number of 12 rotations while avoiding
the risk of overfitting. For the shape completion task, we
construct a synthetic dataset based on the ModelNet
dataset, taking 15 random perspectives for each object in
the ModelNet10 dataset. A test set of entirely unseen
objects was held back for evaluation, examples of which,
can be observed in the first rows of Figs. 12 and 13.

• PASCAL 3D The PASCAL 3D dataset is composed of
the image from thePASCALVOC2012dataset [56], aug-
mented with 3D annotations using PASCAL3D+ [57].
PASCAL3D+ images exhibitmuchmore variability com-
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Table 1 Details of model architectures used in the experiments. The models were trained using Adam [54] optimizers. BN: Batch normalization,
LR: Leaky ReLU, s2: stride 2

Experiments Dataset Optimizer Arch.

Generation ModelNet40 Adam Input 32x32x32x1.

/Chair 1e-3 (gen) Encoder Conv with BN and LR:

1e-3 (dis) 32x4x4x4(s2), 64x4x4x4(s2), 128x4x4x4(s2),

256x4x4x4(s2), Flatten, FC128.

Latents 128

Gen FC2048, Deconv with BN and ReLU:

256x4x4x4(s2),128x4x4x4(s2),64x4x4x4(s2),

32x4x4x4(s2). Tanh.

Disc Conv reverse of generator. LR. Sigmoid.

Completion ModelNet10 Adam Input 64x64x64x1.

/Bed 2.5e−3 (gen) Encoder Conv 32x4x4x4(s2), 64x4x4x4(s2),

1e-4 (dis) 128x4x4x4(s2),256x4x4x4(s2),512x4x4x4(s2).

FC4096. LR.

Latents 40

Gen Deconv 512x4x4x4(s2), 256x4x4x4(s2),

128x4x4x4(s2), 64x4x4x4(s2), 32x4x4x4(s2).

Disc Conv reverse of generator. LR. Sigmoid.

Reconstruction PASCAL3D Adam Input 100x100x3.

1e-3 (gen) Encoder Conv 32x4x4(s2), 64x4x4(s2), 128x4x4(s2),

2e-4 (dis) 256x4x4(s2), FC2048. ReLU.

Latents 200

Gen Deconv 256x4x4(s2), 128x4x4(s2),

64x4x4(s2), 32x4x4(s2). Tanh.

Disc Conv reverse of generator. LR. Sigmoid.

pared to the current 3D datasets, and on average there are
over 3,000 object instances per category.We voxelize the
3D CAD models with resolution 32 × 32 × 32 and the
same training and testing splits as NRSfM [55], which
is also used to conduct real-world image reconstruction.
Note that only pre-processing techniques applied were
image cropping and padding with 0-intensity pixels to
create final samples of resolution 100 × 100.

• SYNTHETIC DATASET A new synthetic dataset of
images and 3D models that we created solely serves to
train and validate our models from a single RGB image
for three-dimensional object reconstruction. The dataset
was directly obtained from the online ShapeNet repos-
itory [1]. It consisted of six object classes, rendered in
front of backgrounds images from the SUN dataset [58]
and mantled with random textures from the Describable
Textures Dataset [59]. Each RGB image is accompa-
nied with its ground truth 3D model from the ShapeNet
repository, with 64 × 64 × 64 voxel resolution. To test
our models, we also collected the IKEA dataset from the
Google 3D Warehouse which consists of a set of 800
images rendering a large collection of objects, and their

corresponding object models. These objects fall into six
categories, namely, beds, bookcases, chairs, desks, sofas
and tables, and are evaluated in accordance with resolu-
tion 64×64×64. The dataset presents a strong evaluation
tool for heavily occluded images in realistic scenes, using
only the constraint that the object is centered within the
image.

4.2 Evaluating shape generation and learning

To examine our model’s ability to generate high-resolution
3D shapeswith realistic details, we design a task that involves
shape generation and shape interpolation. We add Gaussian
noise to the learned latent codes on test data taken fromMod-
elNet and then use our model to generate “unseen” samples
that are diverse to the input voxel.

It can be noted that the suggested VampPrior- 3DGAN
demonstrates the ability to transition between two objects
smoothly. Our findings on shape generation are illustrated in
Fig. 4.We further compare to previous state-of-the-art results
in shape generation, which are depicted in Fig. 5). Figure 6
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Fig. 4 Shape generation results
by our VampPrior- 3DGAN
model on ModelNet40. The
picture is best viewed in color
on screen
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Fig. 5 Visualization comparison of diversity between 3D-GAN (left) and VampPrior- 3DGAN (right). The picture is best viewed in color

Table 2 Comparing sample
diversity by the augmented
inception-score values for
baseline 3D-GAN and
VampPrior-3DGAN across the
5 categories of ModelNet40
dataset

Method Airplane Car Chair Sofa Vase Mean

3D- GAN 2.72±.20 2.06±.09 2.22±.23 2.12±.55 2.16±.15 2.15±.25

Ours 2.78±.02 2.31±.02 1.27±.01 3.63±.14 2.00±.05 2.28±.62

Larger scores are better. The entries represent score’s mean value and standard deviation for the category

shows the results of our shape interpolation experiment, from
both within-class and across-class perspectives.

For our system of VampPrior- 3DGAN framework, the
choice of the number of pseudo-inputs (Eq. 2), denoted by
NpseudoInput , is made empirically—more complicated data
distributions require more pseudo-inputs. Larger value of
NpseudoInput helps model with relatively increased diversity.
Nevertheless, increasing NpseudoInput also increases mem-
ory requirements. Our experiments indicate that increasing
NpseudoInput beyond a point has little to no effect on the
model capacity since the VampPrior tends to ‘crowd’ and
become redundant. We use a NpseudoInput between 50 and
100 for our experiments.

In order to quantitatively characterize the diversity of
generated voxel samples in our experiments, we design an
augmented version of the inception score, a measure which
has been found to correlate well with human evaluation,
for different experiments instead of human annotators. We
describe this score next.

Augmented inception score The inception score was con-
sidered as a good assessment for sample quality:

exp(Ex [K L(p(y | x)‖p(y))]), (6)

where x denotes one sample, p(y | x) is the softmax output
of a trained classifier of the labels, and p(y) is the overall
label distribution of generated samples. The intuition behind
this score is that a strong classifier usually has a high con-
fidence for good samples. However, it is desirable to have
diversity within voxel samples of a particular category. To
characterize this diversity, we use a cross-entropy style score
−p(y | xi ) log(p(y | x j ))where x j s are samples of the same
class as xi as per the outputs of the trained inception model.
We incorporate this cross-entropy style term into the orig-
inal inception-score formulation and define the augmented
inception score as a KL divergence:

exp(Exi [Ex j [K L(p(y | xi )‖p(y | x j ))]]). (7)
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Intra-Class Interpolation (car)

Inter-Class Interpolation (car� airplane)

Fig. 6 Continuous morphing of output shapes achieved by linear interpolation of shape vectors. The picture is best viewed in color

Fig. 7 A graph depicting the discrimination (left), generation (mid) and reconstruction loss (right) at each iteration, while training the VampPrior-
3DGAN system on the ModelNet10 bed dataset

3DGAN GM-3DGANVampPrior-3DGAN VampPrior-3DGAN

(a) (b)

Fig. 8 Comparison of reconstruction loss on ModelNet10 chair dataset with different prior

Essentially, this augmented inception score can be viewed
as a proxy for measuring intra-class sample diversity along
with the sample quality. In our experiments, we report the
augmented inception score on a per-class basis and a com-
bined score averaged over all classes.

For evaluation, we first pretrained a 3D inception net-
work, that is generalized from image inception network, on
the training set of ModelNet40. The 3D inception net-
work is a four-layer CNN classifier. After pretraining, the
last layer of the inception network is then fine-tuned by
transfer learning and then applied to compute the augmented
inception scores for the generated samples. We selected five
categories—airplane, car, chair, sofa and vase. Note that, dur-
ing training, we augment the dataset using the rotated version
of the voxels. We compare the generated results of 3D-GAN
and VampPrior- 3DGAN. Figure 5 shows the samples gen-
erated by 3D-GAN and VampPrior- 3DGAN, respectively.
During this case, our samples are visibly better, and arise
from a more stable training procedure. The samples gener-
ated by our framework also exhibit larger diversity, visibly

and consistent with augmented inception scores additionally
(Table 2).

For the ModelNet10 dataset, we will assume that the
data generating distribution may be approximated with 10
dominant modes, here we define the term “mode” as a con-
nected component of the data manifold. We first examined
whether our system was able to generate objects from a dis-
tribution consisting of just one object, but set in 12 different
orientations from the ModelNet10 dataset. The value of
NpseudoI nput is set to 50. This task was clearly successful,
since it produced sufficiently varied objects of high quality.
This can be observed in Fig. 4. It was possible to track the
quality of the objects using the reconstruction and generation
loss, and this can be viewed in Fig. 7. Figure 8 showcases a
comparison of the reconstruction loss curve with 3D-GAN.
One can see in the figure that our method VampPrior-3DGAN
converges faster and the reconstruction error is at least 0.04
smaller than that of 3D-GAN. Moreover, in order to see more
clearly the effectiveness of the prior we introduced, we fur-
ther replace vampprior with mixture of Gaussian (dubbed
GM-3DGAN), and from the figure one can see the difference
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Fig. 9 Reconstruction samples
for PASCAL3D from the
separately trained
VampPrior- 3DGAN

Input GT Ours 3D-R2N2 NRSfM

Table 3 Per-category voxel predictive performance on PASCAL 3D, as measured by IoU

Method Aero Bike Boat Bus Car Chair Mbike Sofa Train TV Mean

3D- R2N2 [LSTM- 1] 0.472 0.330 0.466 0.677 0.579 0.203 0.474 0.251 0.518 0.438 0.456

3D- R2N2 [Res3D- GRU- 3] 0.544 0.499 0.560 0.816 0.699 0.280 0.649 0.332 0.672 0.574 0.571

NRSfM 0.298 0.144 0.188 0.501 0.472 0.234 0.361 0.149 0.249 0.492 0.318

Ours jointly 0.514 0.269 0.327 0.558 0.633 0.199 0.301 0.173 0.402 0.337 0.432

Ours separately 0.645 0.671 0.554 0.856 0.786 0.304 0.656 0.623 0.798 0.454 0.619

Bolding indicates that our method achieves best results

Table 4 Average precision
scores on the IKEA dataset

Method Bed Bookcase Chair Desk Sofa Table Mean

AlexNet- fcc8 [60] 29.5 17.3 20.4 19.7 38.8 16.0 23.6

AlexNet- conv4 [60] 38.2 26.6 31.4 26.6 69.3 19.1 35.2

T- L Network [60] 56.3 30.2 32.9 25.8 71.7 23.3 40.1

3D- VAEGAN jointly [3] 49.1 31.9 42.6 34.8 79.8 33.1 41.2

3D- VAEGAN separately 63.2 46.3 47.2 40.7 78.8 42.3 53.1

Ours separately 78.6 52.2 57.3 51.7 83.1 52.9 62.1

Bolding indicates that our method achieves best results
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Table 5 Comparison of
computational efficiency, model
size and IoU for single-view 3D
reconstruction on the ShapeNet
testing set. FIT: Forward
inference time

Methods #Parameters Memory FIT Training time IoU
(M) (MB) (ms) (hours) (%)

3D-R2N2 [37] 35.97 1407 73.1 169 56.1

OGN [38] 12.46 793 37.9 192 59.8

PSG [26] 178.32 956 85.6 78 64.2

Pix2Vox [61] 114.24 2729 9.9 25 66.2

Ours 22.16 117 8.4 21 65.0

Fig. 10 IoU metric on the
ShapeNet subset

bike chairboat

Kar 3D-R2N2(LSTM-1)

bus

3D-R2N2(Res3D-GRU-3)

car

VampPrior-3DGAN

Fig. 11 Sample reconstruction
results from single image using
the VampPrior- 3DGAN
model, from a distribution
consisting of the chair class from
the ShapeNet Core dataset. In
the 1st row is the RGB input, in
the 2nd is the reconstruction of
our method. The picture is best
viewed in color on screen

in reconstruction quality due to the two priors. Our vampprior
is on average 0.02 lower than the GM prior.

4.3 Evaluating shape reconstruction from single
image

Another application of the proposed VampPrior- 3DGAN
is single-image shape reconstruction. This is a challenging
problem, forcing our model to deal with real-world images
under a variety of lighting conditions and resolutions. Fur-
thermore, there are many instances of model occlusion as
well as different color gradings.

MetricsWeuse twometrics to evaluate the performance of
3D reconstruction. Thefirstmetric is voxel Intersection-over-
Union (IoU) between a predicted voxel grid and its ground
truth. It is formally defined as follows:

IoU =
∑

i jk

[
I (y′

i jk > p) ∗ I (yi jk)
]

∑
i jk

[
I
(
I (y′

i jk > p) + I (yi jk)
)] , (8)

where I (·) is an indicator function, (i, j, k) is the index of
voxel in three dimensions, y′

i jk is the predicted value at the
(i, j, k) voxel, yi jk is the ground truth value at (i, j, k), and
p is the threshold for voxelization. The higher the IoU value,
the better the reconstruction of a 3Dmodel.We also report the
average precision loss as a secondary metric. Higher values
indicate higher confidence reconstructions.

To test our model on this application, we use the PAS-
CAL3D dataset and utilize the same exact training and testing
splits from [55]. We compare our results with those reported
for recent approaches, including the NRSfM [55] and 3D-
R2N2 [37] models. Note that these also used the exact same
experimental configurations as we did.
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Fig. 12 First row: Sample synthetic single perspective kinetic scans
created by the authors, produced from the chair class of the Model-
Net10 dataset. Second row: The corresponding shape completion result
of our VampPrior- 3DGAN framework. Third row: The correspond-

ing shape completion result of 3D-GAN. Final row: The corresponding
ground truth volumetric grid. The picture is best viewed in color on
screen
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Fig. 13 First row: Sample synthetic single perspective kinetic scans
created by the authors, produced from the bed class of the Model-
Net10 dataset. Second row: The corresponding shape completion result

of our VampPrior- 3DGAN framework. Third row: The correspond-
ing ground truth volumetric grid. The picture is best viewed in color on
screen

For this task, we train our model in two different ways:
(1) jointly on all categories, and (2) separately on each cat-
egory. In Fig. 9, we observe better reconstructions from the
separately trained VampPrior- 3DGAN when compared to
previous work. Unlike the NRSfM, our model does not
require any segmentation, pose information or keypoints. In
addition, our model is trained from scratch while the 3D-
R2N2 is pretrained using the ShapeNet dataset. However, the
jointly trained VampPrior- 3DGAN did not outperform the

3D-R2N2,which is also jointly trained. The performance gap
is due to the fact that the 3D-R2N2 is specifically designed
for image reconstruction and employs a residual network to
help the model learn richer semantic features.

Quantitatively, we compare our model to the NRSfM and
two versions of 3D-R2N2, one with an LSTM structure and
another with a deep residual network. The IoU results are
shown in Table 3. Observe that our jointly trained model
performs comparably to the 3D-R2N2 LSTM variant while
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Fig. 14 Failure cases in shape
completion on bed category of
ModelNet10 dataset. The
picture is best viewed in color
on screen

the separately trained version surpasses the 3D-R2N2ResNet
structure in 8 out of 10 categories, half of them by a wide
margin.

In this experiment, we trained networks with our method
on the task of single-image 3D reconstruction. This was
a task also performed by the 3D-GAN system [3], and,
therefore, provides a fair and quantitative basis for a com-
parison of the two methods. The result evaluated on the
IKEA dataset is illustrated in Table 4. Our system consis-
tently outperforms the original 3D-GAN system and several
other previous approaches, with a mean average precision of
62.1% across all classes. Figure10 showcases the IoU met-
ric results with a comparison of the start-of-the-art methods
on the ShapeNet subset. Figure11 illustrates the example
reconstruction results using our method.

Table 5 showcases the numbers of parameters, model size,
forward inference time, training time and IoU of different
methods. Although our model underperforms Pix2Vox by
about 1.2 in the IoU metric, there is an 30% reduction in
parameters in our method compared to 3D-R2N2. In order
to make a fair comparison, the running times are obtained
on the same PC with an NVIDIA GTX 1080 Ti GPU. Our
method is about nine times faster in forward inference than
3D-R2N2 in single-view reconstruction.

4.4 Shape completion

The task of recovering 3D shape completion of artifacts from
the output of single perspective scan from a depth sensor
is added to a voxel-encoded variant of our VampPrior-

3DGAN system. Twomodels were produced: the first trained
on chair and bed objects and the second on all the objects in
the ModelNet10 dataset. The experiment are clearly quite
successful and the examples of recovered objects from the
test set can be viewed in the second row of Figs. 12 and 13.
In addition, Fig. 14 also indicates several failure cases on bed
category of ModelNet10. This is mostly due to the fact that
the sample form is far away from the data distribution, and
the shape itself is very complex.

5 Conclusion and future work

In this paper, we introduced a novel GAN-based deep gener-
ative model, VampPrior- 3DGAN, with a powerful prior as
the mixture of variational posterior. Our model is successful
in shape generation from complex multimodal distribution
involving multiple distinct classes. We demonstrate that the
models produced by our system can learn the distributions
involving multiple object classes in multiple orientations.
In addition, we explain how our method can be smoothly
extended to single-image reconstruction, without alternative
network architecture. We demonstrate this model’s genera-
tive power by recovering three-dimensional objects from a
single imagewith different light, background and texture.We
achieve state-of-the-art performance on the synthetic dataset.
Finally, we again show the system’s generative power by
successfully applying it to object completion from single
perspective scan. While we have focused on dense regular-
grid-based shape generation and binary occupancy maps in
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this paper, it is straightforward to extend the framework to
scene generation and reconstruction from scene image/depth
map.
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