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Abstract
Recent work on dense optical flow has shown significant progress, primarily in a supervised learning manner requiring a large
amount of labeled data. Due to the expensiveness of obtaining large-scale real-world data, computer graphics are typically
leveraged for constructing datasets. However, there is a common belief that synthetic-to-real domain gaps limit generalization
to real scenes. In this paper, we show that the required characteristics in an optical flow dataset are rather simple and present a
simpler synthetic data generation method that achieves a certain level of realism with compositions of elementary operations.
With 2D motion-based datasets, we systematically analyze the simplest yet critical factors for generating synthetic datasets.
Furthermore, we propose a novel method of utilizing occlusion masks in a supervised method and observe that suppressing
gradients on occluded regions serves as a powerful initial state in the curriculum learning sense. The RAFT network initially
trained on our dataset outperforms the original RAFT on the two most challenging online benchmarks, MPI Sintel and KITTI
2015.

Keywords Curriculum learning · Deep learning · Optical flow · Synthetic data

1 Introduction

Optical flow provides the clues of motion between subse-
quent frames, which can be utilized for other computer vision
tasks such as object tracking, action recognition, 3D recon-
struction, and video enhancement, etc. Recently, deep neural
networks have shown great progress in optical flow estima-
tion [12, 15, 29–31]. The progress has been made primarily
in a supervised learning manner requiring a large amount of
labeled data. Despite the effectiveness of the learning-based
approaches, obtaining labeled real-world data is prohibitively
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expensive at a large scale. Therefore, synthetic computer
graphics data [1, 3, 6, 23] are typically leveraged.

A common belief of using synthetic data is that the data
rendered by graphics engines limit generalization to real
scenes due to synthetic-to-real domain gaps in quality. Those
gaps involve real-world effects such as noise, 3D motion,
non-rigidity, motion blur, occlusions, large displacements,
and texture diversity. Thus, synthetic datasets [1, 3, 6, 23]
for optical flow have been developed by considering these
effects to some extent, i.e. , mimicking the real-world effects.

In this paradigm, we throw a question, “Which factor of
the synthetic dataset is essential for the generalization abil-
ity to the real domain?” In this work, we found that the
required characteristics for an optical flow dataset are sim-
ple; achieving only a certain level of realism is enough for
training highly generalizable and accurate optical flow mod-
els. We empirically observe that a simple 2D motion-based
dataset as training data often shows favorable performance
for ordinary purposes or much higher than the former syn-
thetic datasets [1, 22], which are rendered by complex 3D
object or motion with rich textures. Furthermore, we found
that using occlusion masks to give the network incomplete
information is effective for a powerful initial state of curricu-
lum learning.
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(a) FlyingThings3D (Mayer et al., 2016) (b) FlyingChairs (Dosovitskiy et al., 2015) (c) dCOCO (Aleotti et al., 2021) (d) Ours

Fig. 1 The prior arts of synthetic data and our proposed dataset. Sam-
pled frames and its correspondingflowmaps are visualized.While being
diverse in motion, a,b include many thin object parts and unrealisti-
cally simple reflectance. c includes semantically coherent flow map but

the diversity of the motion is limited by a global camera motion. Our
method, in contrast, includes both controllable and diverse motion char-
acteristics with semantically coherent object shapes and rich texture

We design easily controllable synthetic dataset genera-
tion recipes using a cut-and-paste method with segmented
2D object textures. As shown in Fig. 1, our generated data
appears to be far from the real-world one, but training on
those shows promising results both on generalization and
fine-tuning regimes, outperforming the networks trained on
the competing datasets. We also utilize occlusion masks to
stop gradients on occluded regions, and the RAFT network
initially trained with occlusion masks outperforms the orig-
inal RAFT on the two most challenging online benchmarks,
MPI Sintel [3] and KITTI 2015 [24]. Our key contributions
are summarized as follows: (1) We present simple synthetic
data generation recipes with compositions of simple elemen-
tary operations and show comparable performance against
competing methods, (2) we propose a novel method of uti-
lizing occlusion masks in a supervised method and show
that suppressing gradients on occluded regions in a super-
vised optical flow serves as a powerful initial state in the
curriculum learning protocol, and (3) we systematically ana-
lyze our dataset and the effects according to different factors
of motion type, motion distribution, data size, texture diver-
sity, and occlusion masks.

2 Related work

Webriefly reviewour target task, i.e. , optical flowestimation,
and the training datasets that have been used for training
learning-based optical flow estimation methods.
Optical Flow Fundamentally, optical flow estimation for
each pixel is an ill-posed problem. Traditional approaches [2,
11, 25, 33] attempted to deal with imposing smoothness
priors to regularize the ill-condition in an optimization
framework. According to the advance of deep learning, the
ill-posedness has been tackled by learning, yielding supe-
rior performance. Starting with the success of FlowNet [6,
15], Recent optical flow estimation methods have been
developed by coarse-to-fine approaches [10, 29, 32] or
iterative refinement approaches [13, 31]. However, these
approaches strongly rely on training datasets, where real
supervised data of optical flow is extremely difficult to
obtain [22].

Datasets The supervised learning-based methods for opti-
cal flow estimation requires exact and pixel-accurate ground
truth. While obtaining true real motion is extremely diffi-
cult without the support of additional information, several
real-world optical flow datasets [9, 16, 20, 24] have been
proposed. However, these datasets are relatively small scale
and biased to limited scenarios; thus, those are not sufficient
for training a deep model but more suitable for benchmark
test sets.

To address persistent data scarcity, studies for generating
large-scale synthetic datasets have been attempted. Dosovit-
skiy et al. [6] propose a synthetic dataset of moving 3D
chairs superimposed on the images from Flickr. Similarly,
Mayer et al. [23] present datasets where not only chairs but
various objects are scattered in the background. Aleotti et
al. [1] leverage an off-the-shelf monocular depth network to
synthesize a novel view from a single image and compute an
accurate flow map.

Mayer et al. [22] present critical factors of the synthetic
dataset, i.e. , the object shape, motion types and distributions,
textures, real-world effects, data augmentation, and learning
schedules. Prior work [5, 28] generate a learning-based syn-
thetic dataset for training accurate optical flow networks, but
it is still challenging to distinguish the key factors for syn-
thetic data intuitionally. We build upon the observations of
Mayer et al. [22] and design easily controllable synthetic
dataset generation recipes and identify additional key factors
such as balancedmotion distribution, amount of data, texture
combination, and learning schedules with occlusion masks.

3 Data generation pipeline

In this section, we present a simple method to generate an
effective optical flow dataset. Unlike the prior arts using 3D
motions and objects with computer graphics, our generation
scheme remains simple by using 2D image segment datasets
and 2D affine motion group. The proposed simple dataset
enables analyzing the effect of each factor of the synthetic
dataset.
Overall Pipeline The overall data generation pipeline is
illustrated in Fig. 2. As shown, we use a simple cut-and-paste

123



The devil in the details: simple...

Fig. 2 Schematic overview of our data generation pipeline and occlu-
sion mask estimation. a Given a background image and foreground
objects, we sample affine flow coefficients and generate a consecu-
tive frame. These coefficients can be used to extract exact ground-truth

optical flowmap. bWe describe the process of estimating the occlusion
mask (Mr ,i ) for the first layer (i = 0), which is the background. This
process is recursively conducted in ascending order until the end of the
layers

method where foreground objects are pasted on an arbitrary
background image. Inspired by Oh et al.[26], the segmented
foreground objects and random background images are
obtained from two independent datasets to encourage com-
binatorial diversity while avoiding texture overlaps. In this
work, we use PASCAL VOC [7] and MS COCO [21] as
suggested by Oh et al. [26]. The foreground objects are first
superimposed randomly, and its consecutive frame is com-
posed of randomly moving both the foreground objects and
the background image by simple affine motions. This allows
us to express diverse motions, easily control the motion dis-
tribution, and compute occlusion masks.
Background Processing We first sample an image from an
image dataset for background and resize them to 712× 584.
We regard this frame as the target frame (Frame B in Fig. 2).
Then, we generate a flow map using random affine coeffi-
cients, including translation, rotation, and scaling (zooming),
and inverse-warp the target frame to obtain the reference
frame (Frame A in Fig. 2). We sample the translation coef-
ficient of background from the range [−20, 20] pixels for
each direction, and with a 30% chance, the translation coef-
ficient is reset to zero. The rotation and scale coefficients
are sampled from [− π

100 ,
π
100 ] and [0.85, 1.15], respectively.

From the sampled affine matrix, we obtain a ground-truth
flow map by subtracting the coordinates of two background
image pairs as f = Ax−x, where f denotes each flow vector
of a pixel at the reference frame, A the affine transform, and
x a homogeneous coordinate [x, y, 1] of each pixel on the
reference frame. We sample 7,849 background images from
MS COCO [21].
ForegroundProcessingFor synthesizing foregroundobjects’
motion, we use segmented objects from a semantic image

segmentation dataset. For the target frame, we first sam-
ple the number of foreground objects to be composited in
{7, 8, · · · , 14, 15}. Then, we randomly place these objects
on the target one and apply inverse-warping to obtain the
warped objects on the reference frame using optical flow
maps obtained from randomaffine transformations. The sam-
pling ranges of rotation and scale coefficients are the same
as those of the background case. The distribution of the
translation coefficient is designed to follow the exponential
distribution as 1

Z exp(− f /T ), where the temperature T is
empirically set to 20, and Z the normalization term. The dis-
tribution is inspired by natural statistics of optical flow [27],
where the statistics ofmotions tend to followLaplacian distri-
bution.We limit the distribution range [0, 150] by resampling
if the magnitude is over 150 pixels. The translation direction
of foregrounds is sampled at uniformly random.We use 2913
images from PASCAL VOC [7], and from the set, we extract
5543 preprocessed segments as foreground objects.
CompositionWesequentially paste foregrounds on theback-
ground to generate a single pair of consecutive frames. The
flowmaps of each foreground are pasted only when the alpha
channel value is at least the threshold c. Following the imple-
mentation details of [28], we set c to 0.4 and empirically
found the performance is not sensitive to the setting of the
threshold.

After composition, we conduct the center crop to the com-
posited images to obtain outputs of size 512× 384 which is
the same as FlyingChairs [6]. Our data generation speed is
faster than AutoFlow [28], which generates a learning-based
dataset for given target data, and ours about 500 times faster
than dCOCO [1] as shown inTable 1.Our fast data generation
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Table 1 Data generation speed

Dataset Number of 100 pairs
foregrounds generation time

(A) AutoFlow [28] – 336 days

(B) dCOCO [1] – 5593.2 s

(C) Ours 2 6.86 s

(D) Ours 7 9.49 s

(E) Ours 15 12.98 s

We evaluate the speed for generating 100 pairs of synthetic data with a
single NVIDIA Titan RTX GPU: (A) dCOCO, and (B, C, D) ours with
the different number of foregrounds. The number of the foregrounds is
sampled between 7 to 15

speed is beneficial for analyzing the required characteristics
to train accurate optical flow networks.
Occlusion Mask Similar to the prior arts [3, 9, 23, 24], our
data generationmethod exports occlusionmasks aswell. Pre-
dicting motions of regions being occluded is an intractable
problem and requires uncertain forecasting, which can act as
detrimental outliers during training. Thus, prior arts [14, 17]
estimate occlusion masks as well to encourage reliable opti-
cal flow estimation. Unlike prior arts, we utilize occlusion
masks in a supervised method by suppressing gradients on
occluded regions in a supervised optical flow. The gradient
suppression with occlusion masks serves as a powerful ini-
tial state in the curriculum learning protocol, which will be
discussed in the experimental section. To obtain occlusion
masks, given the alpha maps of each layer including fore-
grounds (i ≥ 1) and background (i = 0) in order, we binarize
the alpha map by thresholding with 0.4, denoting α{r ,t},i for
the i-th object layer in the reference and target frames, respec-
tively. The non-visible regionsV{r ,t},i of the i-th layer in each
frame are computed by V{r ,t},i = α{r ,t},i∩(∪L

k=i+1α{r ,t},k).
Using the i-th layer flow map fi , we inverse-warp the Vt,i

to the reference frame as Vt→r ,i = fi ◦ Vt,i and binarize it
by 0.4 again, where ◦ denotes the warping operation. Then,
because the occluded regions are only visible in the reference
frame, we can find such an occlusion mask of each layer by
Mr ,i = max(Vt→r ,i −Vr ,i , 0). The compromised occlusion
mask Mr is obtained by Mr = ∪L

i=0Mr ,i .

4 Experiments

In this section, we compare the performance of respec-
tive optical flow networks by training on our datasets
with/without the occlusion mask and competing datasets.
Utilizing the simple data generation recipe, we also analyze
the effects of characteristics in optical flow datasets.
Optical Flow Network We use RAFT [31] as a reference
model to evaluate the benefits of our synthetic dataset in
generalization and fine-tuning setups. RAFT is a represen-

tative supervised model that is widely used to estimate the
effectiveness of optical flow datasets [1, 28]. We follow the
same hyper-parameters suggested by the implementation of
[31], and the experiment setup by Aleotti et al. [1] that shows
one-/multi-stage training results. For our synthetic datasets,
in the initial training stage, we train RAFT for 100k iterations
with the batch size1 of 10, image crops of size 496×368, the
learning rate 4 × 10−4, and the weight decay of 1 × 10−4.

For multi-stage training with FlyingThings3D [23], from
the RAFT networks pre-trained on our datasets, we further
train with the frames_cleanpass split of FlyingTh-
ings3D that includes 40k consecutive frame pairs. We train
the model for 100k iterations with a batch size of 6, image
crops of size 720 × 400, the learning rate of 1.25 × 10−4,
and the weight decay of 1 × 10−4. These hyper-parameters
are the same with the Things training stage reported in [31].
Competing Datasets for TrainingWe choose FlyingChairs
(Ch) [6] and dCOCO [1] as the competing datasets, and lever-
age the RAFT networks pre-trained on each dataset provided
by the authors and dCOCO. For multi-stage training models,
from the networks pre-trained on ours, we further train with
FlyingThings3D (Th) [23] in sequence to compare with the
RAFT model trained with FlyingChairs followed by Fly-
ingThings3D (Ch→Th).
TestDatasetsWeevaluate onSintel [3] andKITTI 2015 [24].
These datasets contain crucial real-world effects, such as
occlusions, illumination changes, motion blur, and camera
noise, making them challenging and widely used standard
benchmarks for evaluating optical flow models. We report
the performance of the model trained with the base datasets
without fine-tuning on Sintel or KITTI, called generalization
and that of the model fine-tuned on the training set of Sintel
or KITTI, called fine-tuning.
Evaluation Following the convention, we report the average
End-Point Error (EPE) and the errors that exceed 3 pixels and
5% of its true value (Fl). We further evaluate the percentage
of pixels with an absolute error smaller or equal to 1 (≤1).
The bold will be used to highlight the best one among the
methods.

4.1 Comparison with other synthetic datasets

We compare the generalization and fine-tuning performance
of the networks trained on our dataset and other competing
datasets [1, 6, 23]. For fair comparisons, we train the network
on our dataset (denoted as Ours) with 20k image pairs that
include translation, rotation, and zooming. We also evaluate
our dataset with occlusion masks 〈O〉 (denoted as Ours+O).
Generalization The left part of Table 2 summarizes the gen-
eralization test.Among themodels trainedon a single dataset,

1 The authors of [1, 31] use the batch size of 12 and 6 for training
FlyingChairs and dCOCO, respectively.
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Table 2 Comparison with other datasets.

Dataset Motions Generalization test Fine-tuning test

Sintel C. Sintel F. KITTI12 KITTI15 Sintel C. Sintel F. KITTI12 KITTI15

EPE ≤1 EPE ≤1 EPE Fl EPE Fl EPE ≤1 EPE ≤1 EPE Fl EPE Fl

(A) Ch 2D 2.28 0.79 4.51 0.72 4.66 30.54 9.85 37.56 0.89 0.93 1.49 0.89 1.39 4.69 2.36 8.43

(B†) dCOCO 3D – – – – – – – – – – – – 1.37 4.70 2.76 9.15

(B) dCOCO 3D 2.62 0.45 3.90 0.39 1.82 6.62 3.81 12.43 1.08 0.92 1.84 0.88 1.37 4.76 2.57 8.81

(C) Ours 2D 1.98 0.86 3.85 0.82 3.63 20.00 7.17 29.24 0.85 0.94 1.40 0.89 1.33 4.37 2.20 8.19

(D) Ours+O 2D 2.02 0.86 3.67 0.82 3.66 19.37 7.88 28.41 0.89 0.93 1.39 0.89 1.35 4.36 2.15 7.60

(E) Ch → Th 2D+3D 1.47 0.90 2.79 0.85 2.15 9.30 5.00 17.44 0.84 0.93 1.31 0.89 1.31 4.25 2.28 7.96

(F) Ours→Th 2D+3D 1.29 0.91 2.81 0.85 2.04 9.02 4.77 16.72 0.83 0.94 1.29 0.90 1.32 4.24 2.10 7.52

(G) Ours+O→Th 2D+3D 1.29 0.91 2.86 0.86 2.03 8.64 4.84 16.38 0.86 0.94 1.31 0.90 1.28 4.11 2.02 7.34

We evaluate the generalization and fine-tuning test of the RAFT networks trained on training datasets: (A) FlyingChairs, (B) dCOCO, (C) ours,
(D) ours with occlusion mask, (E) FlyingChairs and FlyingThings3D, (F) ours and FlyingThings3D, and (G) ours with occlusion mask and
FlyingThings3D. (B†) is obtained from the original paper of [1]

Table 3 Generalization results on other benchmarks

Dataset HD1K Virtual KITTI
(real) (synthetic)

(A) Ch 1.70 6.52

(B) dCOCO 1.44 3.92

(C) Ours 1.06 6.38

Weevaluate the generalization test of theRAFTnetworks onHD1K [20]
and Virtual KITTI [8]

our datasets (C, D) show the best performance on Sintel.
However, dCOCO (B) shows better performance on KITTIs.
We further evaluate the performance on two other bench-
marks as shown inTable 3, and observe that dCOCOachieves
better performance onVirtual KITTI [8], which is a synthetic
dataset. On the other hand, ours achieves more accurate opti-
cal flow estimation in a real dataset, i.e. , HD1K [20]. From
these results, we assume that dCOCO, which uses depth-
aware data generation approach with real images, is effective
in autonomous driving scenarios and the similar motion dis-
tribution and texture between the synthetic and target dataset
are key factors of generalization. We also pre-train the net-
work on 2D motion datasets, such as FlyingChairs [6] and
our datasets, and sequentially train on FlyingThings3D [23].
Compared to (E) which uses FlyingChairs at the initial stage,
(F, G) show better generalization performance in the KITTIs
and Sintel Clean pass. These show that the choice of the ini-
tial training stage significantly affects the final performance.
Fine-tuning We fine-tune the networks of the left part of
Table 2 on Sintel or KITTIs, and the results are reported
in the right part of the table. Overall, our datasets show
favorable performance. Compared to (E) first pre-trained on
FlyingChairs, (F, G) show better performance. (G) especially
achieves the lowest Fl and noticeable performance improve-
ment in KITTI 2015. These results suggest that utilizing

occlusion masks as a gradient suppression tool is effective in
fine-tuning real-world datasets, i.e. , KITTI 2012 and KITTI
2015. We observe a consistent tendency with the online
benchmark results as follows.
Online Benchmarks We follow the training procedure
described in RAFT [31] to fine-tune themodel pre-trained by
our dataset and test on the public benchmarks of Sintel and
KITTI 2015. As summarized in Table 4, using our dataset
for the initial curriculum outperforms the original RAFT on
both public benchmarks. On the KITTI 2015 test set, the
network pre-trained on our synthetic dataset with occlusion
masks shows better performance compared to RAFT. In the
Sintel test dataset, we observe that the performance improve-
ment in Sintel Clean and Final passes with our dataset. With
andwithout thewarm-start initialization, the network trained
with our training schedule also achieves better results in both
passes. From these results, we assume that learning the sim-
plest characteristics for estimating optical flow at the initial
learning schedulewithout occlusion estimation helps the net-
work perform better.
Other Backbone Networks To evaluate the effectiveness of
our dataset other than RAFT, we selected two more optical
flow models: FlowNet [6] and PWC-Net [29]. We use the re-
implementation of FlowNet 2 and PWC-Net .3 Table 5 shows
the result of each network trained on our dataset outperform-
ing the one trained on FlyingChairs [6]. We also contain the
previous experiment with RAFT in (C) as a reference. These
results prove that the simple properties of our dataset are
effective for not only the RAFT [31], but also general optical
flow networks.

2 https://github.com/ClementPinard/FlowNetPytorch.
3 https://github.com/visinf/irr.
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Table 4 Test results on Sintel and KITTI 2015

Training methods w/warm-start wo/warm-start -

Sintel C Sintel F Sintel C Sintel F KITTI15

EPE EPE EPE EPE Fl

(A) RAFT 1.61 2.86 1.94 3.18 5.1

(B) RAFT-Ours+O 1.59 2.83 1.81 3.10 4.91

We evaluate the test performance of RAFT and RAFT-ours. Using our synthetic dataset with occlusionmasks as an initial learning schedule achieves
the higher performance in Sintel and KITTI 2015 test set

Table 5 Generalization results on other backbone networks

Model Dataset Sintel C. Sintel F. KITTI12 KITTI15

EPE EPE EPE F1 EPE F1

(A) FlowNetC Ch 5.17 6.43 11.82 57.67 20.65 62.91

(B) FlowNetC Ours 4.48 6.07 10.64 52.72 18.53 55.15

(C) PWC-Net Ch 3.25 4.36 6.27 27.18 14.22 40.38

(D) PWC-Net Ours 2.94 4.29 5.26 27.28 10.61 38.63

(E) RAFT Ours 1.98 3.85 3.63 20.00 7.17 29.24

We evaluate the generalization performance of the FlowNetC and PWC-Net trained on different datasets: (A, C) FlyingChair, and (B, D) our dataset.
(B, D) achieves better performance compared to (A, C). (E) is RAFT trained on our dataset as a reference

Sintel C. Sintel F. KITTI12 KITTI15

EPE ≤1 EPE ≤1 EPE Fl EPE Fl

(A) 3.39 0.72 5.68 0.66 8.56 44.05 14.11 48.20

(B) 2.63 0.73 4.33 0.69 6.95 38.21 12.57 43.46

(C) 2.55 0.75 4.16 0.71 5.74 35.0 10.31 41.86

(C)(B)(A)

Fig. 3 Generalization results and histograms of datasets depending on
foreground translation distribution. From left to right, A uniform, B
Gaussian, and C exponential distribution. A is sampled from a uniform
distribution of the interval [0,150]. B is the suggested distribution by

FlyingChairs [6] given as max(min(sign(γ ) · |γ |3, 150),−150), where
γ ∼ N (0, 2.32). C is the proposed distribution that follows natural
statistics [4]. Note that we sample foreground translation magnitude
from the three distributions while the background distribution is fixed

4.2 Ablation study

By virtue of the fast generation speed from the simple recipes
and the controllability of our dataset, we can conduct a series
of ablation studies to determine the critical factors of our
dataset which affect the network performance the most.
Foreground Translation Distributions We evaluate the
effect of the translational motion distribution of foregrounds

with 20K image pairs. We use three different distributions to
sample magnitudes of translation. Figure3 shows the his-
tograms of each dataset distribution and summarizes the
generalization results achieved by the RAFT network. (A)
is uniform distribution and (B) is Gaussian distribution sug-
gested by FlowNet [6]. (C) is the proposed distribution that
follows natural statistics [4].
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Table 6 Impact of motion complexity and occlusion masks

Motion types Generalization test Fine-tuning test

Sintel C. Sintel F. KITTI12 KITTI15 Sintel C. Sintel F. KITTI12 KITTI15

EPE ≤1 EPE ≤1 EPE Fl EPE Fl EPE ≤1 EPE ≤1 EPE Fl EPE Fl

(A) T 2.55 0.75 4.16 0.71 5.74 35.69 10.31 41.86 0.93 0.93 1.45 0.89 1.46 5.09 2.49 8.71

(B) R 6.84 0.64 7.16 0.59 16.16 66.92 26.07 64.22 1.19 0.93 1.82 0.88 1.91 5.13 2.55 8.45

(C) Z 3.82 0.78 5.12 0.74 5.66 27.69 13.82 36.91 1.16 0.93 1.69 0.88 1.48 4.72 2.31 8.08

(D) T+R 2.33 0.81 4.01 0.77 6.09 30.71 12.09 38.82 0.90 0.93 1.40 0.89 1.44 4.82 2.53 8.84

(E) T+R+Z 1.98 0.86 3.85 0.82 3.63 20.00 7.17 29.24 0.85 0.94 1.40 0.89 1.33 4.37 2.20 8.19

(F) T+R+Z+O 2.02 0.86 3.67 0.82 3.66 19.37 7.88 28.41 0.89 0.93 1.39 0.89 1.35 4.36 2.15 7.60

(G) Ch 2.28 0.79 4.51 0.72 4.66 30.54 9.85 37.56 0.89 0.93 1.49 0.89 1.39 4.69 2.36 8.43

We evaluate the generalization and fine-tuning performance of the RAFT networks trained on our datasets with different motion types and occlusion
masks: (A) translation, (B) rotation, (C) zooming, (D∼ E) combinatorial motion type, and (F) applying occlusion masks. We provide (G) the
performance of the network trained on Flyingchairs [6] for the comparison

As shown in the histograms, peaks are near zero (in a factor
of 109) due to the background translation. Thus, we focus
on the tails of the distributions, which typically occur by
foregrounds. (A) includes excessively large motions, which
are unrealistic in real-world scenarios and eventually degrade
the performances. Comparing with (B), (C) outperforms on
overall metrics of benchmarks. The main difference between
these two is the density of the focused region in the histogram,
where (C) decays faster than (B). From this, we observe that
slight differences in tails of translation distributions affect
the performance of the model significantly; thus, we take
special care of a balanced motion distribution design. We
choose (C) as the distribution of translation for the following
experiments.
MotionComplexityWeassess the effect of eachmotion type
in training. We start by evaluating the dataset having each
of translation 〈T〉, rotation 〈R〉, and zooming 〈Z〉, respec-
tively. Then, we sequentially apply rotation 〈R〉 and zooming
〈Z〉 to the dataset with the translation 〈T〉 only. As shown
in Table 6, the network trained on translation motion (A)
demonstrates comparable performance to a network trained
on FlyingChairs (G). In contrast, with only rotation (B),
the generalization performance significantly drops in both
benchmarks. When applying zooming alone (C), the per-
formance is sub-par in Sintel, but in KITTI, it exhibits a
favorable EPE and surpasses the performance of (A) in the
F1 score. This result is likely attributed to KITTI’s char-
acteristics, which predominantly feature driving scenes with
frequent forward-backward ego motions, which can be mim-
icked by zooming. We also constitute the dataset (D) by
adding rotation transformation to (A) andmeasure the perfor-
mance of the trained network. Compared to (A), the network
trained on (D) achieves an improved EPE score on Sintel
because the cinematic scene of Sintel frequently has rota-
tion motion. In KITTI, the model trained on (D) achieves
lower EPE scores. This implies that adding rotation might

confuse the network on the test dataset that contains few
rotation motions, i.e. , the driving scenes of KITTI. Inter-
estingly, both (A) and (D) show comparable performance
to the network trained on FlyingChairs (G), which contains
threemotion types, T+R+Z.We believe that different transla-
tion distributions and abundant textures lead to these results.
Finally, by adding rotation and zooming (E), the generaliza-
tion performance outperforms (A∼D), and (G) in all cases.
We observe that zooming mimics the backward and forward
object or ego motions, which frequently happens in both
benchmarks. In summary, translation motion is the most fun-
damental factor influencing the generalization ability of both
benchmarks, while the effects of rotation and zooming vary
depending on the characteristics of the test dataset. Although
the effects of each type of motion may differ, the combina-
tion of translation, rotation, and zooming demonstrates the
highest generalization performance on both benchmarks.

The networks trained on our datasets have not seen any
3D motion during training; thus, we can further fine-tune on
another dataset, including 3D motions in practice. To figure
out the ability of our datasets as pre-training datasets, we
further fine-tune the aforementioned networks to the bench-
marks, KITTI 2015 or Sintel.We follow the same fine-tuning
protocol suggested byAleotti et al. [1] on theKITTI datasets.
The same fine-tuning protocol is applied to the Sintel dataset
as well, with the initial 80% of the data used for fine-tuning
and the remainingportionused for validation.Thefine-tuning
results in the right part of Table 6 show a consistent tendency
with the above generalization study. While the improve-
ment is marginal due to the high accuracy regime, in the
KITTI datasets, the best performance is achieved when the
pre-trained network has been exposed to diverse types of
motion (E), i.e. , translation, rotation, and zooming. In Sintel,
we observe that the best performance is nearly achievedwhen
exposed to both translation and rotation in the pre-training
stage (D).These results suggest that the requiredmotion char-
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Table 7 Impact of abundant texture

Dataset Number of Blur Sintel C. Sintel F. KITTI12 KITTI15

foregrounds EPE ≤1 EPE ≤1 EPE Fl EPE Fl

(A) Ours 4 ✗ 2.29 0.85 3.88 0.82 3.95 21.04 8.84 30.96

(B) Ours 8 ✗ 2.17 0.86 3.69 0.82 3.57 18.86 7.34 28.09

(C) Ours 8 ✓ 2.25 0.86 3.70 0.82 3.91 21.87 8.96 31.05

(D) Ch – – 2.28 0.79 4.51 0.72 4.66 30.54 9.85 37.5

We train RAFT with a different number of foregrounds with/without applying gaussian blur. We provide the performance of the network trained
on FlyingChairs [6] (D) for the comparison

acteristics of the pre-trained dataset vary depending on the
test dataset.
Effects of Occlusion Mask The prior works [18, 19, 34]
show the effectiveness of occlusion masks 〈O〉. Unlike these
prior arts, we propose an intuitive and effective method uti-
lizing the easily obtainable occlusion masks by suppressing
the gradients at the regions to be occluded in a supervised
manner. In the left part of Table 6, generalization results
with occlusion mask (F) show comparable EPE to (E) on
the benchmarks but lower Fl on the KITTI datasets. To fur-
ther evaluate, we fine-tune the network (F) from the left part
of Table 6 on the benchmarks and show its results in the
right part of the table. The results also show lower Fl on the
KITTI dataset. Besides, (F) outperforms (E) on both met-
rics in fine-tuning on KITTI 2015, which contains the most
complicated real-world scenes. In Sintel, applying occlusion
masks to pre-training shows a marginal difference in per-
formance compared to the results observed in KITTI 2015.
We hypothesize the reason for the marginal performance gap
in Sintel as the occlusion patterns between our and Sintel
datasets are similar, which are both synthetic datasets. Also,
those are easier than the occlusion pattern of KITTI 2015.
Thus, the EPE errors in Sintel are much lower. On the
other hand, occlusion patterns between our synthetic data
and KITTI 2015 data have a clear discrepancy. Thus, learn-
ing occlusion during pre-training can produce bias toward
our synthetic data set, which has different characteristicswith
KITTI 2015. This may hint that applying the occlusion mask
in pre-training allows to focus on learning the correspon-
dences in the early stage and the specific occlusion patterns
of benchmark datasets later in fine-tuning. This phenomenon
can be regarded as curriculum learning, where learning more
concepts gradually to complexonehelps the networkperform
better. Applying the occlusion mask is an intuitive method
for curriculum learning, and we demonstrate the effective-
ness of occlusion masks in improving the final performance,
particularly when the occlusion pattern varies between the
pre-training and fine-tuning datasets.
Abundant Textures We analyze the effect of the abundant
textures of foregrounds in training. Considering that the aver-
age number of foregrounds in the FlyingChairs [6] is 5, we

compared the case when the number of foregrounds is 4 and
8. We also apply a Gaussian filter whose kernel size is 5 to
the foregrounds for simulating the lack of high-frequency
textures of chairs used in FlyingChairs. Table 7 shows that
more foregrounds with high-frequency textures lead to over-
all improvement. These results hint that abundant textures
are another important factor in generating synthetic data.

5 Discussion and limitation

We propose an easily controllable synthetic dataset recipe
by cut-and-paste, which enables conducting comprehensive
studies. Through the experiments, we reveal the simple
yet crucial factors for generating synthetic datasets and
learning curriculums. We introduce a supervised occlusion
mask method, which stops the gradient at the regions to
be occluded. Combining these findings, we observe that the
networks trained on our datasets achieve favorable general-
ization performance, and our datasets with occlusion masks
serve as a powerful initial curriculum, which achieves supe-
rior performance in fine-tuning and online benchmarks.
Limitation In this work, using the proposed controllable
synthetic dataset, we analyzed the effect of key factors in
the optical flow training dataset, such as the balanced motion
distribution, amount of data, texture combination, and learn-
ing schedules with occlusion masks. Although we examined
the impact of these fundamental and simple factors through
extensive analysis, the impact of various real-world effects,
such as motion blur and fog, has not been addressed in this
paper, which would also have an impact. Those real-world
effects require certain levels of physics simulation or intro-
duce notable complexity in data generation, of which the
direction is not aligned with the direction of this work, i.e.
simplicity. Nonetheless, motion estimation in extreme cases,
including weather artifacts or degraded photos, is indeed an
important problem and the next challenge. It is an interesting
research question, which factors are important to deal with
such artifacts, and the complicated and realistic simulation
is necessary, which we leave for future research.
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