
The Visual Computer
https://doi.org/10.1007/s00371-023-03231-z

ORIG INAL ART ICLE

Improving cache placement for efficient cache-based rendering

Yu-Ting Wu1 · I-Chao Shen2

Accepted: 14 December 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
This paper proposes a new method to improve cache placement for various rendering algorithms using caching techniques.
The proposed method comprises two stages. The first stage computes an initial cache distribution based on shading points’
geometric proximity. We present a view-guided method to cluster shading points based on their world-space positions and
surface normals, while considering the camera view to avoid producing small clusters in the final image. The proposedmethod
is more robust and easier to control than previous shading point clustering methods. After computing the shading functions
at the initial cache locations, the second stage of our method utilizes the results to allocate additional caches to regions with
shading discontinuities. To achieve this, a discontinuity map is created to identify these regions and used to insert new caches
based on importance sampling. We integrate the proposed method into several cache-based algorithms, including irradiance
caching, importance caching, and ambient occlusion. Extensive experiments show that our method outperforms other cache
distributions, producing better results both numerically and visually.

Keywords Ray tracing · Importance caching · Irradiance caching · Ambient occlusion.

1 Introduction

Rendering is a time-consuming process as it requires evalu-
ating the high-dimensional integral of the shading function
at numerous image pixels. To minimize shading expenses,
a commonly employed technique is to exploit the spatial
coherence of the rendered images through caching: evaluat-
ing the costly function at sparse locations known as caches,
and reusing the results through interpolation or extrapola-
tion at other surface points. Caching techniques can expedite
computations of both direct and indirect illumination by stor-
ing various data such as (ir)radiance [1–13], visibility [14],
or the importance sampling function [15, 16].

The distribution of caches has a significant impact on
the final rendering quality. To accurately predict the target
function, the density of caches should be proportional to the
complexity of the rendered image. Regions of high complex-

B Yu-Ting Wu
yutingwu@mail.ntpu.edu.tw

I-Chao Shen
ichaoshen@g.ecc.u-tokyo.ac.jp

1 Computer Science Department, National Taipei University,
Taipei, Taiwan

2 Computer Science Department, The University of Tokyo,
Tokyo, Japan

ity, such as small geometry features or shadow boundaries,
require more caches to capture the rapidly changing signal.
However, obtaining the optimal distribution before the actual
rendering process is challenging. Therefore, some methods
[1–3, 6, 7, 9, 12, 14] start with random or uniform caches
across the image and generate new caches if reliable ones
are not found in a shading point’s local neighborhood. This
update-on-demand strategy, however, has two major chal-
lenges. Firstly, the update criteria are application-dependent
and not all applications possess an accurate error estimation
for cache interpolation. Secondly, because all the caches need
to be stored in an acceleration structure such as Octree or Kd-
Tree for efficient queries, any rendering-time update to the
structure requires a read-write lock, which greatly reduces
parallelism [4].

An alternative strategy is to improve the cache place-
ment prior to rendering. Most methods in this category focus
on specific applications [4, 5, 8, 11, 16]. A more general
method in this context is spatial-directional clustering (SD)
[17], which was first proposed by Ou and Pellacini to cluster
shading points for virtual point light (VPL) rendering and has
later been leveraged by various applications [16, 18–20]. The
method first builds a 6D bounding volume hierarchy (BVH)
to group shading points where the 6D coordinates encompass
the 3D coordinate and surface normal at each shading point.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-03231-z&domain=pdf

Y.-T. Wu and I-C. Shen

The BVH is continually split until the maximum extent of
the 6D bound is below a predefined threshold or the num-
ber of shading points within the bound is below a predefined
threshold. Lastly, one cache is generated by sampling a shad-
ing point within a bound (shading point cluster). However,
this method has two major drawbacks. Firstly, controlling
the threshold for cluster splitting with a single value for both
the spatial and angular properties is challenging. For exam-
ple, a threshold value of one might be very small for the
spatial difference in a large scene, but too large for the dif-
ference of surface normals. Secondly, selecting the threshold
of cluster size for preventing small clusters faces a dilemma.
As demonstrated in Fig. 1, using various configurations, the
method suffers from artifacts in distant and near regions,
respectively.

This paper proposes a new method for determining a
good cache distribution in the early stage (i.e., prior to ren-
dering) for various cache-based rendering techniques. The
proposed algorithm comprises two stages. In the first stage,
we introduce a new shading point clustering method called
view-guided clustering (VGC) to generate a set of initial
cache locations based on the geometric proximity of the shad-
ing points. Our method allows for more intuitive parameter
control and can robustly adapt to camera view, striking a
better balance in 3D geometric proximity and image-space
importance. As shown in Fig. 1, our VGC produces better
visual quality and lower numerical errors than existing meth-
ods.

While the proposed view-guided clustering improves
cache distributions by considering geometric proximity, it
does not account for changes due to shading, as shown in the
blue inset of Fig. 1. To address these shading discontinuities,
we devise a discontinuity-guided sampling (DGS) algorithm
as the second stage building on the results obtained in the
previous stage. First, we compute a discontinuity map to
identify regions with potentially high shading and geometry
discontinuities. Based on the discontinuity map, we then use
importance sampling to deposit adaptive caches in challeng-
ing regions, such as shading edges. We redistribute a fraction
of cache budget fromVGC toDGS. The final rendered results
using our full method (VGC+DGS) exhibit improvement in
shadow regions and surface details.

The proposed method provides a better cache distribution
with a small computation overhead. Through comprehensive
experiments, we demonstrate that our method enhances the
efficiency of cache-based applications, including irradiance
caching [1], importance caching [15], and ambient occlusion
rendered with visibility caches [14]. The improved cache
distribution can also benefit methods using an update-on-
demand strategy by offering a better initial cache distribution.

2 Related work

This section briefly reviews the existing cache-based ren-
dering techniques. For each cached-based algorithm, we first
introduce its target and thendiscuss its cache-placement strat-
egy. We will focus on methods that exploit the coherence of
the rendering functions between shading points. Other meth-
ods that cache light path contributions such as VPL [22] or
photon mapping [23] are less relevant to our work and not
included here.

Irradiance caching and radiance caching. As a pioneer
of the caching techniques, Ward et al.[1] proposed irradiance
caching to accelerate the computation of indirect illumina-
tion. Their method exploits the low-frequency characteristic
of indirect lighting by computing the irradiance values at a
set of sparse locations sampled uniformly across the image.
During rendering, new caches are inserted on-demand if the
potential error of interpolating existing caches is larger than
a threshold. The interpolation criterion is later improved by
the follow-up works, including the use of translational gradi-
ents of irradiance [2] and second-order continuity based on
Hessian [6]. Tabellion andLamorlette [3] accelerate the com-
putation of irradiance caches with an approximate lighting
model. Brouillat et al.[5] construct caches by utilizing photon
maps. Gautron et al.[4] present a GPU-friendly reformula-
tion.

The radiance caching proposed by Křivánek et al.[7]
extended irradiance caching to handle glossy materials by
storing directional radiance functions instead of irradiance.
Then several approaches have been presented to improve
the strategies for interpolation and extrapolation [8, 9, 12].
Radiance caching has also been reformulated using a probe
representation [24] or pre-convolution [10, 11], or extended
for renderingparticipatingmedia [25, 26] and animation [27].
Recently, learning-basedmethods have also been explored to
improve radiance cache for real-time rendering [13].

The Lumen in Unreal Engine 5 (UE5) [28] combines
screen-space radiance caches [7] and world-space radiance
caches [29] to render global illumination. The two types
of caches are combined according to the distance of light
sources. To efficiently generate caches in each frame, the
screen-space caches are placed regularly in image grids with
an adaptive division to capture discontinuities. The world-
space radiance caches are placed uniformly in world space.
Compared to our method, they combine several techniques
and heavily rely on temporal filtering to achieve real-time
performance, while our work concentrates on improving the
cache distribution for offline rendering.

Recently path tracing has become the most popular
approach due to its simplicity, generality, and unbiased char-
acteristics. However, it often produces resultswith noticeable
noise and requires numerous samples to converge. ReSTIR
[30] and its following works [31] have greatly improved the

123

Improving cache placement...

IM
0.1427
0.0264

SD-50
0.1219
0.0242

VGC-only
0.1110
0.0215

REF
RMSE ↓
ꟻLIP ↓

SD-10
0.1803
0.0293

VGC+DGS
0.0949
0.0208

SD
-5

0
SD

-1
0

V
G

C
-o

nl
y

V
G

C
+D

G
S

Fig. 1 Equal-cache comparison (30K caches) on Staircase scene ren-
dered with cached-based ambient occlusion [14] using various cache
distributions: image-space uniform sampling (IM), spatial-directional
clustering [17] with a minimum cluster size of 50 (SD-50) and 10 (SD-
10), our view-guided clustering only (VGC-only), and our full method
(VGC+DGS).Themiddle columnsvisualize eachmethod’s correspond-
ing cache distribution and a perceptual error computed by FLIP [21].
As shown from the right insets, image-space uniform sampling (IM)
fails to capture geometric properties. Spatial-directional clustering (SD)

encounters troubles in parameter selection. Using a large cluster size
blurs out the details of the distant Buddha, while using a small cluster
size results in large errors in near regions. Our view-guided cluster-
ing (VGC) strikes a better balance in 3D geometric proximity and
image-space importance, achieving better visual quality and smaller
root-mean-squared error (RMSE) and perceptual error. Our full method
(VGC+DGS) with a discontinuity-guided sampling as the second pass
further enhances the results, especially in regions with shading change

sampling efficiency by reusing spatial-temporal sampleswith
the reservoir resampling algorithm. Because the ReSTIR
algorithms focus on improving the sampling function at a
surface location, it can be combined with cache-based ren-
dering to compute cache values at shading points [13].

Visibility caching. Clarberg and Akenine-Moeller [14]
compute and store the visibility functions at sparse loca-
tions called visibility caches and use them to interpolate the
visibility function at every shading point. They present two
rendering applications based on visibility caches. First, they
reformulate the rendering equation with the interpolated vis-
ibility function integrated into the sampling function using
control variate. Secondly, they demonstrate that the visibility
caches can be used to produce noise-free ambient occlusion.

Importance caching. Georgiev et al.[15] proposed impor-
tance caching to handle complex lighting and visibility in the
context of VPL-based rendering. Prior to rendering, they first
compute the contributions from all VPLs to a set of randomly
sampled locations across the image. The cached VPL contri-
butions are then built into several sampling distributions and
combined using multiple importance sampling at each shad-
ing point during rendering. Yoshida et al.[16] later improved
the idea with a better cache distribution.

To categorize the cache placement strategy, most irra-
diance caching [1–3, 6], radiance caching [7, 9, 12], and
visibility caching [14] methods start with a uniform dis-
tribution and insert new caches in the course of rendering
based on error estimation. For other methods that gener-

ate cache distribution prior to rendering, importance cachine
[15] places caches randomly in image space. Scherzer et
al.[10] adopt a fixed cache distribution based on blue noise
sampling in world space. Brouillat et al.[5] generate irradi-
ance caches on photon locations according to a photon map.
Gautron et al.[4] and Křivánek et al.[8] refine uniform sam-
pling by adding additional caches based on error estimation
at radiance caches. Yoshida et al.[16] proposed a two-pass
approach to improve the distribution of importance caches.
We discuss the major differences between our method and
their approaches in the Sect. 3.

3 Algorithm

Figure 2 demonstrates theflowchart of ourmethod. To exploit
the spatial coherence of the shading function in the rendered
images, we first obtain the set of shading points by determin-
ing the 3D intersections of the scene and the camera rays.
For each shading point, we store its 3D position and surface
normal. Due to no shading information being available at the
beginning, our first stage algorithm, view-guided clustering
(VGC), utilizes the geometry proximity to compute an initial
cache distribution. After computing the shading function at
these cache locations, the second stage, discontinuity-guided
sampling (DGS), generates additional caches by utilizing the
shading information from the initial caches. The final cache
distribution is then used for cache-based rendering.

123

Y.-T. Wu and I-C. Shen

Scene
Data Initial

Cache
Computation

Adaptive
Cache

Computation

View-Guided Clustering (VGC)

Shading Point
Clustering

Stage 1

Initial Cache
Distribution

Surface Normal

3D Position

Discontinuity-Guided Sampling (DGS)

Stage 2

Discontinuity
Map

Adaptive Caches

Final Cache
Distribution

camera

Fig. 2 Overview of the proposed method. Our method comprises two
stages. In the first stage, we present a new view-guided method (VGC)
for clustering shading points. In each shading cluster, a shading point
is selected as the cache location, determining an initial cache distri-
bution. To further identify regions with complex shading that are not
captured in the first stage, the second stage (DGS) first utilizes the ren-
dering results at initial caches and generates a discontinuity map. Then

additional caches are generated by importance sampling the map. The
initial and adaptive caches constitute the final cache distribution for
cache-based rendering. Here, we demonstrate an example of ambient
occlusion using visibility caches [14]. We can integrate our two-stage
sampling method into other cached-based techniques such as irradiance
caching [1] or importance caching [15]

3.1 First stage: view-guided clustering

The goal of the first stage is to generate a set of uniform
caches based on the geometric proximity of shading points.
To consider both spatial and angular properties, we first map
the geometry data of a shading point onto a 5D coordinate,
encompassing the 3D world-space position (x, y, z) and 2D
spherical anglesφ and θ for the surface normal.We then build
a bounding volume hierarchy (BVH) for all shading points in
a top-down fashion. Starting from the root,we iteratively split
the BVHnode into two children if the difference in geometric
properties within the node is larger than predefined thresh-
olds. Unlike SD [17] that uses a single threshold to control
spatial and angular splitting, we adopt separate thresholds
for more intuitive control: the spatial threshold σs constrains
the 3D extent of a node’s bounding box by meters, while the
angular threshold σa constrains the maximum difference of
surface normals in a node by angles.

Given the 5D bounding volume of all shading points, our
method first splits the BVH according to the spatial property
(i.e., 3D world-space position). We replace a node with its
two children if its longest world-space axis (either in x , y, or
z direction) is larger than the spatial threshold σs. Next, for
all leaf nodes generated by spatial splitting, we recursively
replace them with their two children if the difference of sur-
face normals in a node is larger than the angular threshold
σa. Once the angular splitting process is complete, all the leaf
nodes form the final shading point clusters.

For cache-based rendering, most of the computation time
is spent on evaluating cache data. Consequently,making each
cache effect as many shading points as possible improves
rendering efficiency. In clustering-basedmethods such as SD
[17] and our VGC, this can be implemented by avoiding

generating small clusters that are projected to a few pixels
in the final rendered image. Unlike SD that simply limits the
cluster size with a pre-defined threshold, we propose a more
robust way by adjusting the two thresholds at each node’s
splitting:

σ ′
s = σs + (1 − α)D2σs,

σ ′
a = σa + (1 − α)D2σa,

(1)

where D = (d − dmin)/(dmax − dmin) with d, dmin, and dmax

being the depth of the node and the minimum and maximum
depth of all shading points, respectively. α is a parameter
that controls the maximum scaling of the thresholds. We set
α to (1 + �(dmax − dmin)) with the parameter λ controlling
the decaying of importance with respect to depth. We use
� = 0.2 for all scenes in this paper. Equation1 uses the
original thresholds σs and σa for the shading points with
depth dmin and α · σs and α · σa for the ones with depth dmax.
For the shading points with depth in between, the thresholds
are scaled proportional to the squared distance to the camera
because the projected area is inversely proportional to the
square of the distance.

Once the clustering is done, a cache is generated by select-
ing a member in the cluster. We first compute the average 3D
coordinate pavg and surface normal navg of all members in
the cluster, with a small jittering to avoid structural artifacts.
Then the closest shading point to the average geometric prop-
erties is chosen as the cache location based on the distance
metric:

Dist(s, avg) = ∥
∥ps − pavg

∥
∥ + λ

√

1 − ns · navg, (2)

123

Improving cache placement...

where the ps and ns denote the 3D coordinate and surface
normal of the shading point, λ denotes a parameter that trades
off the importance of Euclidean and angular distance. We set
λ to 0.5/L where L is the diagonal of the scene’s bounding
box [15].

In Fig. 1, we compare the cache distributions generated by
our method and spatial-directional BVH (SD) [17]. We also
show the image-space uniform sampling (IM) for compari-
son. The images are ambient occlusion results rendered with
the corresponding cache distribution and the VisibilityCache
algorithm (presented in Sect. 4.3). IM disregards geometric
properties and as a result, it produces significant errors on
curved surfaces, such as the two Buddhas. For SD, we tested
it using various constraints on the minimum size of a shad-
ing cluster. The results indicated that a large cluster size (50
for SD-50) failed to capture the high-frequency details of
the distant Buddha. Conversely, a smaller cluster size (10 for
SD-10) placed too many caches on distant surfaces, leading
to insufficient cache density in nearby regions. The red and
green insets of SD-50 and the blue and yellow insets of SD-10
in Fig. 1 demonstrate such scenarios, respectively. Our view-
guided clustering, VGC, strikes a better balance between the
3D geometric proximity and image-space importance.

3.2 Second stage: discontinuity-guided sampling

The distribution in the first stage only considers geomet-
ric properties. Thus, it cannot capture discontinuities due to
shading. One example is the shadows below the front Bud-
dha disappeared as shown in Fig. 1. For this reason, we devise
a second stage to detect regions with complex shading and
redistribute a fraction of samples to these regions.

To collect shading information, we first compute the tar-
get shading functions (ambient occlusion, irradiance value,
importance function, etc.) at the initial cache locations based
on various caching-based applications. For each cache, in
addition to storing the function value, we also store the indi-
vidual application-dependent gathering sample to provide
more information on local shading behavior:

Irradiance caching. The irradiance value at a cache is
computed by sampling the radiance from a set of directions
using the equal-area spherical mapping [32]. At each cache,
we store the accumulated irradiance value as well as the indi-
vidual radiance value along each sampling direction.

Importance caching. We store the accumulated and indi-
vidual contributions from all virtual lights at each cache as
in the original method [15].

Ambient occlusion. The ambient occlusion value is com-
puted by sampling the visibility functionwith a set of shadow
rays using the equal-area spherical mapping [32]. At each
cache, we store the ambient occlusion value as well as the
individual visibility result in a binary bitmask.

It is worth noting that this process only introduces minimal
memory usage without additional computational cost.

After the shading function is computed at the sparse
caches, we create a per-pixel discontinuity map based on
the gathering samples to identify regions with large shad-
ing discontinuities. For the shading point corresponding to
each pixel, we search its K nearest caches and compute
the average difference Diffavg and the maximal difference
Diffmax between these K caches. The difference between two
caches is computed by summing the absolute difference of
their corresponding gathering samples. Diffavg and Diffmax

tend to be higher in regions with complex shading, such as
shadow boundaries. In addition to shading discontinuities,
we observed that the first stage may struggle to identify
the discontinuities of the shading function at regions with
small geometry features, especially when the local density
of caches is insufficient. For example, VGC fails to render
the ambient occlusion on the cabinets correctly in Bath-
room shown in Fig. 6. To address this problem, we include
a geometry term G to detect small geometry discontinuities
at a shading point s:

G(s) =
∑

q∈�

(1 − ns · nq), (3)

where q is a nearby shading point within a local window of
s. n is the surface normal of the shading points. We use a
5× 5 block for the local window. Putting all terms together,
the per-pixel discontinuity measurement D(s) of a shading
point s is then defined as:

D(s) = Diffavg(s) + Diffmax(s) + G(s). (4)

Diffavg(s), Diffmax(s), and G(s) are normalized to the range
[0, 1]. To prevent creating caches too close to an existing one,
we set the D(s) of a shading point to zero if it has already
been chosen as a cache.

To efficiently generate a set of caches based on the dis-
continuity map, we first importance sample a row of the
map using its marginal density. After choosing a row, we
importance sample a pixel within the row using conditional
probability. The selected pixel becomes a new cache. Fig-
ure3 demonstrates the discontinuity map, adaptive cache
locations, and visual comparisons of using VGC-only and
VGC+DGS on the Statues scene (left) and the Robots
scene (right). In the left part of the image, the shadow regions
on the objects’ surface and ground produce larger disconti-
nuity values in the discontinuity map, thus receiving more
adaptive caches. The insets showcase that the artifacts in
shadow regions are reduced thanks to the increasing cache
density. In the right part of the image, VGC produces large
errors on the robots’ surface because its geometry-based clus-
tering fails to capture the discontinuities of glossy shading.

123

Y.-T. Wu and I-C. Shen

VGC VGC+DGS REF VGC VGC+DGS REF

Fig. 3 The effectiveness of Discontinuity-Guided Sampling (DGS).
The left part of the image demonstrates the Statues scene rendered
using ambient occlusion with 50K caches; the right part demonstrates
theRobots scene rendered using importance caching with 25K caches.
In both scenes, we demonstrate the discontinuity maps (the gray-scale
insets), the adaptive caches generated by the DGS stage (blue and
red dots on the images), and visual comparisons of VGC-only and

VGC+DGS. For VGC+DGS, we shift 15% caches (7.5K for Stat-
ues and 3.75K for Robots) from the VGC stage to the DGS stage,
making the total number of caches roughly the same as in VGC-only.
The two discontinuity maps demonstrate that the regions with larger
shading discontinuities (e.g. shadows or glossy surfaces) have larger
values, thus receiving more adaptive caches. Insets showcase improve-
ments in visual quality thanks to the DGS stage

The discontinuity map captures the large shading discontinu-
ities and places more adaptive caches on the robots’ surfaces.
The insets showcase noise reduction by incorporating the
DGS stage.

There are a fewmethods that also adopt a two-pass strategy
to improve the cache distribution [8, 16]. They first compute
a set of initial caches based on uniform sampling or shading
point clustering [17]. Then they loop over the initial caches
and examine how they differ from the neighboring caches.
New caches are inserted if the estimated error is larger than a
threshold. Because the refinements are performed per cache,
we observed that their approaches might fail to capture the
shading discontinuities when the initial caches are insuffi-
cient. Moreover, selecting the thresholds for inserting new
caches is not intuitive because they are application-dependent
and scene-dependent. For example, in our experiment the
threshold for SD+AC [16] to generate 2.5K adaptive caches
for Statues, Robots, and the CrytekSponza scene in
Fig. 4 are 6000, 93000, and 60, respectively. Compared to
these methods, our view-guide clustering is more effective
than uniform sampling and the spatial-directional clustering
they used in the first pass. Our importance sampling approach
offers a united manner to generate new caches at pixels with
relatively large potential errors.

3.3 Run-time rendering

During rendering, we employ a strategy similar to the one
used in VisibilityCache [14]. In order to find a small number
of caches M for estimating the target function for a shading
point s, we first perform a range search in the accelera-
tion structure and locate N spatially nearest caches in the
world space. After filtering out the ones with dissimilar sur-
face normals with a threshold θmax, we compute the distance
Dist(ci , s) between a remaining cache ci and the shading
point using:

Dist(ci , s) =
∥
∥
∥pic − ps

∥
∥
∥ + λ

√

1 − nic · ns, (5)

where pic, ps, n
i
c, and ns are the 3D coordinates and surface

normals of the cache ci and the shading point s, respectively.
We decide the value of λ according to Eq.2. We only use
the M caches with the smallest distance for the subsequent
computation. For applications that directly interpolate cache
values such as irradiance caching (Sect. 4.1) and ambient
occlusion (Sect. 4.3), the value at the shading point is com-
puted by weighted averaging the M cache values, with the
inverse of the distance defined in Eq.5 as the weight. For
importance caching (Sect. 4.2), we apply the multiple impor-
tance sampling presented in the original paper [15] using the

123

Improving cache placement...

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.0222 0.0185 0.0168 0.0159

ꟻLIP ↓ 0.0504 0.0467 0.0466 0.0453

VGC+DGSREF IM SD SD+AS VGC

0.0397RMSE ↓ 0.1079 0.0574 0.0594

0.1234ꟻLIP ↓ 0.1509 0.1424 0.1247

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.0034 0.0033 0.0035 0.0031

ꟻLIP ↓ 0.0614 0.0617 0.0616 0.0602

Fig. 4 Equal-cache comparison (40K caches) of irradiance caching on
CornellBox,CrytekSponza, and Conferencewith different cache
distributions: image-space caching (IM), spatial-directional BVH (SD)
[17], spatial-directional BVH with adaptive sampling (SD+AS) [16],
and ourmethod (VGC only andVGC+DGS). The full images on the left

are rendered with our full method (VGC+DGS). For all cases, VGC and
VGC+DGS outperform SD and SD+AS both visually and numerically.
Although IM produces the lowest perceptual error in CrytekSponza,
it blurs out the specular highlight of the iron chain and the surface details
on the buddhas

M caches. We set N , M , and θmax to 20, 6, and 30◦ for all
applications and results in this paper. If no caches remain
after filtering, we will loosen the constraints and use all N
caches as candidates for selecting M among them.

4 Experiments

We integrate our method into three cache-based techniques:
irradiance caching [1], importance caching [15], and ambient
occlusion using visibility caching [14],with implementations
on top of the PBRT3 system [33]. We conduct equal-cache
comparisons onvarious cachedistributions, including image-
space uniform sampling (IM), spatial-directional BVH (SD)
[17], our view-guided clustering (VGC) only, and our full
two-stage method (VGC+DGS). We also compare to the
adaptive sampling approach proposed by Yoshida et al.[16]

(SD+AS) although the method was initially designed for
importance caching. All images in this paper are rendered
in 1920 × 1080 resolutions with 4 sub-pixel samples for
antialiasing, generated on a desktop with an Intel i7-10700
CPU at 2.90 GHz, 72GB of RAM, and using 16 threads.
Reference images are rendered by computing the shading
function at all pixels. We evaluate all methods using root-
mean-square error (RMSE) and a perceptual-based metric,
FLIP [21].

Parameters. Table 1 lists the parameters and their values used
in our method. Among them, N , M , and θmax are used by
all cache-based methods. Default values work well for these
parameters and for � and R of our method. σs and λ can be
derived automatically. The only two parameters to determine
are the total number of caches Nc and the angular threshold
σa. For the angular threshold σa, we suggest setting it accord-
ing to the total target number of caches Nc. We use 15◦ for

123

Y.-T. Wu and I-C. Shen

Table 1 Parameters used in the paper

Parameters Description Value

Set by users

Nc Total number of caches

σa (Eq. 1) Threshold for the maximum angular
difference in shading point clustering

Suggested to set based on Nc

Automatically derived

σs (Eq. 1) Threshold for the maximum spatial
difference in shading point clustering

Determined by binary searching
according to σa and Nc

λ (Eq. 1) Control the weight of position and normal
differences while selecting cache
location

0.5/L where L is the diagonal of the
scene’s bounding box

Fixed default values

� Compute α in Eq. 1 0.2

N Number of spatial nearest neighbors 20

M Number of spatial nearest neighbors after
considering the angular difference

6

θmax The maximum difference of surface
normals for filtering out caches with
dissimilar orientation

30◦

R Ratio of caches that is redistributed from
VGC to DGS

15%

120K caches and 25◦ for 25K and 40K caches, respectively.
Given the σa, our method then determines the spatial thresh-
old σs to meet the total number of caches using a binary
search process. Unless Nc or σa changes, the binary search
process only has to be performed once.

For SD, we tune the threshold value for BVH splitting to
meet the desired number of caches Nc.We also tested various
constraints for the minimum cluster size and selected the one
that resulted in the lowest error. If the RMSE and FLIP values
conflict, we choose the size that yields better visual quality.

For SD+AS and our VGC+DGS, we redistribute a ratio R
of the cache budgets Nc from the first stages (SD and VGC,
respectively) to the second stage. We use R = 15% for all
scenes and applications in this paper.

4.1 Irradiance caching

We compute the irradiance values at the locations of caches
using 4, 096 sampling rays generated by equal-area spheri-
cal mapping [32] prior to rendering. During rendering, we
first estimate the irradiance value at a shading point with the
procedure introduced in Sect. 3.3, then the irradiance value
is multiplied by a directional reflectance term for supporting
moderate glossy materials.

Figure 4 shows the equal-sample comparisons (40K
caches) of the indirect lighting results rendered with var-
ious cache distributions. For all scenes, IM blurs out the
geometry details on objects with complex shapes. It also pro-
duces large errors on objects with fine geometry such as iron

chains in the CrytekSponza, and in distant objects like the
curtains inConference. By considering the geometric prop-
erties of shading points, SD, SD+AS, and our methods (VGC
and VGC+DGS) improve the shading on curved surfaces. In
CornellBox, the differences between the results produced
by SD, SD+AS, VGC, and VGC+DGS are subtle due to a
simple layout. SD+AC,VGC, and VGC+DGS produce bet-
ter results on the face of the Buddha model (red inset). The
scene layout in CrytekSponza shows a difficult case for
SD and SD+AS. They place too many samples on the curved
surface, resulting in apparent artifacts for the shadows on the
ground due to insufficient caches. Although IM produces the
lowest perceptual error, it produces incorrect highlights on
the iron chain and produced the highest RMSE. In Confer-
ence, SD and SD+AS smooth out the details of the distant
bunny and produce artifacts on the curtains by using a larger
cluster size to reduce the global error. On the other hand,
VGC and VGC+DGS obtain lower errors while preserving
the rendering qualities of the distant bunnies and curtains.
This demonstrates that ourmethod strikes a better balance for
allocating samples under various scene conditions. Our full
method does not produce apparent improvements over VGC
alone in irradiance caching. The reason is that the indirect
illumination is relatively smooth, thereby the re-allocation
of samples does not produce significant impacts.

123

Improving cache placement...

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.1909 0.1345 0.1357 0.1302

ꟻLIP ↓ 0.0667 0.0645 0.0659 0.0636

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.0339 0.0286 0.0284 0.0271

ꟻLIP ↓ 0.0525 0.0550 0.0577 0.0522

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.0239 0.0215 0.0202 0.0184

ꟻLIP ↓ 0.0415 0.0406 0.0413 0.0405

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.1261 0.1179 0.1164 0.1122

ꟻLIP ↓ 0.0458 0.0517 0.0513 0.0483

Fig. 5 Equal-cache comparison (25K caches) of importance caching
on CornellBox, Sibenik, DiningRoom and Robots with different
cache distributions: image-space caching (IM), spatial-directional BVH
(SD) [17], spatial-directional BVH with adaptive sampling (SD+AS)

[16], and our method (VGC only and VGC+DGS). The full images on
the left are rendered with our full method VGC+DGS. The proposed
method offers a more accurate sampling function estimation and out-
performs other approaches both visually and numerically

4.2 Importance caching

Importance caching [15] computes global illumination based
on the virtual point light formulation [22]. We convert direct
and indirect illumination into approximately 8K virtual point
lights. At each cache location, we compute the contributions
from all virtual lights and build four importance sampling
distributions, ranging from aggressive to conservative. Dur-
ing rendering, the sampling distributions stored at the nearest

M caches are combined with a bilateral multiple-importance
sampling scheme at each shading point to generate 4 light
samples. Based on the finding of the ablation study dis-
cussed in Sect. 4.4, we exclude the geometry term in Eq.4
in importance caching. Figure5 demonstrates four example
scenes rendered by importance caching using 25K caches,
with various cache distributions. Disregarding the geomet-
ric properties, IM produces the most noise on fine geometry
among all methods. Similar to the case of CrytekSponza

123

Y.-T. Wu and I-C. Shen

in the application of irradiance caching, SD and SD+AS
face difficulties when used in Sibenik because they fail to
strike a balance between spatial and angular properties. As
a result, they produce noticeable artifacts on the stairs due
to poor cache density. Thanks to the better cache location,
our method offers more accurate sampling functions and
reduces the noises and artifacts globally. In Robots scene,
IM produces more noises in distant regions due to a lower
cache density. SD and SD+AC suffer from larger noises in
shadows. VGC produces a larger error on the robot’s glossy
surfaces due to the complex shading on simple geometry.
TheDGSstage in our fullmethod compensates for the insuffi-
cient cache density on the robot’s surface and produces better
results.

4.3 Ambient Occlusion

Visibility caches have been shown that can be used to com-
pute noise-free ambient occlusion with a small fraction of
computation [14]. In our implementation, we trace 1024
shadow rays generated by the equal-area spherical map-
ping [32] to compute the ambient occlusion value at cache
locations. Figure6 demonstrates the equal-sample compar-
isons of various cache distributions. We use 50K caches for
Statues and 120K caches for Bathroom, Conference,
and Kitchen. Disregarding scene geometry, IM produces
the largest error in all test cases. SD and SD+AS outper-
form IM for taking geometry into consideration. However,
they tend to spend too much effort on curved surfaces, lead-
ing to insufficient cache density in the spatial domain. VGC
shows great improvement over SD in Bathroom and Con-
ference. Nonetheless, it struggles to capture the occlusion
changes due to fine geometry, resulting in larger errors on
the cabinets of Kitchen. This issue is addressed by intro-
ducing DGS, which improves the image quality on geometry
details, such as the cabinets in theKitchen and Bathroom.
In Statues, SD, SD+AC, andVGC all produce artifacts near
the shadows on the ground because they cannot capture the
shading change on simple geometry. Our full method reduces
the artifacts of shadows and produces themost visually pleas-
ing result.

4.4 Ablation Studies

Various components v.s. accuracy. In Table 2, we present the
performances of various components used in discontinuity-
guided sampling. The setting that only uses the difference
between the application-dependent samples for construct-
ing the discontinuity map is denoted by DGS (diff), while
DGS (geom) uses the geometry term only. The full method
that combines both terms is denoted by DGS (full). To com-
pare the effectiveness of discontinuity-guided sampling with
adaptive sampling [16], we also include a configuration that

combines our view-guided clustering and adaptive sampling
denoted by VGC+AS. For irradiance caching and ambient
occlusion, the experiment results demonstrate that the dif-
ference between the application-dependent samples and the
geometry term is crucial for various scenes. The geometry
term plays an essential role in scenes containing rich small
geometry features such as Bathroom, while the difference
term has a more significant impact in scenes with many
flat surfaces such as Conference. Our full method effec-
tively combines the strength of both terms. We discovered
that including the geometry term would not lead to better
results for importance caching. One possible reason is that
the cached values are used as sampling functions instead of
direct interpolation for a pixel value. This implies that the
advantage of incorporating the geometry term is diminished.
In all applications, view-guided clustering combined with
discontinuity-guided sampling outperforms the one com-
bined with adaptive sampling (VGC+AS).

Number of caches v.s. accuracy. Figure7 demonstrates the
relationship between the number of caches and different met-
rics (RMSE and FLIP) on Staircase rendered with ambient
occlusion. Our method VGC consistently produces superior
results than previous methods, ranging from preview qual-
ity using 10K caches to high-quality rendering using 100K
caches. Furthermore, the figure highlights that our two-stage
method (VGC+DGS) reduces numerical errors by utilizing
partial rendering results.

Parameters v.s. accuracy. We conducted an experiment to
investigate how various parameters affect the numerical
errors rendered with SD and our VGC using 25K importance
caches on Sibenik scene. For SD, we adjust the minimum
cluster size which controls the relative importance between
world-space geometric proximities and image-space impor-
tance. For VGC, we altered the angular threshold, which
influences the angular and spatial proximity. Using a smaller
angular threshold results in more caches allocated on curved
surfaces, at the expense of sparser samples in the spatial
extent. The results presented in Fig. 8 indicate that VGC con-
sistently produces better results than SD over a wide range of
parameters. Furthermore, VGC is less sensitive to parameter
selection than SD, as it exhibits less fluctuation in the results.

Sample budgets for VGC and DGS. To investigate the appro-
priate sample budgets for VGC and DGS, we render the
ambient occlusion of the Staircase scene with 80K caches
and compute global illumination of the DiningRoom scene
with 25K importance caches, using various ratios of sam-
ples moved from VGC to DGS. The results are presented
in Table 3. Although the discontinuity-guided sampling pass
does improve the results compared to usingVGC-only (0% in
the table), it relies on the information from the first stage (i.e.,
VGC). Therefore, an excessively high allocation of samples
to DGS could lead to sub-optimal results. Our experiment

123

Improving cache placement...

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.1634 0.1327 0.1286 0.1212

ꟻLIP ↓ 0.0187 0.0181 0.0178 0.0156

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.1102 0.0934 0.0872 0.0840

ꟻLIP ↓ 0.0295 0.0273 0.0266 0.0245

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.1198 0.1040 0.1020 0.0890

ꟻLIP ↓ 0.0271 0.0250 0.0256 0.0246

VGC+DGSREF IM SD SD+AS VGC

RMSE ↓ 0.1770 0.1415 0.1325 0.1448

ꟻLIP ↓ 0.0252 0.0222 0.0219 0.0217

Fig. 6 Equal-cache comparison of cache-based ambient occlusion on
Statues,Bathroom,Conference, andKitchenwith different cache
distributions: image-space uniform sampling (IM), spatial-directional
BVH (SD) [17], spatial-directional BVH with adaptive sampling
(SD+AS) [16], and our method (VGC only and VGC+DGS). The Stat-

ues uses 50K caches while others use 120K caches. The full images
on the left are rendered with our VGC+DGS. Our method produces the
most visually pleasing results and the smallest RMSE and FLIP errors
in all cases. Our discontinuity-guided sampling improves the results in
regions of shadow and small geometry details

suggests that the best ratio for the sample budget is between
10% and 20%.

4.5 Performance profiling

Table 4 demonstrates the detailed timing of each step of the
various methods on CrytekSponza (irradiance caching),
Sibenik (importance caching), and Bathroom (ambient

occlusion). Compared to SD, our method can produce better
results with negligible overheads in all applications. Com-
pared to IM, the overheads to improve the cache distributions
in importance caching and ambient occlusion are slightly
larger than in irradiance caching because the computation of
cache data is less expensive. However, considering the visual
quality improvements over IM in Fig. 5 and Fig. 6, and the
numerical error improvements demonstrated in the ablation

123

Y.-T. Wu and I-C. Shen

Table 2 Comparisons of usingvarious components in the discontinuity-
guided sampling for ambient occlusion (AO), irradiance caching (IrC),
and importance caching (ImC). DGS (diff) and DGS (geom) stand for
the settings using the difference between the application-dependent

samples and the geometry term for constructing the discontinuity map,
respectively. DGS (all) uses both terms. We also compare with the
configuration that combines our view-guided sampling with adaptive
sampling [16] (VGC+AS)

Scene Bathroom (AO) Conference (IrC) DiningRoom (ImC)

Method/Error RMSE↓ FLIP↓ RMSE↓ FLIP↓ RMSE↓ FLIP↓
VGC-only 0.0840 0.0245 0.0031 0.0602 0.0184 0.0405

VGC+AS 0.0811 0.0252 0.0032 0.0625 0.0182 0.0411

DGS (diff) 0.0801 0.0248 0.0030 0.0596 0.0176 0.0402

DGS (geom) 0.0770 0.0245 0.0030 0.0599 0.0189 0.0410

DGS (full) 0.0749 0.0238 0.0029 0.0594 0.0184 0.0405

For each scene, the configuration producing the lowest error is shown with an underline

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

R
M

S
E

Caches

IM SD VGC VGC+DGS

0.01

0.015

0.02

0.025

0.03

0.035

0.04

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

ꟻ
L

IP

Caches

IM SD VGC VGC+DGS

Fig. 7 Relationship between the number of caches and RMSE and FLIP on Staircase scene (Fig. 1) rendered with ambient occlusion. The plots
showcase that our method is consistently more efficient than other methods

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

10 20 30 40 50 60 70 80

Minimum Cluster Size

RMSE ꟻLIP

SD

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

10 15 20 25 30 35 40 45

Angular Threshold (Degree)

RMSE ꟻLIP

VGC

Fig. 8 Relationship between the parameter selection and RMSE and FLIP on Sibenik scene rendered with importance caching. We adjust the
minimum cluster size for SD and the angular threshold for VGC. The plots showcase that our method is less sensitive to the selection of parameters

123

Improving cache placement...

Table 3 Comparisons of the
various fractions of total cache
budgets moved from VGC to
DGS. The last column (0%)
means using VGC only.
According to the experiment
results, we suggest using a ratio
between 10% to 20%

Ratio 40% 30% 20% 10% 0% (VGC)

Staircase RMSE↓ 0.0596 0.0584 0.0578 0.0587 0.0661

(AO, 80K caches) FLIP↓ 0.0135 0.0133 0.0129 0.0130 0.0136

DiningRoom RMSE↓ 0.0192 0.0187 0.0188 0.0175 0.0184

(ImC, 25K caches) FLIP↓ 0.0434 0.0423 0.0417 0.0400 0.0405

For each scene, the ratio producing the lowest error is shown with an underline

Table 4 Time (in seconds)
profiling of each step in various
methods. The initial cache
computation time of our method
is shorter than the other
single-pass methods (IM and
SD) because we redistribute
15% cache budget to the second
(adaptive) stage. The adaptive
cache generation time of our
method includes the time to
build the discontinuity map and
draw adaptive samples using
importance sampling

Scene CrytekSponza Sibenik Bathroom
(irradiance caching) (importance caching) (ambient occlusion)

Number of caches 40K 25K 120K

Method IM SD Ours IM SD Ours IM SD Ours

Shading points gen 0.42 0.42 0.42 0.40 0.40 0.40 0.35 0.35 0.35

Initial cache gen 0.14 0.53 0.42 0.14 0.50 0.43 0.14 0.58 0.46

Initial cache comp 349.90 350.08 297.22 25.40 25.71 21.93 5.04 5.05 4.17

Adaptive cache gen 0.25 0.25 0.26

Adaptive cache comp 53.74 3.87 0.80

KD-Tree building 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.04

Total cache gen 350.47 351.04 352.06 25.95 26.62 26.89 5.57 6.02 6.08

Rendering 7.30 7.31 7.24 16.52 16.14 16.28 5.80 5.76 5.70

study: number of caches v.s. accuracy (Fig. 7), it is worth
improving the cache distribution with the overhead.

4.6 Limitations and future work

Our discontinuity-guided sampling method is effective, but
it combines cache differences and small geometry features
using a heuristic approach. As a result, a large geometry term
might lead to oversampling of regions where the differences
between caches are already small.Althoughwe can introduce
a hyperparameter to emphasize the relative importance of the
two terms, this control is not straightforward. Therefore, we
are interested in investigatingwhether a data-driven approach
utilizing the computation results obtained in thefirst stage can
improve the performance.

Another interesting future direction is to extend our
method to the temporal domain for rendering animations.
We are planning to design criteria for reusing cache across
frames. Finally, we would also like to develop a GPU version
of the proposed method for real-time rendering.

5 Conclusion

In this paper, we propose a new algorithm to improve the
sample distribution for cache-based rendering. Our method
comprises two stages. In the first stage, an initial cache distri-
bution is determined based on a new shading point clustering
algorithm called view-guided clustering. The new algorithm

ismore robust for striking a better balance between geometric
proximities and image-space importance. It is more intuitive
in parameter settings than in previous methods. Our second
stage further improves the cache distribution by utilizing the
computation results at the initial caches. It allocates addi-
tional caches in regions with complex shading. The result
is an efficient algorithm for determining cache locations
for cache-based techniques. Experiments show the proposed
method offers significant improvements over other strategies
for generating caches.

Acknowledgements We thank the anonymous reviewers for their valu-
able comments, and the creators or providers of the models and textures
used in this paper: Staircase, CornellBox, DiningRoom, Bath-
room, and Kitchen, via Benedikt Bitterli’s rendering resources [34];
CrytekSponza, Conference, and Sibenik from McGuire Computer
Graphics Archive [35]; This work was supported in part by the National
Science and Technology Council (NSTC) under grants 111-2222-E-
305-001-MY2 and JSPS Grant-in-Aid JP23K16921.

Data Availability Statement The source code and test scenes used in
this work are available from the corresponding author on reasonable
request.

Declarations

Conflicts of Interest The following are potential conflicts of interest:
• Yung-Yu Chuang (https://www.csie.ntu.edu.tw/~cyy/) • Tzu-Mao Li
(https://cseweb.ucsd.edu/~tzli/)

Research Involving Human Participants and/or Animals This research
did not involve human participants.

123

https://www.csie.ntu.edu.tw/~cyy/
https://cseweb.ucsd.edu/~tzli/

Y.-T. Wu and I-C. Shen

References

1. Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution
for diffuse interreflection. In: Proceeding of the SIGGRAPH, pp.
85–92 (1988). https://doi.org/10.1145/378456.378490

2. Ward, G., Heckbert, P.: Irradiance gradients. In: Proceedings of the
Eurographics Workshop on Rendering, pp. 85–98 (1992). https://
doi.org/10.1145/1401132.1401225

3. Tabellion, E., Lamorlette, A.: An approximate global illumina-
tion system for computer generated films. ACM Trans. Graph.
Proc. SIGGRAPH 23(3), 469–476 (2004). https://doi.org/10.1145/
1186562.1015748

4. Gautron, P., Krivánek, J., Bouatouch, K., Pattanaik, S.: Radiance
cache splatting: A GPU-friendly global illumination algorithm. In:
Proceedings of the Eurographics SymposiumonRendering (2005).
https://doi.org/10.1145/1187112.1187154

5. Brouillat, J., Gautron, P., Bouatouch, K.: Photon-driven irradiance
cache. Comput. Graphic. Forum 27(7), 1971–1978 (2008). https://
doi.org/10.1111/j.1467-8659.2008.01346.x

6. Schwarzhaupt, J., Jensen,H.W., Jarosz,W.: Practical hessian-based
error control for irradiance caching. ACM Trans. Graph. (Proc.
SIGGRAPH) (2012) https://doi.org/10.1145/2366145.2366212

7. Křivánek, J., Gautron, P., Pattanaik, S., Bouatouch, K.: Radiance
caching for efficient global illumination computation. IEEE Trans.
Visual. Comput. Gr. 11(5), 550–561 (2005). https://doi.org/10.
1109/TVCG.2005.83

8. Křivánek, J., Bouatouch, K., Pattanaik, S., Žára, J.: Making
radiance and irradiance caching practical: Adaptive caching and
neighbor clamping. In: Proceedings of the Eurographics Sympo-
sium on Rendering, pp. 127–138 (2006). https://doi.org/10.2312/
EGWR/EGSR06/127-138

9. Gassenbauer, V., Krivanek, J., Bouatouch, K.: Spatial Directional
Radiance Caching. Comput. Gr. Forum (2009). https://doi.org/10.
1111/j.1467-8659.2009.01496.x

10. Scherzer, D., Nguyen, C.H., Ritschel, T., Seidel, H.-P.: Pre-
convolved radiance caching. Comput. Gr. Forum 31(4), 1391–1397
(2012). https://doi.org/10.1111/j.1467-8659.2012.03134.x

11. Rehfeld, H., Zirr, T., Dachsbacher, C.: Clustered pre-convolved
radiance caching. In: Proceedings of the Eurographics Symposium
on Parallel Graphics and Visualization, pp. 25–32 (2014). https://
doi.org/10.2312/pgv.20141081

12. Zhao, Y., Belcour, L., Nowrouzezahrai, D.: View-dependent radi-
ance caching. In: Proceedings of the Graphics Interface (2019).
https://doi.org/10.20380/GI2019.22

13. Müller, T., Rousselle, F., Novák, J., Keller, A.: Real-time neural
radiance caching for path tracing. ACM Trans. Graph. (Proc. SIG-
GRAPH) 40(4) (2021) https://doi.org/10.1145/3450626.3459812

14. Clarberg, P., Akenine-Moeller, T.: Exploiting visibility correlation
in direct illumination. In:ComputerGraphics Forum (Proc. EGSR),
pp. 1125–1136 (2008). https://doi.org/10.1111/j.1467-8659.2008.
01250.x

15. Georgiev, I., Krivánek, J., Popov, S., Slusallek, P.: Importance
caching for complex illumination. Comput. Graphics Forum (Proc.
Eurographics) 31(2), 701–710 (2012) https://doi.org/10.1111/j.
1467-8659.2012.03049.x

16. Yoshida, H., Nabata, K., Iwasaki, K., Dobashi, Y., Nishita, T.:
Adaptive importance caching for many-light rendering. J. WSCG
23(1), 65–71 (2015)

17. Ou, J., Pellacini, F.: LightSlice:Matrix slice sampling for themany-
lights problem.ACMTrans.Graph. (Proc. SIGGRAPHAsia) 30(6)
(2011) https://doi.org/10.1145/2070781.2024213

18. Wu, Y.-T., Chuang, Y.-Y.: VisibilityCluster: Average directional
visibility for many-light rendering. IEEE Trans. Vis. Comput. Gr.
19(9), 1566–1578 (2013). https://doi.org/10.1109/TVCG.2013.21

19. Wu, Y.-T., Li, T.-M., Lin, Y.-H., Chuang, Y.-Y.: Dual-matrix sam-
pling for scalable translucent material rendering. IEEE Trans.
Visual Comput. Gr. 21(3), 363–374 (2015). https://doi.org/10.
1109/TVCG.2014.2385059

20. Vévoda, P., Kondapaneni, I., Křivánek, J.: Bayesian online regres-
sion for adaptive direct illumination sampling. ACM Trans.
Graph. (Proc. SIGGRAPH) 37(4) (2018) https://doi.org/10.1145/
3197517.3201340

21. Andersson, P., Nilsson, J., Shirley, P., Akenine-Möller, T.: Visualiz-
ing errors in rendered high dynamic range images. In: Eurographics
Short Papers (2021). https://doi.org/10.2312/egs.20211015

22. Keller, A.: Instant radiosity. In: Proceedings of the SIGGRAPH,
pp. 49–56 (1997). https://doi.org/10.1145/258734.258769

23. Jensen, H.W.: Global illumination using photon maps. In: Render-
ing Techniques, pp. 21–30 (1996). https://doi.org/10.1007/978-3-
7091-7484-5_3

24. Silvennoinen, A., Lehtinen, J.: Real-time global illumination
by precomputed local reconstruction from sparse radiance
probes. ACM Trans. Graph. 36(6) (2017) https://doi.org/10.1145/
3130800.3130852

25. Jarosz, W., Donner, C., Zwicker, M., Jensen, H.W.: Radiance
caching for participating media. ACM Trans. Graph. 27(1) (2008)
https://doi.org/10.1145/1330511.1330518

26. Marco, J., Jarabo, A., Jarosz, W., Gutierrez, D.: Second-order
occlusion-aware volumetric radiance caching. ACM Trans. Graph.
37(2) (2018) https://doi.org/10.1145/3185225

27. Dubouchet, R.A., Belcour, L., Nowrouzezahrai, D.: Frequency
based radiance cache for rendering animations. In: Computer
Graphics Forum (Proc. EGSR) (2017). https://doi.org/10.2312/sre.
20171193

28. Patry, J., Wright, D., Halen, H., Hayward, K., Brinck, A., Bei,
X.: Advances in real-time rendering in games, Part 2. SIGGRAPH
Course (2021). https://advances.realtimerendering.com/s2021/

29. McLaren, J.: The Technology of The Tomorrow Children. Game
DevelopersConference (GDC) (2015). https://www.gdcvault.com/
play/1022428/The-Technology-of-The-Tomorrow

30. Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A., Jarosz,
W.: Spatiotemporal reservoir resampling for real-time ray tracing
with dynamic direct lighting. ACM Trans. Graph. (Proc. SIG-
GRAPH) 39(4) (2020) https://doi.org/10.1145/3386569.3392481

31. Lin, D., Kettunen, M., Bitterli, B., Pantaleoni, J., Yuksel, C.,
Wyman, C.: Generalized resampled importance sampling: Foun-
dations of restir. ACM Trans. Graph. (Proc. SIGGRAPH) 41(4)
(2022) https://doi.org/10.1145/3528223.3530158

32. Clarberg, P.: Fast equal-area mapping of the (Hemi)sphere using
SIMD. J. Graphics Tools 13(3), 53–68 (2008). https://doi.org/10.
1080/2151237X.2008.10129263

33. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Render-
ing: From Theory to Implementation, 3rd edn., p. 1266. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2016)

34. Bitterli, B.: Rendering resources. https://benedikt-bitterli.me/
resources/ (2016)

35. McGuire, M.: Computer Graphics Archive. https://casual-effects.
com/data

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1145/378456.378490
https://doi.org/10.1145/1401132.1401225
https://doi.org/10.1145/1401132.1401225
https://doi.org/10.1145/1186562.1015748
https://doi.org/10.1145/1186562.1015748
https://doi.org/10.1145/1187112.1187154
https://doi.org/10.1111/j.1467-8659.2008.01346.x
https://doi.org/10.1111/j.1467-8659.2008.01346.x
https://doi.org/10.1145/2366145.2366212
https://doi.org/10.1109/TVCG.2005.83
https://doi.org/10.1109/TVCG.2005.83
https://doi.org/10.2312/EGWR/EGSR06/127-138
https://doi.org/10.2312/EGWR/EGSR06/127-138
https://doi.org/10.1111/j.1467-8659.2009.01496.x
https://doi.org/10.1111/j.1467-8659.2009.01496.x
https://doi.org/10.1111/j.1467-8659.2012.03134.x
https://doi.org/10.2312/pgv.20141081
https://doi.org/10.2312/pgv.20141081
https://doi.org/10.20380/GI2019.22
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1111/j.1467-8659.2008.01250.x
https://doi.org/10.1111/j.1467-8659.2008.01250.x
https://doi.org/10.1111/j.1467-8659.2012.03049.x
https://doi.org/10.1111/j.1467-8659.2012.03049.x
https://doi.org/10.1145/2070781.2024213
https://doi.org/10.1109/TVCG.2013.21
https://doi.org/10.1109/TVCG.2014.2385059
https://doi.org/10.1109/TVCG.2014.2385059
https://doi.org/10.1145/3197517.3201340
https://doi.org/10.1145/3197517.3201340
https://doi.org/10.2312/egs.20211015
https://doi.org/10.1145/258734.258769
https://doi.org/10.1007/978-3-7091-7484-5_3
https://doi.org/10.1007/978-3-7091-7484-5_3
https://doi.org/10.1145/3130800.3130852
https://doi.org/10.1145/3130800.3130852
https://doi.org/10.1145/1330511.1330518
https://doi.org/10.1145/3185225
https://doi.org/10.2312/sre.20171193
https://doi.org/10.2312/sre.20171193
https://advances.realtimerendering.com/s2021/
https://www.gdcvault.com/play/1022428/The-Technology-of-The-Tomorrow
https://www.gdcvault.com/play/1022428/The-Technology-of-The-Tomorrow
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1080/2151237X.2008.10129263
https://doi.org/10.1080/2151237X.2008.10129263
https://benedikt-bitterli.me/resources/
https://benedikt-bitterli.me/resources/
https://casual-effects.com/data
https://casual-effects.com/data

Improving cache placement...

Yu-Ting Wu received his B.S.
and M.S. from National Chiao
Tung University in 2007 and 2009
respectively, and the Ph.D. degree
from National Taiwan University
in 2014, all in Computer Science.
He is currently an assistant pro-
fessor with the Department of
Computer Science and Informa-
tion Engineering at National Taipei
University. His research interests
include computer graphics,
extended reality, computer vision,
and visual effects

I-Chao Shen is an assistant pro-
fessor at the Graduate School of
Information Science and Technol-
ogy at the University of Tokyo,
working with Takeo Igarashi. He
did his Ph.D. in the computer
graphics group at National Tai-
wan University, advised by Robin
Bing-Yu Chen. He received B.B.A
and M.B.A degrees in informa-
tion management from National
Taiwan University, in 2009 and
2011, respectively. He was a JSPS
postdoctoral researcher and project
assistant professor at The Univer-
sity of Tokyo.

123

	Improving cache placement for efficient cache-based rendering
	Abstract
	1 Introduction
	2 Related work
	3 Algorithm
	3.1 First stage: view-guided clustering
	3.2 Second stage: discontinuity-guided sampling
	3.3 Run-time rendering

	4 Experiments
	4.1 Irradiance caching
	4.2 Importance caching
	4.3 Ambient Occlusion
	4.4 Ablation Studies
	4.5 Performance profiling
	4.6 Limitations and future work

	5 Conclusion
	Acknowledgements
	References

