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Abstract
Images taken on rainy days have rain streaks of varying degrees of intensity, which seriously affect the visibility of the
background scene. Aiming at the above problems, we propose a rain mark removal algorithm based on the combination
of dual-attention mechanism U-Net and multi-convolution. First, we add a double attention mechanism to the encoder of
U-Net. It can give different weights to the rain mark features that need to be extracted in different channels and spaces so that
sufficient rainmark features can be obtained.With different dilation factors, we can obtain rainmark characteristics of different
depths. Secondly, the multi-convolutional channel integrates the characteristics of rain streaks and prepares sufficient rain
mark information for the task of clearing rain streaks. By introducing a cyclic rain streaks detection and removal mechanism
into the network architecture, it can achieve gradual removal of rain streaks. Even in the case of heavy rain, our algorithm can
get good results. Finally, we tested on both synthetic and real datasets to obtain subjective results and objective evaluations.
Experimental results show that for the rainy day image de-rain task with different intensities of rain streaks, our algorithm
is more robust. Moreover, the ability of our algorithm to remove rain streaks is better than that of the other five different
classical algorithms. The de-raining images produced by our algorithm are visually sharper, and its visibility enhancements
are effective for computer vision applications (Google Vision API).

Keywords Image processing · Dual-attention mechanism · U-Net · Single-image de-rain · Feature extraction · Convolutional
neural networks

1 Introduction

A variety of complex rainfall environments can affect the
capture, resulting in images that may have reduced visibil-
ity, which can seriously affect the performance of outdoor
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computer vision systems such as object tracking [1], video
surveillance [2], and pedestrian detection [3]. As shown
in Fig. 1, the presence of rain marks greatly affects the
visual effect of the image. Thereby, it poses a greater chal-
lenge to vehicle identification and verification algorithms in
rainfall weather. In addition, in this era of widespread cell
phone use, images taken by cell phone cameras in adverse
weather conditions can degrade. The visual quality of the
images can be greatly affected, resulting the images cannot
be shared or used. To restore all aspects of the quality of
these degraded images while ensuring the enhanced perfor-
mance of the vision algorithms for better visualization, these
negative smudges due to the aforementioned poor weather
conditions must be automatically removed. Therefore, stripe
removal from rain images is an important pre-processing
task, and this research [4, 5] topic attracted extensive research
concern in recent years.

From a mathematical point of view, one rainy day image
can be decomposed into two independent images. As shown
in Fig. 2, one is a striped image with rain and the other is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-03198-x&domain=pdf
http://orcid.org/0000-0001-6639-2826
http://orcid.org/0000-0003-0020-2115
http://orcid.org/0000-0002-1384-4830
http://orcid.org/0000-0002-8694-9625


Z. Zheng et al.

Fig. 1 Sample results of the proposedAUCNNmethod for single-image
de-raining

a clean background image. Therefore, the entered image of
the rainy day can be shown as:

O = R + B (1)

where O represents the rainy day image, R represents the rain
streaks, and B represents the clean background image. Thus,
image rain removal can be seen as a problem of separating
two components from a rainy image, which is similar to the
problem of image denoising [6] and image separation [7].

A common strategy to solve (1) in the rain streak removal
task for video is to exploit additional temporal information as
proposed in [8, 9]. However, there is no temporal information
that can be used in the process of dealing with the individual
image rain removal problem. In previous work in solving (1),
researchers design appropriate priors such as sparse priors
[10, 11], Gaussian mixture model (GMM) priors [12], and
base order priors [13]. In recent years, convolutional neu-
ral networks (CNNs) have also been successfully applied to
solve individual image rain removal problems as researchers
have released various large-scale synthetic training samples
[14, 15]. By directly learning the nonlinear mapping between
the source rainfall image and its respective rain removal
image, the CNN-based approach achieves superior visual
performance. While the methods mentioned above have met
with varying degrees of success, most of the available meth-
ods have several limitations:

• Due to the inherent overlap between rain streaks and the
background image in rainy day images, the majority of

methods try to remove the details of the texture in the
non-rain streak areas, resulting in excessive local detail
smoothing.

• It is complex to recover the quality of various aspects of
rainfall images. Most of the existing methods apply pre-
vious models that are insufficient to cover some of the
important factors in the real images of rainfall, such as the
veil of the atmosphere due to the accumulation of rainfall
marks and the different shapes or directions of the rainfall
marks.

• Many existing methods work only on local image patches
or limited receptive fields to eliminate rain streaks. There-
fore, those methods that have proven useful for removing
rain marks are rarely used in the case of larger regions of
spatial background information [16].

Considering these limitations, our goal is to work on the
development of a rain streak removal algorithm that can
acquire more and more accurate information about various
rain streak features in real scenes, which include rain streak
accumulation and rain storms, and then strip and remove
them from the rain images.

First, we propose a contextual information expansion
network combining a dual-attention mechanism and U-Net
[17] to expand the receptive domain. This network not only
inherits the advantages of U-Net for multi-scale feature
recognition of images but also incorporates the character-
istics of spatial attention and channel attention for weight
assignment of useful information. Enhance useful informa-
tion and weaken useless information while deepening the
network. Thus, rain mark areas are automatically detected
and more and more accurate image features and rain mark
details are extracted. This information is used to constrain
rain removal to achieve the effect of rain mark detection and
removal. Our algorithm can perform adaptive operations on
rain-streaked areas and clean background areas, which pre-
serves richer details after removing rain streaks.

Secondly, to extract more information about rain streak
features, we propose a multi-convolution channel improved
by the discriminator of CycleGAN [18]. To remove rain
marks to provide more andmore accurate image features and
rain mark details, we perform further refinement of features
and details extraction on rain mark features in this module.

Finally, to recover images captured in environments with
rainfall accumulation and different rain trace directions, we

Fig. 2 Rain streak removal from
a single image. A rainy image
(a) can be viewed as the
superposition of a clean
background image (b) and a rain
streak image (c)
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propose a recurrent network for rain trace detection and
removal, which contains a specific loss function at each stage
of the network to make corresponding feedback and adjust-
ment for that stage. It enables the gradual removal of rain
marks while making a substantial improvement in the model
effect. Extensive experimental and evaluation results show
that our algorithm has better restoration capabilities on both
synthetic and real data. Our algorithm is more robust and
produces visually clearer de-rain images. In particular, our
algorithm achieves pretty well for some images taken under
heavy rainfall conditions.

In summary, this papermakes the following contributions:

1. A rain streak removal algorithm combining a dual-
attention mechanism U-Net and multi-convolution is
proposed. It can effectively identify and extract rain
streaks from rain images and remove them, restoring the
details of the images and making them visually clearer.

2. Further extraction of rain features using multiple convo-
lution channels to obtain more image features and rain
details while retaining rich local details.

3. By introducing a cyclic rain streak detection and removal
mechanism and using different loss functions at each
stage of the network, it can gradually remove the rain
streaks and generate a clean image without rain streaks.
We were able to get pretty good results even with images
that were taken under heavy rainfall conditions.

The paper is organized as follows. Related rain removal
efforts are reviewed in Sect. 2. Section 3 introduces the
AUCNN model for removing rain marks and the details of
the designed algorithm. The experimental results of the syn-
thetic and real images and the quality indicators are given in
Sect. 4. Finally, Sect. 5 summarizes and discusses the paper
briefly.

2 Related work

In this section, we briefly review the knowledge and related
literature on existing single-image rain removal methods.
These rain removal methods can be broadly classified into
two categories: a priori-based methods and deep learning-
based methods.

2.1 Prior-basedmethods

A difficult point of single-image de-raining is that it does not
lack temporal information, so most early de-raining methods
tried to explore additional a priori information to overcome
this challenge. Kim [19] assumes that the rain streaks are
elliptical, as away to recover the detected rain streaks through
a non-local averaging filter for the regions with rain. Luo

[20] proposed a discriminative sparse coding framework,
which is capable of separating image patches from back-
ground images that do not contain rain streaks to obtain clean
images. Wang et al. [21] extracted non-rain details by rain
streak orientation and variance sensitivity of color channels.
Li et al. [12] separated the rain streak layer from the back-
ground image by a patch-based a priori GMM. The above
a priori-based rain removal method can remove some rain
streaks, but the modeling process is complicated and the rain
removal effect is average. These limit their application to
practical tasks.

2.2 Deep-learning-basedmethods

In recent years, single-image rain removal methods based on
deep networks have achieved good performance. Fu et al.
[16] first applied convolutional neural networks to the field
of single-image de-raining. He used deep learning tech-
niques to learn the nonlinear mapping between clean and
rain images and to remove rain streaks from a single image.
Li et al. [22] used a pixel-level attention mechanism for
rain image recovery. Ren et al. [23] proposed a progres-
sive recursive network. He used the stepwise results and
the original rain image as input to progressively generate
clean output images. Pan et al. [24] proposed a method capa-
ble of learning rain streaks and rain-free images together,
which was implemented by a pairwise convolutional net-
work. Chen et al. [25] proposed a single-image de-raining
method based on the feedback mechanism in control theory
from the perspective of error detection and error compen-
sation. Zhang et al. [26] synthesized another dataset and
proposed a multi-stream dense network based on rain-strip
density classification. Wang et al. [27] proposed a spatial
attention network to eliminate rainfall streaks in a local-to-
global manner. Although the above approaches have made
considerable improvements, they remain with many short-
comings. For example, they cannot recover the details of
images very well.

3 Proposedmethod

To further limit the ability to remove rain streaks during
the recovery of rain images while utilizing more back-
ground without losing the loss of local details, we construct
a combined dual-attention mechanism U-Net and multi-
convolution algorithm for rain streaks detection and removal.
Our algorithm can solve the inverse problem in (1) and
achieve rain streak detection and removal for a single rain
image.

As shown in Fig. 3, the proposed rain trace removal algo-
rithm (AUCNN) consists of three phases: (1) The rain streak
recognition feature extraction stage of the dual-attention
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Fig. 3 An overview of the
proposed AUCNN method for
single-image de-raining

mechanismU-Net. (2) Refinement of rain streak features and
detail re-extraction stages for multiple convolution channels.
(3) Repeat the previous two stages to achieve layer-by-layer
removal of rain streaks and finally generate a clean image
with rain streaks removed. The modules involved in these
three phases are described in detail in the following subsec-
tions.

3.1 Contextual information expansion network
combining U-Net and dual attention

In the rain streak removal task, contextual information from
the input image is very important for the automatic recogni-
tion and removal of rain streaks. U-Net is an image segmen-
tation feature extraction network with an encoder-decoder
structure. The encoder captures the contextual feature infor-
mation, and the decoder reduces the abstracted features to
the dimensions of the original image. The presence of a
jump connection between the encoder and decoder helps the
decoder to better repair the details of the target. It is widely
used in image segmentation tasks because of its ability to
obtain sufficiently detailed features without losing edge fea-
tures. The rain streak detection module of our algorithm is
improved from the base U-Net by introducing the convolu-
tional block attention module (CBAM) [28] in its encoder
part, and the framework of this network is shown in Fig. 4.

In this paper, we propose a convolutional neural network
for rain streak detection, called AU-Net. AU-Net provides
an increasingly large receptive domain for subsequent layers
through a cyclic structure, and it can use contextual informa-
tion to obtain adequate rain streak features. AU-Net includes
the encoder part and the decoder part, and we have improved
the encoder part mainly. AU-Net has five downsampling and
five upsampling layers, and the total number of convolutional
layers is eighteen, and it uses a fully convolutional neural
network instead of fully connected layers. As the number of
convolutions increases, the extracted features become more
effective and more abstract. The input volume of AU-Net

is a color image of size 256 × 256. The addition of the
CBAM after each convolutional layer in the encoder part
makes AU-Net reassign weights to image features based
on downsampled feature extraction. It can emphasize useful
feature information and weaken useless interference infor-
mation, which facilitates bringing up more and more useful
features and details. The convolutional layers of both the
contracting path and the expanding path consist of convo-
lutions with a kernel size of 3 × 3, and a ReLU is added
after each convolutional layer. The number of convolution
kernels in the first to the fifth layer in the shrinkage path is
64, 128, 256, 512, and 1024, where the size of the feature
maps is 256 × 256, 128 × 128, 64 × 64, 32 × 32, and
16 × 16, respectively. The contracting path and expanding
path are symmetric, with a twice contracted downsampling
between every two convolutional layers in the contracting
path and a twice expanded upsampling between every two
convolutional layers in the expanding path. The fused fea-
ture information is spliced between the same layers using
jump connections to stitch the features together in the chan-
nel dimension to form thicker features. The upsampled image
is a highly efficient abstract image obtained by undergoing
multiple convolutions, and finally, it is joined with the low
abstraction high-resolution feature image obtained by down-
sampling on the left to obtain an image with more features
and more details. As shown in Fig. 4, we output the data of
the last three layers of AU-Net separately and use them as
input for the next module. We parse the features of different
depths as a way to obtain richer information about the rain
streak features. We hope to maximize the use of rain streak
features and thus improve the performance of the model.

The CBAM in AU-Net is a convolutional block-based
attention module, which combines spatial attention mech-
anism and channel attention mechanism, and it can signif-
icantly improve the correct rate of image classification and
target detection. As shown in Fig. 5, the CBAM contains two
independent sub-modules, which are channel attention mod-
ule (CAM)and spatial attentionmodule (SAM).Eachof them
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Fig. 4 The overview of AU-Net.
The architecture of U-Net and
CBAM convergence. Each blue
box corresponds to a
multi-channel feature map. The
x–y-size is provided at the lower
left edge of the box. White boxes
represent copied feature maps.
Purple boxes represent the
feature maps after processing by
the CBAM module. The arrows
denote the different operations

256×256×64

128×128×128

64×64×256

32×32×512

16×16×1024

Input

Conv 3×3, BN, ReLU

Skip connection

Max pool 2×2

Upsamping, Conv 3×3, BN, ReLU

Conv 1×1

CBAM

Output 2

Output 1

Output 3

Fig. 5 The overview of CBAM.
The module has two sequential
sub-modules: channel and
spatial. The intermediate feature
map is adaptively refined through
CBAM at every convolutional
block of deep networks

performs the attention weight assignment on the channel and
space, which can extract the image feature information more
fully.

The channel attention module focuses on the important
content information in the input image with constant channel
dimension and compressed spatial dimension. The pooling
layer is set up to compress the featureswhile removing redun-
dant information. The average pooling layer assigns weights
to each pixel point, and the maximum pooling layer takes the
maximumweight valuewithin a certain range as theweight of
the field. As shown in Fig. 6, first of all, Input Feature F per-
forms the maximum pooling and global pooling operations.
After that, the image information is compressed by shared
multilayer perceptron (MLP) for the feature compression
operation of dimensionality reduction and then dimensional-
ity enhancement. Finally, the resulting features are subjected
to a summation operation and then a sigmoid activation oper-
ation to generate the channel attention weights, namely Mc.
The Mc is multiplied with the Input Feature F, and finally,
the output feature map of the channel attention is derived,
namely Channel-refined feature F’.

The spatial attention module focuses on the important
location information in the input image with constant spa-
tial dimensionality and compressed channel dimensionality.
The Channel-refined feature F’ is used as input for spatial
attention, with global maximum pooling and global aver-
age pooling operations on the channel. After that, the two
obtained feature maps are merged and passed through a
convolutional layer consisting of 7 × 7 convolutional ker-
nels. Finally, the compressed single-channel feature map is

subjected to a sigmoid activation operation to generate spa-
tial attention weights, namely Ms. Multiplying Ms with the
Channel-refined feature F’, the output feature map of spatial
attention is finally obtained, namely F”.

The CBAM combines channel attention and spatial atten-
tion to increase the weight of important features in the
channel and space. The mixed pooling of global average and
global maximum on both space and channel enables AU-Net
to reduce the amount of redundant information computed
and reduce memory overhead. It can significantly improve
the accuracy of feature detection and feature extraction and
provide a large amount of feature data for the subsequent rain
removal work to achieve more accurate rain removal work
and obtain clean images with clearer visual effects.

3.2 Enhancedmulti-convolution path

To do further feature extraction on the rain streak feature
information output from the contextual information expan-
sion network, we propose a multi-convolutional channel
improved by CycleGAN discriminator to achieve learning
rain streak features of different degrees and depths on a
multi-scale and multi-channel basis. Based on the origi-
nal discriminator, we preserve the convolutional layer and
remove the average pooling layer so that the output value of
the discriminator is the weight instead of the discriminator
result. It can also determine the current progress of rainfall
work based on the loss function of the CycleGAN discrim-
inator while optimizing the relevant parameters to improve
the rain removal effect and rain removal efficiency. As shown
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Fig. 6 Diagram of each attention
sub-module. As illustrated, the
channel sub-module utilizes both
max-pooling outputs and average
pooling outputs with a shared
network. The spatial sub-module
utilizes similar two outputs that
are pooled along the channel axis
and forward to a convolution
layer

in Fig. 3, the rain streak feature information of three differ-
ent paths in the contextual information expansion network
is used as the input of three multi-convolutional channels.
In each recursion, the multi-convolutional channel refines
these features to obtain different degrees of rain trace feature
information for different degrees of rain removal, achiev-
ing layer-by-layer rain removal. Each multi-convolutional
channel consists of five convolutional layers with a 4 × 4
convolutional kernel, each followed by a normalization layer
and a LeakyReLU activation function.

3.3 Loss function

Our cyclic framework is obtained by improving CycleGAN.
There are two adversarial losses in the original CycleGAN.
The loss function of the contextual information expansion
network in our algorithm plays one of the loss-fighting roles.
The other loss-fighting role is played by the aggregation of
the loss function of themodifiedmulti-convolutional channel
and the exclusion loss.

3.3.1 The loss function of the contextual information
expansion network.

The main body of our proposed contextual information
expansion network consists of U-Net, so we choose the loss
function of U-Net as the loss function of the contextual infor-
mation expansion network. The U-Net uses a loss function
with boundary weights, so we define the loss function of the
AU-Net as:

E=
∑

x∈�

w(x) log(pl(x)(x)) (2)

where pk(x) = exp(ak (x))∑K
n−1 exp(an(x))

, ak(x) denotes the activation

in feature channel k at the pixel position x ∈ �with� ∈ Z2.
K is the number of classes, and pk(x) is the approximated

maximum function. The � : � → {1, . . . , K } is the true
label of each pixel, and w : � → R is a weight map that
we introduced to give some pixels more importance in the
training.

We segment the weight maps based on each rainy day
image to compensate for the different frequencies of a certain
class of pixels in the training dataset and force the network to
learn the small separation boundaries we introduce between
contact units. Separation boundaries were calculated using
morphological operations. We define the weight map calcu-
lation formula as:

w(x) = wc(x) + w0 exp

(
− (d1(x) + d2(x))2

2σ 2

)
(3)

where wc : � → R is the weight map to balance the class
frequencies, d1 : � → R denotes the distance to the border
of the nearest rain trace, and d2 : � → R is the distance to the
border of the second nearest rain trace. In our experiments,
we set w0 = 10 and σ ≈ 5 pixels.

In context expansion networks, if similar rain marks are
close to each other, it may increase the difficulty of training
and reduce the accuracy. The convolution will only consider
the local features around that pixel point, and it is easy to
misjudge if two similar rain marks are pasted together. So
we give a larger weight to this kind of two similar pasted
together rain trace boundaries. As shown in (3), the U-Net
loss function assignsweights to pixels and thenweights them.
The d1(x) denotes the distance from a background pixel
point in the graph to the nearest rain trace boundary, and the
d2(x) denotes the distance to the second closest rain trace
to this pixel point. The pixel points near the rainfall trace
boundary are given larger weights, and the pixel points far-
ther away from the rainfall trace are given smaller weights,
which makes the rainfall recognition feature extraction more
accurate after training. The role of the loss function of the
contextual information expansion network is to adjust the
network and the optimizer by calculating the loss of this
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epoch image Bt+1after processing and image Btbefore pro-
cessing. It enables AU-Net to segment images better and
obtain richer details of rain traces.

3.3.2 The loss function of the improvedmulti-convolution
channel

We propose a multi-convolutional channel improved by
CycleGAN discriminator to achieve learning rain trace fea-
tures of different degrees and depths on a multi-scale and
multi-channel basis. Each convolutional path is improved
by a separate CycleGAN network discriminator, so each
multi-convolutional channel with its loss function. The effec-
tiveness of layer-by-layer rain removal and the progress of the
work are judged based on the values obtained from the loss
function. It can optimize the relevant parameters to improve
the accuracy of rain trace feature recognition extraction and
make rain removal more efficient, resulting in a clean image
with clearer visual effects.

LAU−Net (U , DB , X , B) = Eb∼pdata(b)
[
log DB(b)

]

+Ex∼pdata(x)
[
log(1 − DB(U (x)))

] (4)

where U tries to generate images U (x) that look similar
to images from domain B, while DB aims to distinguish
between translated samplesU (x) and real samples b.U aims
to minimize this objective against adversary D which tries
to maximize it. The purpose of our proposed mapping func-
tion is to optimize the rain removal effect and task efficiency
through the loss function of AU-Net and the loss function of
multiple channels.

3.3.3 Exclusion loss

To better separate the rain trace layer from the background
layer, we explore the relationship between the two layers by
analyzing the edges of the two layers. Our observation is that
there is little probability that the edges of the rain trace layer
overlap with the edges of the background layer. Therefore,
we minimize the correlation between the predicted rain trace
layer and the background layer. We express the exclusion
loss as the product of the normalized gradient fields of the
two layers at multiple spatial resolutions, so the loss function
is defined as:

Lexcl(θ) =
∑

I∈D

N∑

n=1

∥∥∥ψ
(
f ↓n
T (I ; θ), f ↓n

R (I ; θ)
)∥∥∥

F

(5)

ψ(T , R) = tanh(λT∇T ) � tanh(λR∇R) (6)

where fT (I ; θ) and fR(I ; θ) are derived from the decom-
position of f (I ; θ) = ( fT (I ; θ), fR(I ; θ)), I is the input
images, θ is the network weights, D = {(I , T , R)}, T is

Fig. 7 Sample images from real-world rainy dataset

the transmission layer of I , and R is the reflection layer of
I . λT and are λR normalization factors, ‖‖F is the Frobe-
nius norm, � denotes element-wise multiplication, and n is
the image downsampling factor: The images fT and fR are
downsampled by a factor of 2n−1 with bilinear interpolation.

4 Experiments and results

In this section, we detail the experimental and qualitymetrics
used to evaluate the proposed multi-channel single-image
rain removal network. We also discuss the dataset and train-
ingdetails and then compare the proposedmethodwith recent
approaches.

4.1 Experimental details

4.1.1 Synthetic dataset

We compared our approach with state-of-the-art methods
on several benchmark datasets: (1) Rain100L, which is the
synthetic data set with only one rain pattern (Fig. 7c). (2)
Rain100H, which is the dataset we synthesized for the five
directions (Fig. 7d). Please note that although real rainfall
images rarely contain rain traces in many different direc-
tions, synthesizing such images for training can increase the
capacity of the network.

Rain streaks are synthesized in two ways: (1) The realistic
rendering technique proposed in [29], as shown in Fig. 7a.
(2) Simulation of rain traces along a certain direction, with
the disadvantage that there is less variation within the image,
as shown in Fig. 7b.

4.1.2 Real-world rainy images dataset

To demonstrate the effectiveness of the method on real data,
we created a dataset consisting of 300 images of rainy days
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Fig. 8 Sample images from
real-world rainy dataset

downloaded from the Internet. In creating the dataset, we
were as careful as possible to ensure that the images collected
were different in terms of content, the intensity of rain pixels,
and orientation. Some sample images from this dataset are
shown inFig. 8. This datasetwas used for evaluation purposes
only.

4.1.3 Model details and parameters

We trained and implemented our network on an NVIDIA
TITAN Xp GPU using the torch framework [30]. We use
the Adam optimizer [31] with a batch size of 16. The initial
learning rate is 1 × 10−3, and the total epoch is 100, which
is the total number of cycles.

4.1.4 Quality measures

The performance metrics of different methods include peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [32]. Similar to the previous method [12], all these
quantitative measurements are calculated using the lumi-
nance channel. Since we do not have ground truth reference
images of the real dataset, the performance of our proposed
algorithm and other methods on the real dataset is evaluated
by vision.

4.2 Comparison with state-of-the-art methods

4.2.1 Evaluation of synthetic dataset

In the first set of experiments, we evaluate the proposed
method. We compared its quantitative and qualitative perfor-
mance with several state-of-the-art methods from synthetic
datasets. Since the ground truth of these test images is avail-
able, we calculate quantitative metrics such as PSNR and
SSIM. The comparison of the results based on these indica-
tors is shown in Table 1. The table clearly shows that our
proposed AUCNN method can obtain superior quantitative
performance compared to recent methods in terms of all the
metrics described above.

Figures 9 and 10 show the qualitative improvements
achieved on the sample images from two synthetic datasets
of different degrees due to the use of the proposed method.
Note that we have selectively sampled complex images to
show that our method performs well under complex condi-
tions. In the tests on the synthetic dataset Rain100L, although
JORDER_E [35] and LPNet [37] can reduce the rain streak

density or remove some of the streaks, they also cannot com-
pletely remove the rain streaks. As shown in Fig. 9, there are
still some rain remnants in the sky in the fourth sample. In
tests with the synthetic dataset Rain100H, PReNet [23] was
able to remove rain marks, but it produced blurred results
that were not visually appealing. As shown in Fig. 10, the
iceberg in the third sample and the roof part in the fourth sam-
ple lose some details and appear to be over-smoothed. The
other methods are significantly less effective than PReNet
[23] in removing rain under heavy rainfall conditions. Com-
pared with other methods, our proposed AUCNN method
can remove most of the rain marks while preserving the rich
details of the image.

4.2.2 Evaluation of real rainy images

We evaluate the performance of our proposed method and
recent methods on real-world rain test images. The rain
removal results of all methods for the rain images of the
four sample inputs are shown in Fig. 11. For a better visual
comparison, we selected several specific regions of interest
for comparison in the results with the rain streaks removed.
By looking at these regions of interest, we can observe that
the DSC [20] tends to add artifacts to the images with the rain
streaks removed. Although PReNet [23], JORDER_E [35],
DiG-CoM [36], and LPNet [37] can achieve good visual per-
formance, rain streaks are still visible in the selected region of
interest. In contrast, our proposed method can remove most
of the rain streaks while maintaining the background image
details. We can observe that our proposed method misses
some rain streaks in the output image. This is because these
few image samples represent relatively complex images of
rainy days. However, the method was able to achieve better
results compared to the existing methods.

4.3 Running time comparison

We compare the running time of the proposed method with
other state-of-the-art methods. As shown in Table 2, both the
DSC [20] and GMM [29] methods inevitably take a lot of
time because traditional model-based methods require sev-
eral iterations to find the optimal solution.As can be observed
in Table 2, our method, PReNet [23], and DerainGAN [38]
take less time. However, neither PReNet [23] nor Derain-
GAN [38] can effectively remove rain streaks (see Sect. 4.2
for details). In short, our method achieves a better balance
between performance and time.
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Table 1 PSNR and SSIM
comparisons on two benchmark
datasets

Datasets Year Rain100H Rain100L

Metrics PSNR SSIM PSNR SSIM

DSC [20] 2015 13.75 0.313 27.32 0.838

GMM [12] 2016 14.44 0.392 27.76 0.867

DDN [33] 2017 22.26 0.690 34.72 0.950

RESCAN [34] 2018 29.23 0.878 37.77 0.961

PReNet [23] 2019 29.10 0.895 37.45 0.960

SPANet [27] 2019 25.11 0.832 35.33 0.961

JORDER_E [35] 2019 28.75 0.877 38.59 0.963

DiG-CoM [36] 2020 22.40 0.705 33.43 0.937

LPNet [37] 2020 27.03 0.800 36.45 0.964

DerainGAN [38] 2021 29.03 0.856 38.60 0.965

Ours 29.80 0.899 38.70 0.968

Fig. 9 Qualitative comparison of
rain streak removal on four
sample images from Rain100L

Fig. 10 Qualitative comparison
of rain streak removal on four
sample images from Rain100H

Fig. 11 Qualitative comparison
of rain streak removal on four
sample real images
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Table 2 Average runtime on 512 × 512 images. The best results are
bolded

Method Year Computing
devices

Inference time
(s)

DSC [20] 2015 CPU 99.2

GMM [12] 2016 CPU 371.2

DDN [33] 2017 CPU 0.6

RESCAN [34] 2018 CPU 0.6

PReNet [23] 2019 CPU 0.3

SPANet [27] 2019 CPU 0.4

JORDER_E
[35]

2019 CPU 3.1

DiG-CoM [36] 2020 CPU 2.8

LPNet [37] 2020 CPU 0.4

DerainGAN
[38]

2021 CPU 0.3

Ours CPU 0.3

4.4 Application in high-level computer vision tasks

4.4.1 Evaluation of object detection results

To further demonstrate that the visibility enhancement of our
algorithmworks for computer vision applications, we use the
Google Vision API to test to prove whether using our clean
images with rain marks removed improves recognition per-
formance. We evaluated the real rainfall image dataset. The
computational results are shown in Fig. 12. The clean images
generated by our algorithm with the rain marks removed

not only have high target detection metrics but also have
an improved number of recognized objects. Not only that,
but as shown in Fig. 13, the clean images generated by our
algorithmwith the rainmarks removed effectively correct the
results of the Google Vision API recognition errors. Experi-
mental results show that the visibility enhancement of clean
images with rain streaks removed generated by our algorithm
is effective, and it provides a significant improvement in the
target recognition performance of computer vision applica-
tions.

4.4.2 Evaluation of label detection results

We evaluate the label detection separately for the rainy day
images of the real rainfall image dataset and the clean images
generated by our algorithm (Fig. 14). As shown in Fig. 15.a,
we use it as a sample for label detection evaluation. The result
of the label detection evaluation consists of the label name
and the labeled percentage. We can determine the contents
of the image and the proportion of the contents occupying
the whole image based on the results of the label detection
evaluation. As shown in Fig. 15.b, we derive thirty-two labels
and their respective percentages.

As the statistics in Fig. 16 show, we randomly selected
ten real rainfall images (Fig. 15) as statistical samples. In
terms of the number of labels for recognized content, the
number of labels for clean images generated by our algo-
rithm is improved, and the image visibility enhancement is
significant.

Fig. 12 A sample of improving
the result of Google Vision API.
Our method increases the scores
of main object detection as well
as the number of objects
recognized

Fig. 13 A sample of improving
the result of Google Vision API.
Our approach effectively corrects
the results of Google Vision API
recognition errors
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Fig. 14 A demonstration
example of Google Vision API
experiments

Fig. 15 Ten random samples of
Google Vision API experiments.
We randomly selected ten real
rain images as experimental
samples

Fig. 16 Statistical chart of the number of labels that identify the content.
We randomly selected ten real rain images as statistical samples

5 Conclusions

This paper deals with a rain trace removal algorithm based
on a combination of a dual-attention mechanism U-Net and
multiple convolutions. Channel attention and spatial atten-
tion in the network enable the network to detect and extract
more rain streaks for better clearance. The multi-convolution
channel further refines the rain streak feature to ensure cov-
erage of most of the rain streaks in the rainy day image. By

introducing a cyclic rain streak detection and removal mech-
anism and embedding specific loss functions at each stage of
the network, our algorithm can achieve progressive removal
of rain streaks. Our algorithm is trained on different synthetic
datasets and the resulting network can perform effective rain
removal on real rain image datasets. Although our proposed
method cannot completely remove the fog and some rain
patches from rainy day images, the visibility enhancement
of our algorithm is demonstrated to be effective for com-
puter vision applications as evaluated by Google Vision API.
Our algorithm not only improves target detection metrics,
but also the number of objects recognized and the number
of labels counted in advanced computer vision tasks, and
the image information visibility enhancement is significantly
better than other methods. Even on images obtained in heavy
rain, our algorithm can remove most of the rain streaks and
obtain good results while maintaining the background image
details. It shows that our algorithm ismore capable and robust
in removing rain streaks, and it can generate clean images
with clearer visual effects.
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