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Abstract
The rigidmatching of twogeometric clouds is vital in the computer vision and its intelligent applications, such as computational
geometry, robotics, shape modelling, surface reconstruction and mapping, and many other fields. The variants of the iterative
closest point algorithm were employed as the most noticeable matching algorithm. In traditional ICP algorithms applications
for symmetrical geometry matching, the initial uncertainty and the multiple local minima of the distance function adversely
affect the alignment process, which leads to weak performance, such as incorrect correspondence, narrow convergence region,
and instability. In this study, the novel algorithm fused the ICP algorithm, particle filter and K-means clustering to correctly
estimate the transformation ICP parameters. Further guide to initial values of parameters and their covariance obtained by
k-means clustering. Then, a particle filter was implemented to estimate accurate values and perform global optimization.
In the introduced PF-ICP algorithm, the alignment parameters: rotation angles, scale factor, and translation, were defined
as particles elements optimized using a sequential importance resampling (SIR) particle filter. The proposed algorithm was
implemented on a medical robot FPGA board and applied to “three symmetrical models” and “noisy and poor datasets.”
The calculated variances and estimated parameters were compared with four modified ICP methods. The results show a
significantly increasing accuracy and convergence region with an acceptable speed for the practical conditions.

Keywords Matching algorithm · Iterative closest point · Particle filter · Global optimization · K-means clustering ·
Measurement uncertainty

1 Introduction

Finding a rigid transformation to match a dataset (as mea-
sured/scanned data) with a model point set or map is a
fundamental problem in computer vision, computational
geometry, robotics, shape modelling/analysis, surface recon-
struction and mapping, augmented reality and many other
fields. 3D registration is based on variants of the iterative
closest point (ICP) algorithm. ICPwas presented by Besl and
McKay in 1992 [1]. In addition, the iterative closest contour
point algorithm (ICCP)was eventuated from the ICPmethod,
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proposed by Kamgar-Parsi 1999 [2], to solve the gravity nav-
igation problem.

The ICP starts with two meshes as model set and dataset
with an initial setting for their relatively rigid-body trans-
formation that repeatedly refines the transformation by
obtaining pairs of corresponding points on the model and
data. An incremental transformation is found, such that the
point-to-point distance is minimized to a local minimum.
Owing to the ICP algorithm that can be made efficient and
reliable, it has widely considered and adopted in different
applications. So, the researchers have focused on address-
ing the shortcomings and generated variant methods. Variant
improvement of the ICP algorithm classifies aspects, such as
convergence speed, stability, tolerance of noise or outlier, and
maximum initial misalignment. Performance developments
can be achieved by modifying the algorithm in three stages:

1. Selecting samples of point sets in one or bothmeshes that
may have imperfection data;
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2. Corresponding the points to samples in the model,
weighting pairs and rejecting outliers;

3. Defining an errormetric due to the point pairs, estimating
the rigid transformer, andminimizing the ICPcovariance.

For each of these stages, there were different improve-
ments in the performance and reliability of the algorithm.
The first issue with ICP is the selection of an input sample
points. The sample selection and matching sequence length
affect the algorithm’s performance. In some studies, all avail-
able points are used [1], while in others, some points are used
[3] or uniform random sampling is used at each iteration [4].
Xiao et al. generated a matching sequence method based on
the coding principle for an ICCPgeomagneticmatching algo-
rithm [5]. They presented an adaptive approach for choosing
appropriatematching lengths andmatching points in a highly
dynamic environment. Also, about the analysis of the mea-
surement data, Zhao et al. studied the geomagnetic map data
analysis based on random error modelling and filtering [6].

The next stage is related to assigning weights to pairs
or eliminating outlier pairs. This stage may significantly
affect minimization and solve several heuristics to prune or
reweight the correspondences. Besl and Kamgar used the
closest point in another mesh as the corresponding point
for each sample. The other ICP variants employ the clos-
est compatible point, normal shooting, and normal shooting
to a compatible point [7, 8], and their computation is accel-
erated using a k-d tree. Also, the data point projection to the
model mesh from the model mesh point of view can be used.
Figure 1a shows that the closest point matching algorithm
can perform wrong pairing in the presence of noise and out-
liers, then it converges slowly. But Fig. 1b represents that
the “projection” matching methods are less sensitive to the
presence of noise.

Bouaziz et al. [9] proposed a formulation of the ICP algo-
rithm that avoids difficulties related to dealing with outliers
and incomplete data using sparsity-inducing norm optimiza-
tion. Guo et al. [10] introduced an adaptive weight vector
that eliminated the negative effect of pairs with the most sig-
nificant registration errors and the retained pairs assigned
suitable weights to suppress the noise and outliers.

Fig. 1 The pairing of the two cloud data with a closest point matching
algorithm and b projection matching method, in presence of noise and
outlier data

The final step of the ICP algorithm, is to minimize the
error metric cost function and the optimization approach to
minimize the distance error. For example, Besl andMcKay’s
original work minimized the distance between two corre-
spondence points. In contrast, the second method minimizes
the distance between a data point and the corresponding
model point plane,which is perpendicular to its normal plane.
Generally, distance point-to-plane minimization converges
faster and with greater accuracy, but not necessarily a better
region of convergence [11].

It has also been shown that with a trimmed square distance
function, more computational capability, and auxiliary data,
more convergence speed and stability could be achieved [12]
or by cancelling the greater distance pairs [13]. In [14], a
new symmetric distance metric presented to achieve a bet-
ter convergence region and a higher speed. The research in
[15] extended the point-to-hyperplane distance function and
combined various position estimation algorithms to mini-
mize different metric errors.

In addition, recent studies have attempted to accelerate
the traditional ICP method. The Levenberg–Marquardt algo-
rithm to minimize registration was employed to accelerate
and yield a basin of convergence that directly minimized
the energy function as a nonlinear optimization. In [16,
17], Anderson’s acceleration was employed to speed up
convergence. In addition, in considerable research, an estab-
lished numerical technique based on Welsch’s function was
presented, which efficiently minimizes a simple quadratic
function [18]. Yue et al. [19] completed point cloud regis-
tration through key point extraction, local point-pair feature
matching, and coarse and fine registration. They verified
the performance of the method by evaluating its RMSE and
MAE. However, the uncertainty of the feature fitting affects
the estimated parameters accuracy [20, 21].

Owing to the strong nonlinearity of the objective function
of matching in some terrain types, linearization methods,
such as the extended Kalman filter, are often not well suited
for this problem, and the effectiveness of the probabilistic
approach is slightly better [22].

Probabilistic matching algorithms obtain higher perfor-
mance and more robust and global results with a higher
computational cost. They are often based on techniques such
as histograms, sequential Monte Carlo, and particle filters.

The key contribution of this work is the novel fusion of
the particle filter and ICP algorithm to estimate registration
parameters and to overcome the weak performance of tra-
ditional ICP method in the symmetrical geometry matching
related to local minima of the cost function and sensor uncer-
tainty.

The proposed approach defined a sequential Monte Carlo
process that enabled importance sampling of each of the reg-
istration parameters according to the collected error statistics.
The PF-ICPmethod implemented the particle filter algorithm
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to estimate the global optimization and accurate values of the
ICP transformation parameters. The presented PF-ICP algo-
rithm employed the k-means clustering method to further
guide the parameter initialization step and to obtain the ICP
parameters covariance.

This article sections included: relatedworks, required fun-
damentals (A. the ICP algorithm, B. the covariance of ICP,
and C. the SIR particle filter), the introduced PF-ICPmethod,
with four parts: A. definitions, B. initialization, C. covari-
ance estimation, and D. particle filter estimation. Finally, the
results of the two case studies for different conditions were
explained and concluded.

2 Related works

Combesa and Primab [16] presented a registration method
for nonlinear 3D point sets. They considered the points of the
dataset as draws of the Gaussian mixture model in which the
centres are the transformed points of themodel set. In the next
step, a maximum likelihood estimation of the model parame-
ters is performed, using the expectation–maximization (EM)
algorithm. Xiao et al. [23] adopted a probability data associ-
ation (PDA) algorithm, based on considering constraints of
a vehicle’s kinematics, to solve the problem of geomagnetic
matching in an interference environment. Rowekamper et al.
[24] analysed the accuracy of an integrated laser-based posi-
tioning system for mobile platforms. Also, Censi [25] and
Maken et al. [26] introduced an algorithm to estimate the
uncertainty of the ICP transformation parameters and to align
two point clouds. Maken used a gradient-based optimization
of the distance cost function to develop a Stein variational
inference framework for multi-modal distribution models.

Because modern computer computational power warrants
performance vs. complexity, we improved the ICP match-
ing algorithm with a particle filter for the complexity model
condition. In this paper, the introduced PF-ICP algorithm
determined the transformation parameters (rotation, transla-
tion, and scaling) by k-means clustering initialization and
sequential importance resampling (SIR) particle filter. The
developed PF-ICP algorithm could answer very reliable and
comprehensive for local minimums, caused by symmetric
spatial and measurement noise.

3 Fundamentals

The fundamental algorithms required for the implementation
of PF-ICP method are as follows:

3.1 The iterative closest point algorithm

The iterative closest point (ICP), or the iterative correspon-
dence point algorithm, is an alignment method in which the
two point sets are registered based on the function of either

point-to-point or point-to-plane distance. These two sets may
be represented as point sets, triangle sets, line segment sets,
parametric surfaces, implicit surfaces, implicit curves, and
parametric curves [27–31]. The most common method is
based on the iterative closest point algorithm introduced by
[1]. In this method, the points in one cloud and their nearest
points in another cloud are repeatedly paired as the corre-
sponding points. Then, an incremental transformation that
minimizes the distance of the point pair is calculated.

Let the model shape be represented as a set of points,
D � {d1, d2, . . . , dND}, and ND be the number of points
in the model database, and the scanned or scene shape be
considered as a set of points, M � {m1, m2, . . .mNM }. If
the defined correspondents are the closest points, the relative
transformation can be obtained as follows: For every point
mi, in the scanned shape M � {mi}, i � 1,..NM, we seek the
closest point model D based on using the Euclidean distance.
For a given scanned point mi and the model points set D, the
Euclidean distance between mi and D can be found as:

d(mi , D) � min
k�1...ND

d(mi , dk) � min
k�1...ND

‖mi − dk‖ (1)

The closest point of the model set, d j ∈ D, satisfies the
equality:

d(mi , d j ) � d(mi , D); j � argmin
k�1..ND

d(mi , dk);

Also, the closest point in the model set D that yields the
minimum distance will be denoted by yi.

d(mi , yi ) � d(mi , D)

where the mi corresponds to yi. Let Y define the resulting set
of closest points and C (.) be the closest point operator.

Y � C(M , D) (2)

Y � {yi }NM
i�1, M � {mi }NM

i�1, D � {di }ND
i�1, Y ⊆ D

The optimal registration parameters (scaling, rotation, and
translation) can be found that match the scanned pointsM to
the closest model points Y by minimizing the total error.

E �
NM∑

i�1

‖ei‖2, ei � {yi − [sR(mi ) + T ]} (3)

The ICP algorithm outline is as follows:

1. Initialize registration parameters:
rotation (R,R ∈ {R3×3

∣∣RT R � I , det(R) � +1}),
translation (T � 0, T ∈ R3), and scaling (s � 1, s ∈ R)
and registration error; Error � ∞.
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2. For each scanned point set, find the corresponding closest
point in the model point set.

3. Calculate registration parameters for given point corre-
spondents from step 2.

4. Apply the alignment to the scanned point set.
5. Calculate the registration error between the currently

aligned scanned set and the model set.
6. If error > threshold, return to step 2; otherwise, return

with new scanned points set (Fig. 2).

Algorithm 1: ICP_Matching

Fourmajor estimating algorithms for 3D rigid-body trans-
formations were reviewed and compared by [32]. These
algorithms are used when there is an established correspon-
dence between data cloud M and D. The optimal registration
is obtained from linear algebra singular value decomposition
(SVD) method. First, the scan point sets {di } and the model
point sets {mi } should have the same centroid in the rota-
tion matrix calculation. The least-squares equation for the
centroid datasets is:

�2 �
N∑

i�1

∥∥dci − R̂mci
∥∥2 �

N∑

i�1

(dTci dci +m
T
cimci −2dTci R̂mci )

(4)

The minimum of this equation occurs when maximizing
the Trace(R̂.C), where C is a correlation matrix defined by:

C �
N∑

i�1

[mid
T
i ] − μmμT

d �
N∑

i�1

mcid
T
ci (5)

If the SVD of C is given by C � U�V T , R must be
R̂ � VUT , for trace maximization. In addition, the optimal

Fig. 2 The iterative closest point flowchart

translation was computed from the alignment of the D cen-
troids with the rotated centroid of M. The algorithm-SVD
matching is presented in the following:

Algorithm 2: SVD_Matching
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Therefore, for the case of established correspondence
between data cloud M and D, the above SVD matching
method would be used for calculating the ICP parameters.
At the initialization step of the presented approach, a corre-
spondence relationship is considered between the centroids
of two datasets clusters and will be executed the SVDmatch-
ing algorithm [33].

When the probability distribution function of the ICP
parameters is necessary, the covariance is often obtained
based on the calculation of the Hessian Matrix [24, 34–36].
In this method, the Hessian and covariance matrices are
obtained from:

H �
d j2

(
X̂

)

d X̂2
(6)

cov
(
x̂
) ∼�

(
∂2

∂x2
J

)−1
∂2 J T

∂z∂x
, cov(z) ∼� ∂2 J T

∂z∂x

(
∂2

∂x2
J

)−1

where x is the model parameter, z is the observation matrix,
and J (z, x) is the error function. The Hessian matrix can be
obtained once the ICP algorithm determines the minimum
[35]. For more details, we can see [37, 38].

3.2 The particle filter—sequential Monte Carlo
estimation

The particle filter as a sequential state estimation method
was presented in 1993 for Bayesian nonlinear filtering prob-
lems. The particle filter is also known as bootstrap filtering,
sequential Monte Carlo algorithm [39]. To date, the parti-
cle filter is developing and evolving; thus, it has become a
relatively mature theory. A summary of the particle filter
algorithm framework is presented herein, and the sequen-
tial importance resampling (SIR) particle filter algorithm is
defined [40, 41].

The particle filter steps consist of:

1. Select a proposal distribution q(xk+1|x1:k , yk+1), resam-
pling method, and the number of particles N.

2. Generate and initiate.
xi1 ∼ px0, i � 1, ...., N and wi

1|0 � 1/N .
3. Measurement update: For:

i � 1, ..., N , wi
k|k � 1

ck
wi
k|k−1 p

(
yk |xik

)

That the normalization weight coefficient ck is calcu-
lated by:

ck �
N∑

i�1

wi
k|k−1 p

(
yk |xik

)
(7)

Fig. 3 Sequential importance resampling particle propagation

(4) Estimation: The filtering probability is obtained by:

p̂(x1:k |y1:k) �
N∑

i�1

wi
k|kδ

(
x1:k − xi1:k

)
(8)

That the mean could be calculated by:

x̂1:k ≈
N∑

i�1

wi
k|k x

i
1:k . (9)

(5) Resampling:
At each arbitrary time, obtain N samples with super-
sedence from the set {xi1:k}Ni�1 with probability, wi

k|k �
1/N .

(6) Time update:
Produce predictions with the proposal distribution and
correct for the importance weight.

xik+1 ∼ q
(
xk+1|xik , yk+1

)
;

wi
k+1|k � wi

k|k
p
(
xik+1|xik

)

q
(
xik+1|xik , yk+1

) ; (10)

Also, the SIR particle filter algorithm is implemented as
follows:

As shown in Fig. 3, the nonlinear filter infers states from
observations in a likelihood or Bayesian framework. The
state posterior distribution is computed or approximated
using all available observations at that iteration. Then, the
sample quantity and weight of particles are assigned with
the same weight value and more quantity for more likelihood
estimation.
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Algorithm 3: SIR_Particle_Filter

3.3 The proposed particle filter–ICP algorithm

The proposed algorithm establishes a fine matching of two
geometric data points with symmetric spatial distribution. Its
advantage is the reliability of reaching the correct matching
and the accuracy of the final result for a “difficult” geometry
with a symmetric spatial distribution. The main idea of the
algorithm is to represent the estimation belief by a probability
distribution over the possible region for the ICP transforma-
tion parameters and update the estimation belief whenever
each iteration is performed [40].

First, the algorithm estimates the initial value and uncer-
tainty as a Gaussian distribution with a mean and variance.
The initial values are required for the ICP algorithm. The
probability distribution associated with data uncertainty is
required for the particle filter. By applying sensor fusion
techniques in nonlinear conditions, such as the particle fil-
tering methods, almost a maximum likelihood estimation is

obtained by probabilistic filtering. These probabilities are
typically assumed to be normally distributed, so only the
mean and covariance matrix are calculated. The main meth-
ods introduced for ICP covariance calculation are based on
the Hessian matrix method. The researches such as [35, 36,
38, 40] show that the ICP covariance depends not only on
sensor noise characteristics but also on the geometry of the
environment. Here, a statistical method that approximates
the mean and variance of the ICP matching parameters is
introduced.

In the second step of the proposed algorithm, a particle
filter is defined to estimate the transformation ICP param-
eters (rotation angles, translation, and scaling) as particle
elements. According to the presented PF-ICP algorithm,
four strategic concepts and significant achievements were
observed.

(1) In the scanning process, the sensors always impose
errors, such as noise, scale factor, bias, and drift, on
the measurement data. These errors correspond to and
are consistent with the ICP transfer parameters, and the
effects of these errors on the parameters can bemodelled
in the same way.

(2) Owing to the linear transformation in the regression
process, the relative position constraints of themeasure-
ment points were held constant. The main advantage of
the ICP algorithm is that this concept is also used here.

(3) In linear equation solving related to determining ICP
transformation parameters and their optimization, the
existence of outliers measurement data and overlap
model data does not pose a serious constraint.

(4) Avaluable property of thePF-ICPalgorithm is that it can
universally approximate the state probability distribu-
tions and escape from the local minimum. The particle
filter algorithm arranges its computational particles in
global regions with high probability, where things really
matter.

Based on the aforementioned advantages, this method
has high reliability and a very convincing performance in
the presence of uncertainty and nonlinearity, which will be
shown in the next sections.

3.4 Definitions

Consider two corresponding point sets M � {mi , i �
1..NM } for the measurement point cloud and D � {di ,
i � 1..ND} database point cloud (could consider NM �
ND � N ) and the rigid transformation s, R, T between them,
such that they are related by:

di � sRmi + T + Vi (11)
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where R is known as a standard 3× 3 rotation matrix, T con-
tains a 3D translation vector,Vi is noise or uncertainty and the

optimal parameters of transformation
[
ŝ, R̂, T̂

]
that match

the set {mi } onto {di } typically are related to minimizing the
least squares error function typically given by:

�2 �
N∑

i�1

∥∥di −̂s ∗ R̂ ∗ mi−T̂
∥∥ (12)

3.5 Clustering and parameters initialization

The initialization is very important for the variations of ICP
algorithms. The more correctly the ICP parameter initial-
ization is performed, the fewer problems related to local
minima arise. In order to reduce the mathematical calcu-
lation and increase the speed and integrity, the data clouds
are first classified by the k-means clustering method. In the
PF-ICP initialization, the k-means algorithm performs two-
data cloud clustering. The initial values of the transformation
parameters are then obtained by matching the centroids of
the two data clusters. K numbers of sequential partitions or
clusters are expressed as follows:

Clustering(M) � {M1, M2, . . . MK }; Size(MK ) � n_ MK ;

Clustering(D) � {D1, D2, . . . DK }; Size(DK ) � n_ DK ;
(13)

Because of the scanningmethod, it is assumed that there is
a generally (and not exactly) corresponding relation between
the two sets, which leads to an established correspondence
relationship between the centroids of the clustered subsets
and:

Di � Pair( Mi )

Based on the total number of cloud points, K was selected
such that the number of clustermembers could be between 10
and 100. The centroids of these clusters are employed for ini-
tializing the ICP transformation parameters. To initialize the
ICP transformation parameters, the centroids of all measure-
ment cloud M clusters and database cloud D clusters were
calculated.

UM � {uM1, uM2, uM3, ..., uMK }, that uMi � Centroid(Mi )

UD � {uD1, uD2, uD3, ..., uDK }, that uDi � Centroid(Di )
(14)

Algorithm 4: Clustering

The SVD matching algorithm calculates the initial esti-
mate of the transformation parameters with centroids UM

and UD inputs.

[sint, Rint, Tint] � SV D_matching(UD , UM ); (15)

The results of Rint (initial rotation), Tint (initial translate),
and Sint (initial scale factor) are used as the initial values
of PF-ICP transformation parameters. In addition, the clus-
tering could be executed several times, and the average of
the centroids used for the initialization. The members of the
generated clusters are employed for the estimation of the ICP
parameters covariance and the calculation of the particle filter
weights, which are presented in the following sections.

3.6 The PF-ICP parameters covariance estimation

As previously mentioned, to apply sensor fusion techniques,
based on maximum likelihood estimation, the probabil-
ity distribution of the error related to the applied data is
required. Various techniques have been proposed to obtain
this covariance, which are often based on the calculation
of the Hessian matrix [25, 40]. These techniques require
numerous mathematical calculations. To reduce these cal-
culations, the k-means clustering and ICP matching were
used to approximate the ICP covariance. The results were
compared with those obtained using Censi’s method.

For this purpose,nC subsets of cloud points M are created
such that their first member is randomly selected from M1,
the first cluster of cloud points M, the second member of
them is selected from M2, the second cluster of cloud points
M… and their K-th member is selected from Mk, the K-th
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cluster of cloud points M. Thus, the nC subsets of M with K
members are built. All members of the subsets are selected
from a uniform stochastic distribution. This can be rewritten
as follows:

m1 � {m1, i |m1, i ∈ Mi , i : 1..K }
mnC � {mnC , i |mnC , i ∈ Mi , i : 1..K } (16)

Then, for each subset mi and model dataset D, the ICP
matching algorithm is executed to determine the ICP trans-
formation parameters, the values of (R rotation matrix, T
translate vector, S Scalar scale factor).

( Ri , Ti , Si , disti ) � IC P(mi , D ) , for i : 1...nC ; (17)

Parameter dist is the value of distance function of mi and
D. Thus by repeating these calculations for nC subsets, the nC
estimations are obtained for transformation parameters, and
an estimate of the mean and covariance of the transformation
parameters can be calculated.

Algorithm 5: Approximate_ICP_Variance

3.7 The particle filter implementation

A particle filter can be implemented according to the values
obtained for the probability distribution model related to the
parameters of the ICP matching algorithm.

First, according to the 2D or 3D space defined for match-
ing, a four- or seven-state particle filter can be defined. In the
two-dimensional, the particles have a rotation angle and two
translate variables, and a scale variable. Which is defined as:

xi � { ai , bi , si , θi };
Ti � [ai , bi ]; Scalei � si ; Ri � R(θi ); (18)

In the 3D space, the states have three translate variables in
three directions and a scale variable and three rotation angles.
Which is defined as follows:

xi � { ai , bi , ci , si , ϕi , θi , ψi };
Ti � [ai , bi , ci ]; Scalei � si ; Ri � R(ϕi , θi , ψi );

(19)

As mentioned before, in the particle filter, the more pro-
cessing data, the greater computational volume required.
In each particle filter iteration, the estimation algorithm
propagates the particles forward to reach their optimum
values and the error distance function is minimized.
According to the initial values calculated in the previ-
ous section as well as the obtained variance values, a
region for particle propagation can be determined (2sigma-
standard deviation interval around the mean). The par-
ticles are then propagated as uniform random distribu-
tion in this region, the value of the distance function
for each particle is calculated, and the weights of the
particles are defined. This weighting process assumes a
Gaussian function of the computed errors and is given
by:

wi � 1√
2πQ

exp

(
− (D − si Ri M − Ti )2

2Q

)
(20)

i � 1 : nP ; total_number_of _particles

wi � The_Particles_Weight ;

Q � IC P_variance;

Ti � [ai , bi , ci ]; Scalei � si ; Ri � R(ϕi , θi , ψi );
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Fig. 4 The proposed PF-ICP algorithm: particle propagation, likelihood
calculation, and resampling

After weighing the particles, their sum is normalized to
one.

Wi � wi∑nSMC
i�1 wi

; (21)

The weight functions related to the particles and
propagation regions are updated according to the uncer-
tainty for each iteration, and new propagation regions are
defined around the new means according to new stan-
dard deviation intervals. Then, the resampling step is per-
formed based on the new propagation if necessary. For
the resampling scheme, the sequential importance resam-
pling (SIR) technique [42] was used here. The opera-
tion of SIR particle filter algorithm is demonstrated in
Fig. 4.

The number of sampleswas adapted online, invoking large
sample sets onlywhen necessary to avoid the localminimum.
As a result, the samples with low-importance are omitted,
and the particles with high-importance weights are multi-
plied by the resampling step. When the PF-ICP sampling
step was terminated, the resulting particles were used in the
next computational step. The sample set size was selected
based on the required accuracy and computational load capa-
bility, and it was shown that the variance of the importance
sampler converges to zero at a rate of 1/

√
N [46]. The pro-

posed PF-ICP matching algorithm flowchart is as follows
(Fig. 5).

Algorithm 6: The proposed PF-ICP Algorithm
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Fig. 5 The proposed PF-ICP matching algorithm chart

4 Experiments and results

In this section, the capabilities of the proposed method to
reach the global optimum value of the ICP parameters are
shown by using three models with complexity and highly
symmetrical spatial. Under different conditions, the PF-ICP
algorithm determines the optimal matching parameters. The
firstmodel dataset consisted of three-dimensional continuous
data strings, and the other model contained a three- dimen-
sional data surface and model-3 as real 3D scan. The use
of the synthetic model examples provides the possibility to
artificially themaximumsymmetry creation. These examples
ensure the performance of the algorithm in complex condi-
tions and obtain the necessary assurance for implementation
and utilization steps.

The PF-ICP algorithm was implemented on an
XC6SLX45-2FGG484C FPGA, which is employed in labo-
ratory medical-surgery robots, in Fig. 6. The model map was
recorded in the FPGA, and the scanned data was generated
or simulated by MATLAB and then inputted with a PC USB
port. The FPGA board executed the matching algorithm to
compensation positioning error and the result sent back to
the PC.

As shown in Fig. 7, model-1 datasets are contained con-
tinuous data strings in three-dimensional space, and the
performance of the presented algorithm is evaluated for
sequence strings of data sample matching. In this model, the
string of samples is considered similar to a spiral because the
traditional ICP algorithms suffer from the local minimum in
the objective function minimizing these shape types and do
not obtain the correct answer that is discussed.

Fig. 6 The implemented algorithmon the lab surgery robot FPGAboard

Fig. 7 The 3D Continuous Strings Symmetrical model-1 dataset:

Fig. 8 The MSD value of the distance function related to the ICP algo-
rithm output of model-1
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Fig. 9 The absolute of distance between the originmodel-1 and its devi-
ated point sets scan-1 respect to the percent of parameters standard
deviation(σ), Form1: The parameters ϕ, TZ are drifted, Form2: The
parameters ψ , ϕ, Tx , Form3: The ψ They are drifted

The following are the results of a study of the model-1
matching, instead of converging toward the optimal param-
eters and an error function of less than 0.001, the traditional
ICP algorithm fluctuated and failed to find the overall mini-
mum (Fig. 8).

To further explain this matter and investigate how to form
a local minimum, a geometric distance function is drawn
based on different drift values of the spatial transformation
parameters. In model-1, the distance function is drawn for
the deviation of the Z-axis rotation ϕ, TZ spatial transfor-
mation parameters, form-1 in Fig. 9. Also, in Fig. 9 form-3,
the objective function of the matching error exhibits similar
behaviour for the various drifts of the ψ parameters.

As shown, the local minimum is created at some points,
which most optimization methods, such as gradient descent-
based methods, mistakenly present these points as the solu-
tion to the problem, whereas the correct answer is far away
from it. With the same aim and similarly, if the data of scan-1
is regenerated with several known values of the transforma-
tion parameters, then the traditional ICPmethod is applied to
match the scan and the model. The value of the real distance
between the matched datasets and the main model datasets
are plotted in terms of input transformation parameter drift
values, in Fig. 10.

As shown in Fig. 10, owing to the complexity and geomet-
ric symmetry of the model data, the ICP algorithm cannot
calculate the values of the transformation parameters cor-
rectly and the MSE of the spatial distance is not less than
the threshold of acceptable error value. Note that this case
study uses the same points for the model set and the scan set;
then, correct matching occurs when the distance function
or error is zero. Therefore, when the error is not zero, the
ICP algorithm is placed at local minimum and the estimated
parameters values are incorrect.

Fig. 10 The MSE of ICP matching algorithm that it is applied for the
three deviation of Fig. 7 for themodel-1, respect to percent of parameters
standard deviation

Fig. 11 The model-2 datasets, the 3D mesh of surfaces;

In the other study model, that applicable in geophysics,
geomagnetic studies and earth geometry, the model dataset
is the 3Dmesh of surfaces. Owing to existing symmetries and
local similarities, if the proper initial values are not used, the
traditional ICP algorithmswillmake amistake in the distance
function minimization and will have a local minimum and
wrong results will be obtained (Fig. 11).

For model-2, the behaviour of the absolute distance func-
tion and the performance of the ICP algorithm can be
investigated against different drifts of displacements and
rotations (Fig. 12).

As shown, owing to the complexity and geometric symme-
try in the model-2, the ICP algorithm can only calculate the
values of the transformation parameters in narrow range of
parameter deviations, and it is often placed in the local min-
imum where the distance value is very close to the global
minimum value.

According to these explanations, the presented PF-ICP
methodwas implemented for these twomodels and its results
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Fig. 12 The absolute of distance between the origin model-2 and its
deviated point sets scan-2 respect to the percent of parameters standard
deviation(σ), Thin Line: The parameters ’.θ are drifted, Think Line: The
θ.ψ.s parameters are drifted

Fig. 13 The MSE of ICP matching algorithm that is applied for the
two deviation (the drifted model-2), respect to percent of parameters
standard deviation (σ)

were compared with those of the two improved ICP meth-
ods. We use these algorithm as state-of-the-art and reliable
method in our research studies of shape matching. These
ICP methods were improved with Welsch’s robust criterion
functions [43, 44] and Cauchy’s function [43] and [45] by
Bergström. In addition, to further evaluate the performance of
the proposedmethodunder different conditions, the proposed
algorithm was implemented separately under thin-scanted
and noisy measurement data conditions.

The scanned datasets of the models are shown in Fig. 13,
and the values of the rotation, translate, and scale parameters
related to the spatial transformation were chosen according
to the covariance values of the ICP parameters in such a way
that the condition of being in the localminimumexists. These
parameters values are (Table 1; Fig. 14):

Table 1 The value of transformation parameters

Translate [Tx,Ty,Tz] Rotation(deg.)
[ϕ, θ , ψ]

Scale

Scan-1 [− 0.9928, − 0.5570,
− 0.4844]

[− 29.4659, −
18.6011, −
29.4659]

0.7143

Scan-2 [− 2.2487, − 1.6495,
− 3.3125]

[5.2258, −
16.4071, −
17.9510]

0.8333

Fig. 14 The 3D scan and the 3D model-1

The following results of the present PF-ICP method and
two other improved ICP methods for the matching parame-
ters are provided.

As shown in Table 2, the initial values and variance values
of the parameters have been calculated for two clustering k
� 10, k � 100. The results are very satisfactory. The esti-
mated initial values are very close to the target value, and the
maximum difference and the largest variance are around the
z-axis, because the maximum symmetry is around this axis.

The calculated values of the variances are also smaller than
the Hessian method values, which provide better conditions
for the filtering stage. Also, as we expected, the actual values
of the parameters are in the range of one sigma around the
estimated initial value.

In Table 3, as in the previous table, the values of clustering
k� 100 have acceptable answers and close to target values. In
addition, as we expected, the actual values of the parameters
are in the range of one sigma around the estimated initial
value. The calculated variance values are smaller compared
to the Hessian method values, too.

Table 4 presents and compares the three different algo-
rithms results for model-1 and scan-1 matching. Also, in
the last column, the results of the proposed PF-ICP algo-
rithm have been compared with the results of two variants
of ICP and shown that the matching performance is better
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Table 2 The result of the ICP initialization algorithm and covariance approximation, model-1

Model-1 Hessian covariance Clustering with k � 10 Clustering with k � 100 Calculated variance with k � 100
vs Hessian covariance ratio

ICP parameter Average value Variance Average value Variance

ϕ (deg) 1.745 − 28.596 5.652 − 29.343 1.410 0.81

θ (deg) 2.342 − 16.789 5.577 − 18.735 1.456 0.62

ψ (deg) 17.45 − 31.168 36.67 − 26.103 17.05 0.97

t x 0.335 − 0.8370 0.409 − 0.7717 0.389 1.16

t y 0.733 − 0.4091 0.560 − 0.5091 0.537 0.73

t z 0.055 − 0.4803 0.116 − 0.4835 0.030 0.54

scale 0.032 0.7191 0.022 0.7124 0.011 0.34

Table 3 The result of the ICP initialization algorithm and covariance approximation, model-2

Model-2 Hessian covariance Clustering with k � 10 Clustering with k � 100 Calculated variance with k � 100
vs Hessian covariance RATIO

ICP parameter Average value Variance Average value Variance

ϕ(deg) 8.431 − 37.060 83.27 − 11.463 7.175 0.85

θ (deg) 2.873 − 6.703 23.02 − 9.770 2.59 0.90

ψ(deg) 24.62 − 63.950 80.95 − 56.325 22.31 0.90

t x 2.441 − 0.3835 2.17 − 1.055 2.09 0.85

t y 0.332 − 1.6788 0.33 − 1.694 0.29 0.87

t z 2.754 − 1.3646 3.02 − 2.005 2.54 0.92

scale 0.025 0.8327 0.02 0.8320 0.02 0.99

Table 4 The result of the proposed PF-ICP algorithm and modified ICP based on Welsch function and Cauchy function method for scanned data
of model-1

Model-1 Proposed PF-ICP
initiated with K � 100
Clusters and n � 50
particles

Modified ICP based on
Welsch function

Modified ICP based on
Cauchy function

True
value

PF-ICP performance vs.
two variants ICPICP

parameter

ϕ(deg) − 29.473 − 29.49 − 29.49 − 29.47 Same

θ(deg) − 18.624 − 18.71 − 18.71 − 18.61 Better

ψ(deg) − 30.176 7.85 8.05 − 29.47 Very better

t x − 0.9818 − 0.438 − 0.435 − -0.993 Very better

t y − 0.5133 − 1.035 − 1.04 − 0.557 Very better

t z − 0.4865 − 0.472 − 0.472 − 0.484 Better

scale 0.7144 0.714 0.714 0.714 Same

MSD error 0.00313 0.0180 0.0190

No of
iteration

50 50 50

and it much better estimated three parameters. In Table 5,
the results of two variants ICP algorithms and the PF-ICP
for model-2 and scan-2 are presented and compared. Also,
in the last column, the results of the proposed algorithm have
been comparedwith the results of two types of ICP algorithm
and shown that it better estimated four parameters.

In the previous methods, the distance function approaches
the nearest local minimum point and reaches a local min-
imum in less number of iterations, and based on that, it
presents the ICPparameters that are far from their correct val-
ues. The presented PF-ICP method performs more iterations
and spends more computations and achieves a much lower
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Table 5 The result of the proposed PF-ICP algorithm and modified ICP based on Welsch function and Cauchy function method for scanned data
of model-2

Model-2 Proposed PF-ICP
initiated with K � 10
Clusters and n � 50
particles

Modified ICP based on
Welsch function

Modified ICP based on
Cauchy function

True value PF-ICP performance vs.
modified ICPICP

parameter

ϕ(deg) 5.27 4.59 5.58 5.23 Better

θ(deg) − 16.51 − 13.91 − 16.37 − 16.41 Better

ψ(deg) − 17.36 − 17.55 − 17.44 − 17.95 Same

t x − 2.195 − 2.848 − 2.195 − 2.249 Same

t y − 1.643 − 1.967 − 1.628 − 1.649 Better

t z − 3.353 − 3.751 − 3.337 − 3.312 Better

scale 0.829 0.837 0.831 0.833 Same

MSD error 1.144 × 10–3 0.0199 0.0202

No of
iteration

50 50 50

Fig. 15 The value of error function of model-2 for each iteration. a The
proposed PF-ICP b Modified ICP- Welsch function c Modified ICP
Cauchy function

value of the distance function, which includes the globalmin-
imum.

Finally, the parameter values are more correctly and close
to the target values are obtained, than the previous methods.
The value of error function of model-2 for PF-ICP algorithm
and two other variants of ICP algorithm is shown in Fig. 15.

According to the mentioned reference [46], the variance
of the importance sampler should converge at a rate of about
1/

√
50. It reaches an error of less than 0.01 after about 40

iterations. However, since the ICP algorithm is executed in
each iteration and the variance of the parameters and the
area of the particles propagation can change based on the
spatial environment symmetry, and the number of iterations
increased to about 50.

The CPU execution times of the seven execution for pre-
sented examples are between 96 and 124 min with Intel
Corei3 5Gen CPU and reach to acceptable accuracy (less

than 0.01). In Fig. 16, the graphical results of PF-ICP algo-
rithm and two other variants of ICP algorithm are compared.
The effectiveness of the proposed PF-ICP algorithm, correct
matching, and its accurate performance are shown.

4.1 Experiment with noisy measurement data

Owing to the presence of noise in the measurement sensors,
there is often an uncertainty in the scan data. To better eval-
uate the performance of the PF-ICP algorithm, noise with
stochastic uniformdistribution and between the (0, 0.1) range
was added to the scan data, as shown inFig. 17, and the results
obtained for the transformation parameters are given below
and compared with sparse ICP method [9]. The Sparse ICP
is proposed to dealing with outliers and incomplete data and
to solve the sensitivity of registration to outliers and missing
data often observed in 3D scans (Tables 6 and 7).

When the measurement noise is considered for scanned
data, the average error increases, which is an acceptable
value. In the last column, the absolute errors between ICP
parameters and true value are indicated. As shown, the esti-
mated parameter absolute errors are in acceptable range and
this indicates the high capability of the presented algorithm in
noisy conditions. Therefore, in this sparse condition, the total
MSD distance function remains around 0.035, which could
not be achieved with the previous ICP matching algorithm in
non-sparse condition.

4.2 Thinmeasurement datasets 3D scan real
experiment

The scanned data as the available data for the model under
consideration often do not have the same density and com-
pression in all regions, and even in some places, the amount
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Fig. 16 The effectiveness of the proposed PF-ICP algorithm related to other variant ICP algorithm

Fig. 17 The noisy scanned data points for model-1: (a) PF-ICP matching algorithm (b) Spars ICP matching algorithm
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Table 6 The result of the PF-ICP algorithm for noisy scanned data of model-1

Model-1 ICP parameters Proposed PF-ICP initiated with K �
100 clusters and estimated with n �
50 particles

Sparse ICP
algorithm

True value PF-ICP performance vs. sparse
ICP

ϕ(deg) − 28.938 − 11.2 − 29.47 Better

θ(deg) − 19.024 − 16.8 − 18.61 Same

ψ(deg) − 30.061 − 6.4 − 29.47 Very better

t x − 0.9381 − 0.955 − 0.993 Same

t y − 0.5313 − 0.535 − 0.557 Same

t z − 0.4685 − 0.471 − 0.484 Same

scale 0.7151 0.715 0.714 Same

Total MSD distance
function

0.03586 0.1187

No of iteration 50 50

Table 7 The result of the PF-ICP algorithm for thin scanned data of model-3

Model-3 ICP parameters Proposed PF-ICP initiated with
K � 200 clusters and estimated
with n � 80 particles

EM-ICP algorithm with
variance 0.1 mm

True value PF-ICP performance vs.
EM-ICP

ϕ(deg) 5.827 7.13 5.23 Better

θ(deg) − 15.91 − 14.8 − 16.41 Better

ψ(deg) − 19.16 11.75 − 17.95 Very better

t x − 2.192 − 2.297 − 2.249 Same

t y − 1.594 − 1.558 − 1.649 Same

t z − 3.283 − 3.056 − 3.312 Better

scale 0.837 0.841 0.833 Same

Total MSD Distance
Function

5.314 × 10–3 0.0845

No of Iteration 100 100

of given and available data isminimal and the database distri-
bution is thin. This phenomenon causes a local minimum for
the objective distance function such that low-density points
lose their effect on the distance function. In the traditional
ICP algorithm, the transformation parameters values aremis-
calculated. The presented PF-ICP algorithm can estimate the
transformationparameters related to the globalminima in this
condition with acceptable accuracy. In this experiment, the
symmetric bottle is defined as real model-3, in Fig. 18. The
result is compared with the EM-ICP method [16]. The EM-
ICP uses the likelihood, the EM (expectation–maximization)
algorithm and rigid-body transformations used for large data
registration with better computation time and a little care-
lessness toward finding the best matching and reaching to
the global minimum with respect to considered variance.

Therefore, in cases, that there is large data and the accu-
racy is negligible; the EM-ICP method is used due to less
processing time. In addition, in cases with high symmetry

Fig. 18 Real 3D scan of symmetrical model

and the presence of a complex local minimum in the dis-
tance function, the accuracy and correctness of the PF-ICP
method is better and more reliable (Fig. 19).
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Fig. 19 Thinmeasurement datasets of real experiment 3D scan. aModel
data and scanned data b PF-ICPMatching algorithm c EM- ICPmatch-
ing algorithm (model is blue, and scan is red)

5 Conclusion

The proposed PF-ICP algorithm is used for computer vision
computational geometry, medical robotics positioning, and
other intelligent applications. It fuses the ICP algorithm and

the particle filter for fine 3D model matching with local min-
imum and uncertainty conditions, which leads to overcome
the weak performance, such as a narrow convergence region,
incorrect correspondence, and instability.

In this method, the initial values and covariance approxi-
mationof the ICPparameterswere determinedusingk-means
clustering. Then, the particle filter algorithm implemented to
obtain the global minimum of the ICP distance function and
accurate values of the registration parameters in the presence
of complicated local minima and symmetrical geometry and
nonlinear conditions. The experimental results of improved
PF-ICPmatching algorithm show that the PF-ICP yields con-
vergence reliability and correct correspondence. In addition,
the presented algorithm performed with insufficient avail-
able and sparse measurement data and measurement noise
with acceptable accuracy. The performance of the PF-ICP
method has been evaluated and proven by comparison with
four modified ICP methods.
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