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Abstract
Event cameras, characterized by their low power consumption, expansive dynamic range, and high temporal resolution, have
attracted great attentions in various computer vision tasks. Compared to frame-based cameras, event cameras exemplify
a marked paradigmatic transition in data formation and output. However, the quality of event streams is compromised by
background activity and hot pixels, leading to increased computational overheads and sub-optimal outcomes in subsequent
applications, notably in recognition, video reconstruction, and target detection tasks. In this paper, a two-step denoising
algorithm (referred as GMCM) is proposed to counteract these challenges. The GMCM algorithm comprises two steps:
Gaussian denoising preprocessing andmotion denoising. The former incorporatesGaussian temporal distribution and adaptive
thresholdingmechanisms to discern the inclusion ofmotion-related informationwithin the event streams. Experimental results
demonstrate that Gaussian denoising preprocessing can not only adeptly discern whether the event data stream contains
motion information but also enhance computational efficiency. Conclusively, the GMCM algorithm achieves state-of-the-art
performance, yielding SNR scores of 37.22 and 26.79 on the DVSCLEAN dataset at the noise ratios of 50% and 100%,
respectively.
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List of symbols

SOTA State-of-the-art
GMCM A two-step denoising algorithm compris-

ing Gaussian denoising preprocessing and
motion denoising

CM Contrast maximization algorithm
MCM An enhanced CM algorithm without Gaus-

sian denoising preprocessing
BA Background activity
Motion Stream Event streams with motion information
Noise Stream Event streams without motion information
MS-Max The Gaussian maximum value of motion

stream

B Lilin Liu
liullin@mail.sysu.edu.cn

1 The State Key Lab of Optoelectronic Materials and
Technology, School of Electronics and Information
Technology, Sun Yat Sen University, Xin’gang West Road,
135#, Guangzhou 510275, Guangdong, China

2 The Pazhou Lab (Huangpu), Huangpu District, Guangzhou,
Guangdong, China

NS-Max The Gaussian maximum value of noise
stream

EN The number of real events remaining after
denoising

NN The number of noise events remaining after
denoising

t The timestamp of each event
μ The average timestamp of event sequence
σ The timestamp variance of event sequence
Event Num The number of events in a basic processing

unit
ρ The adaptive threshold
x ′
k The x coordinate of the event after motion

projection
y′
k The y coordinate of the event after motion

projection
xk The original x coordinate of the event
yk The original y coordinate of the event
tk The original timestamp
vx Movement speed in x direction
vy Movement speed in y direction
λx The nonlinear parameters in x direction
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λy The nonlinear parameters in y direction
tref The reference time which is the timestamp

of the last event
wx The angular velocity of the rotational

motion in x direction
wy The angular velocity of the rotational

motion in x direction
⊗ The multiplication of the corresponding

position
ζ Nonlinear terms in rotational motion
H Reference time plane
θ The motion trajectory
R The reward function
SNR Signal-to-noise ratio

1 Introduction

Event cameras, as an asynchronous vision sensor, hold sub-
stantial promise for groundbreaking advancements in fields
like autonomous driving, robotics, and surveillance [1–5].
In contrast to frame-based cameras, which operate with
fixed exposure durations, event cameras capture luminance
changes individually at each pixel [6, 7]. The resultant output
manifests as a pixel-specific event stream that directly encap-
sulates changes in scene reflectance, thereby mitigating data
redundancy and preserving precise temporal data [1, 8, 9].
Therefore, merits of the event camera include high tempo-
ral resolution (microsecond order), low power consumption
(milliwatt), and high dynamic range (~ 120 dB) [1, 10].
Exploiting these salient attributes, event cameras proficiently
capture scene details, even in challenging environments such
as poor lighting and high-speed motion, without necessitat-
ing extensive storage resources.

In theory, event cameras are designed toproduce responses
and relay event data exclusively in response to changes in
light intensity or the presence of object motion [1, 4]. How-
ever, without log intensity changes, or even without any
scene activity, spurious events could be inadvertently gen-
erated by the camera [8, 11, 12]. Such aberrant occurrences
can critically compromise the quality of event data, poten-
tially undermining the utility of event cameras for subsequent
tasks, including optical flow, target detection, and object
recognition. Therefore, it is crucial to remove these spurious
event data. However, prior to distillingmeaningful event data
amidst such noise, certain considerations must be taken into
account. For instance, in static scenarios devoid of motion
or brightness fluctuations, is it necessary to allocate sig-
nificant computational resources to process the false events
induced by inherent camera hardware limitations? Addition-
ally, in dynamic scenarios, what strategies can be effectively
employed to mitigate the pervasive noise?

To address these issues, we propose a two-step denoising
algorithm (referred as GMCM), composed of robust Gaus-
sian denoising preprocessing and motion denoising. In the
first step, the Gaussian denoising preprocessing employs a
Gaussian time distribution coupled with adaptive thresholds,
thereby preliminarily ascertaining the presence or absence
of motion information within the event stream. If no motion
information is present, the corresponding data are promptly
discarded. Conversely, discernible motion cues prompt the
activation of the subsequent denoising step. Here, event
streams with and without motion information are referred as
Motion Stream and Noise Stream, respectively. Experimen-
tal results demonstrate that our GMCM algorithm effectively
distinguishes Motion Stream and Noise Stream. Further-
more, compared to the conventional contrast maximization
(CM) algorithm, GMCM algorithm canmore effectively dis-
tinguish effective events from noise events, resulting in an
enhanced denoising outcome. In addition, compared to other
SOTA denoising algorithms, GMCM algorithm achieves the
best denoising performance on benchmark datasets such as
DVSNOISE20 [13] and DVSCLEAN [14].

In general, our contributions are as follows:

1. A novel two-step denoising algorithm, consisting of
Gaussian denoising preprocessing andmotion denoising,
is proposed.

2. To elevate computational efficiency, it is for the first time
that Gaussian denoising preprocessing is introduced to
preliminarily ascertain whether the event data stream
encompasses motion information.

3. To expand the application range of the motion denoising
algorithm and improve its robustness, nonlinear terms
are incorporated into the motion equation of the motion
denoising model.

2 Related works

In this section, the types of noise events and previ-
ous researches on event denoising algorithms are mainly
reviewed.

2.1 Noise events

In event cameras, the primary sources of noise events can
be attributed to background activity (BA) and hot pixels [11,
15–21]. BA refers to spurious signals emitted in the absence
of notable shifts in luminance or motion. Such events may
be triggered by the factors such as charge injection, leakage
from the reset switching transistor section, and the thermal
noise [12, 17–22]. Compared to real events, which exhibit
higher spatiotemporal correlation, BAs occur randomly and
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with lower frequency [17–20]. As a result, in event streams,
the distribution of real events tends to be denser, while the
distribution of BA is sparser. In addition, hot pixels in event
cameras are often the result of inadequate pixel resetting pro-
cesses, the same as in the frame-based camera [7, 23, 24].

2.2 Event denoising algorithm

Given that event cameras produce asynchronous event
streams rather than standard frames, traditional frame-based
denoising algorithms cannot be applied directly. As a result,
some researchers have proposed a strategy where the sparse
event data was firstly mapped to dense image frames, subse-
quently undergoing traditional denoising methods [25, 26].
However, this approach worked at the expense of tempo-
ral information. Moreover, the mapping of event streams to
image frames is irreversible. In other words, the denoised
event stream cannot be recovered from the denoised image
frames later. Here, in our proposed algorithm, the motion
information of the event stream is obtained and employed for
denoising without the need for translation from event data to
event frames. Furthermore, our denoised output is retained as
an event stream, facilitating subsequent analyses to directly
leverage the intrinsic benefits of the event stream eigenvalue.

To harness the temporal information and asynchronous
sparsity inherent in event streams, several denoising algo-
rithms employing filtering techniques have been proposed,
such as temporal filtering [27], spatial filtering [28], and spa-
tiotemporal filtering [16, 17, 29, 30]. Baldwin et al. [27]
introduced a temporal filter using a time-surface approach,
aiming to eliminate redundant events and noise. Wang et al.
[28] proposed a spatial filter grounded in the notion that
events triggered by the same edge motion exhibit similar
spatiotemporal motion projections. Liu et al. [31] established
a spatiotemporal correlation-based filter by considering the
temporal correlation of event groups partitioned by subsam-
pling. These aforementioned filters are primarily suitable for
denoising simple scenes and may struggle to differentiate
between noise and genuine events in high dynamic or high
noise ratio scenes.

Recently, deep learning has gained significant attention
in the denoising of event cameras, particularly for com-
plex scenes [13, 18, 32, 33]. Baldwin et al. [13] utilized the
EPM tags, which are consisted of APS, IMU, and camera
parameters, to convert neighboring events into multiple time
surfaces which were then fed into the convolutional neural
network, EDnCNN, for denoising. Duan et al. [18] pro-
posed EventZoom, a 3DU-Net neural network, aimed at both
event denoising and super-resolution. Although EventZoom
employed a noise-to-noise strategy, it did incorporated event-
to-image modules, which introduced the concept of frames
to some extent [18]. In a word, existing neural network-based
denoising algorithms often require preprocessing steps that

deviate from the intrinsic properties of event data. Extracting
accurate features for matching the underlying information
of events which is challenging due to their asynchronous
and sparse nature, thereby affecting denoising performance.
Moreover, the scarcity of real-world datasets poses a sig-
nificant obstacle for the widespread adoption of neural
network-baseddenoising algorithms. In contrast, ourGMCM
algorithm does not rely on vast datasets or annotated samples
for learning. Additionally, the Gaussian denoising prepro-
cessing step integrated within the GMCM algorithm aids in
optimizing computational efficiency.

3 Proposedmethods

In this section, a two-step GMCM algorithm is proposed for
event denoising, as shown in Fig. 1. The first step focuses
on denoising preprocessing, utilizing a Gaussian time distri-
bution and an adaptive threshold. The second step engages
in motion denoising by utilizing an enhanced contrast max-
imization technique.

3.1 First step: Gaussian denoising preprocessing

In the GMCM algorithm, event streams are first segmented
into temporal bins, acting as the fundamental processing
units. Conventionally, the events are mapped to representa-
tions using either a constant time window or a fixed number
of events. In this case, a fixed number of events is selected
as the basic processing unit. The rationale for this choice is
elaborated subsequently.

According to Section II.A, noise events occur randomly
with a low probability, whereas real events caused by motion
occur in a large number within a short period of time. As
a result, compared to the Noise Stream, the temporal distri-
bution of the Motion Stream is more compact. Furthermore,
in the processing units with a constant number of events,
the Gaussian time distribution of the Motion Stream is more
concentrated than that of the Noise Stream. (The equation for
Gaussian time distribution is presented in Eq. 1.) However,
with fixed time window units, due to the constant timeframe,
the Gaussian time distributions of both Noise Stream and
Motion Stream tend to be analogous, complicating the dif-
ferentiation of the presence of motion information within the
event stream (as illustrated in Fig. 2). To address this, the
Gaussian maximum probability density value, specifically
MS-Max versus NS-Max, is employed to discern between
the Motion Stream and Noise Stream.

Gaussian(t) � 1√
2πσ

exp

(
− (t − μ)2

2σ 2

)
(1)
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Fig. 1 Illustration is the framework for the proposed two-step GMCM
algorithm. The input consists of sparse events, asynchronously gener-
ated by event cameras. Stage (I) Gaussian Denoising Preprocessing:
first, all data are uniformly segmented into N groups of events. Then,
the Gaussian time distribution for each event group is deduced. Finally,
by contrasting the derived Gaussian maximum value with the adaptive
threshold, a determination is made regarding whether it constitutes a

Motion Stream or a Noise Stream. Stage (II) Motion Denoise: first, the
motion trajectory is estimated by the modified contrast maximization
algorithm. Then, based on the optimal motion trajectory, the event num-
ber obtained by each pixel is calculated. If the event number is below
a certain threshold, it is noise. The final output is the event stream that
has been denoised. Blue/Pink dot: Real/Noise event

Fig. 2 Comparison ofGaussian time distribution based on constant time
window and constant number of events

where, t is the timestamp of each event, μ is the average
timestamp of this series of events, and σ is the variance of
timestamps in this event series.

However, varying event counts can influence the Gaussian
threshold for distinguishing the Noise Stream and Motion
Stream. To circumvent the manual recalibration necessitated
by alterations in event counts, an adaptive threshold method
is proposed to distinguish between the Motion Stream and
Noise Stream (as shown in Eq. 2).

ρ � exp
(
a + bn + cn2

)
+ ε (2)

where n is the number of events in a basic processing unit
(referred as Event Num); a, b, and c are related to thematerial
and the motion of the object; ε is related to the light intensity.

3.2 Second step: Motion denoising

Contrast maximization (CM), a prevalent technique for
object trajectory estimation, has demonstrated efficacy in
applications such as target detection, feature tracking, and
motion compensation [34–37]. Researchers optimize theCM
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algorithm byminimizing the loss function [34, 35, 38]. How-
ever, it is also important to refine the trajectory equation.

3.2.1 Linear motion

Currently, the CM algorithm is grounded on linear motion
equations, which postulates that an object moves at a con-
stant velocity within a very short time interval. However,
these equations may not suffice in accurately delineating
complex linear motions, such as accelerated motion. To mit-
igate this limitation, the introduction of nonlinear terms to
the CM motion equations is proposed. This modification
seeks to accommodate intricate linear motions and permits
the employment of arbitrarily chosen time intervals, thereby
augmenting the algorithm’s versatility and precision in por-
traying a variety of motion patterns:

(
x ′
k
y′
k

)
�

(
xk
yk

)
− (tk − tref)

(
vx

vy

)
− (

tk − tre f
)2(λx

λy

)

(3)

where, x ′
k , y

′
k are the event coordinates after motion projec-

tion; xk , yk , tk are the original coordinates and timestamp,
respectively; vx , vy are the motion speeds; λx , λy are the
nonlinear parameters;tre f is the reference time, which is the
timestamp of the last event.

3.2.2 Rotational motion

The rotationalmotionmodel of theCMmethod is specifically
designed for scenarios typified by pure rotational motions
with constant angular velocities. However, in situations
where these velocities subject to unpredictable fluctuations
intrinsic to complex scenarios, themodel encounters palpable
challenges. Many naturally occurring rotational dynamics,
particularly those swayed by external perturbations or intrin-
sic nonlinear forces,manifest characteristicswhich challenge
the descriptive capacity of a strictly linear model. Building
on the foundational work of Gallego et al. [34] regarding
the motion equation, we propose the incorporation of a non-
linear component to aptly represent these nuanced motion
behaviors:

ζ �
[
(tk − tref)

(
vx

νy

)
+ (tk − tref)

2

(
v′
x

ν′
y

)]
∗

(
λx

λy

)
(4)

(
x ′
k
y′
k

)
�

(
xk
yk

)
− (

tk − tre f
)(wx

wy

)
⊗

(
xk
yk

)
− ζ (5)

wherewx , wy represent the angular velocity of the rotational
motion,⊗ represents the multiplication of the corresponding
position, and ζ is a nonlinear term. Subsequent experimental
evaluations, exemplified by experimentswith rolling spheres,

substantiate that this modification yields a more faithful por-
trayal of rotational dynamics, especially those experiencing
variable angular velocities. This innovation effectively aug-
ments the versatility of the CM algorithm in addressing a
broader spectrum of rotational motion scenarios.

3.2.3 Motion trajectory estimation

Accurately estimating the motion trajectory is crucial for
subsequent processing steps. In this approach, the motion
trajectory is firstly initialized, following which events are
mapped onto a reference time plane based on this trajectory.
Thus, the events are aligned in a consistent temporal refer-
ence frame, facilitating ensuing analysis and processing:

H (xk , yk , pk ; θ ) �
m∑

k�1

pkδ((xk , yk) − (x ′
k , y

′
k)) (6)

θ �
{(

vx , vy , λx , λy
)

(wx , wy , vx · λx , vy · λy , v′
x · λx , v′

y · λy)
(7)

where δ is the Dirac function, θ is the motion trajectory.
Subsequently, the reference time plane is processed via a

reward function. Stoffregen et al. [35] categorized the reward
function utilized in the CMalgorithm into the sparsity reward
and magnitude reward. The former excels in dealing with
image uncertainty, while the latter demonstrates greater tol-
erance to noise. To harness the advantages of both sparsity
reward and magnitude reward, a hybrid reward function was
deemed beneficial. In our approach, the hybrid reward func-
tion, denoted as R, is directly applied to process the reference
time plane, aiming to obtain the optimal trajectory. The equa-
tions for the reward function and the contrast maximization
are delineated below:

R(H) �
∑
x , y

h(x , y)2 +
∑
x , y

exp(−h(x , y) ∗ pk) (8)

θ∗ � argmaxθ R(H (xk , yk , pk ; θ )) (9)

3.2.4 Distinguishing between real and noise events

To distinguish events and noise, event streams are projected
onto the reference timeplane using accuratemotion estimates
θ∗, and the quantity is enumerated at each pixel location on
the time plane:

H (xk , yk , pk ; θ∗) �

⎧⎪⎨
⎪⎩
0

1

otherwise

None
Noise
Event

(10)

123



6572 W. Lin et al.

In this process, pixel locations manifesting a higher event
count are indicative of actual real events, while those exhibit-
ing a lower event count are likely to be associated with noise
or spurious events. By establishing an appropriate thresh-
old, a demarcation between actual events and noise can be
effected based on the event count at each pixel location on
the reprojected time plane.

4 Experiments and results

In this section, real-world scenes are captured by an event
camera (DAVIS346). The data obtained is then processed
with the proposed two-step GMCM algorithm to evaluate
its applicability. Furthermore, for a comprehensive perfor-
mance comparison of our GMCM algorithm with other
denoising methods, both the DENOISE20 and DVSCLEAN
benchmark dataset are employed. Our algorithm, along with
other conventional algorithms, is operationalized on a CPU
(Intel i7-12700F, 64-bit). Conversely, the denoising models
based on neural networks operate on a GPU (GeForce RTX
3080Ti GPU), utilizing a software framework inclusive of
PyTorch 1.13.0 and CUDA Toolkit 11.3.1. The encompass-
ing software milieu was constructed with Python 3.9.12 and
PyCharm 2022.2.

4.1 Dataset

4.1.1 Experimental setup of our dataset

During the experimental phase, we utilized the DAVIS346
camera,which boasts a spatial resolution of 346× 260 pixels.
The camera was securely mounted on a stand, maintaining
a distance of 60 cm from the object in motion. We captured
three distinct indoormotion scenarios, each involving objects
with varying refractive indices. Each object was recorded
under three different lighting conditions, with each condi-
tion being replicated thrice. An exhaustive description of the
experimental conditions is provided in Table 1.

4.1.2 Benchmark datasets

DVSNOISE20 [13] is a genuine dataset that mirrors real-
world scenarios, embracing 16 distinctive indoor and outdoor
environments. Each of these locations has been carefully doc-
umented three times, each capture lasting approximately 16
seconds, culminating in a total of 48 sequences that cover a
wide range of movements.

Regarding DVSCLEAN [14], our primary focus is on the
simulated section of the dataset. This simulated portion is
generated byutilizing theESIM[39] technique to convert real
scene videos into simulated real-world events, after which
artificial random noise is intentionally added. The dataset

Table 1 Experimental parameters about objectmaterial,movement, and
light intensity

Object Material Movement Lighting

Statue Diffuse
reflection

Linear motion Low lighting
Normal
lighting
Over
exposure

Metal iron High
reflective

Linear motion Low lighting
Normal
lighting
Over
exposure

Basketball Diffuse
reflection

Roll Low lighting
Normal
lighting
Over
exposure

houses 49 distinct scenes. Within each scene, noise is intro-
duced at two separatemagnitudes: one corresponding to 50%
of the simulated real event frequency, and the other matching
100% of that frequency. To stay consistent with the terminol-
ogy used by the primary researchers, these are denominated
as the 50% noise ratio and the 100% noise ratio, respectively.

4.2 Impact of the event numon the GMCMalgorithm

The Event Num is a key factor affecting the denoising per-
formance of the GMCM algorithm. Here, a series of GMCM
algorithms, each accommodating a different Event Num, are
applied to perform denoising processes on the DVSCLEAN
benchmark dataset, and the corresponding SNR scores are
calculated, as depicted in the Fig. 3. It reveals that the
GMCM algorithm attains approximately the highest SNR
scores when the Event Num is between 10,000 and 20,000.
Moreover,with an increase in theEventNum, the SNR scores
experience only a slight decline. This demonstrates that our
denoising algorithm exhibits robustness with respect to the
number of events. Furthermore, unless otherwise specified,
in subsequent experiments, wewill employ the GMCMalgo-
rithmwith an event number of 10,000 and compare it to other
advanced denoising algorithms (Table 2).

4.3 First step of GMCM: Gaussian denoising
preprocessing

First, all data are impartially segregated into distinct groups
of event streams, predicated on the pre-established Event
Num values. As shown in Fig. 4, for each Event Num, the
MS-Max surpasses NS-Max. Concomitant with the augmen-
tation of Event Num, both MS-Max and NS-Max exhibit a
gradual diminution. Furthermore, at identical Event Num,

123



Amotion denoising algorithm with Gaussian self-adjusting… 6573

Fig. 3 The SNR scores of the GMCMAlgorithmUnder Different Event
Num

Table 2 Comparison of SNR scores on DVSCLEAN dataset

50% noise ratio 100% noise ratio Average

STP [40] 20.34 14.53 17.44

Liu et al. [31] 23.80 18.70 21.25

ICM [22] 21.64 15.68 18.66

EDnCNN [13] 24.75 18.80 21.78

AEDNet [14] 26.11 25.08 25.60

GMCM 37.22 26.79 32.01

MS-Max and NS-Max manifest discrepancies under varying
illumination conditions, namely low, normal, and overexpo-
sure. Additionally, different objects, such as diffuse objects
and highly reflective objects (e.g., Statue and Metal Iron),
alongside varying motion paradigms (e.g., linear motion and
rolling as observed in Statue and Basketball), impart distinct
impacts on MS-Max and NS-Max. The experimental results
demonstrate that the proposed adaptive threshold effectively
incorporates the impacts of object material, motion modal-
ity, light intensity, and Event Num onMS-Max and NS-Max.
The adaptive threshold can successfully distinguish Motion
Stream and Noise Stream.

4.4 Second step of GMCM: Motion denoising

Comparisons between the GMCM and CM algorithms are
performed to evaluate their denoising performances in terms
of motion, lighting scenes, and object materials. As shown
in Figs. 5, 6, 7, for low light, normal light, and overexposure
scenes, although the CM algorithm effectively eliminates

noise in the event stream generated by the linear motion of
both diffuse reflection objects and highly reflective objects,
it also eliminates a significant large number of valid events.
In addition, subsequent to processing via the CM algorithm,
a considerable amount of noise still remains in the events
generated by the rolling. However, regardless of the type of
scene, our GMCM algorithm manifests superior capability,
mitigating extensive noise and concurrently retaining a more
considerable number of valid events.

Moreover, the denoising performance of ourGMCMalgo-
rithm demonstrates diminished sensitivity to Event Num. As
shown in Fig. 8, with the reduction of Event Num from
30,000 to 10,000, the CM algorithm eradicates numerous
valid events. In contrast, the GMCM algorithm still well pre-
serves of valid events. These results indicate that the GMCM
algorithm exhibits enhanced stability and robustness, mak-
ing it more reliable in denoising event data across different
event densities.

4.5 Comparison with other denoising algorithms

Leveraging the DVSNOISE20 dataset [13], the denoising
performance of the proposed GMCM algorithm is compared
to other algorithms, including the spatiotemporal correla-
tion filter [31], Ev-gait [32], GEF [33], EDnCNN [13], and
EventZoom [18]. The DVSNOISE20 dataset is a benchmark
dataset, encompassing 16 disparate scenes captured with
minimal camera movement and static objects. It is important
to acknowledge that, due to the unavailability of the source
code for the majority of denoising algorithms, we refer to the
data graph from ref. [18]. Although DVSNOISE20 dataset
was collected byDAVIS346, whose output size is 346× 260,
ref. [18] modified its dimensions.

Consequently, to maintain consistency in comparison, our
images preserve the original camera dimensions.

Both our GMCM algorithm and the spatial–temporal
correlation-based filter algorithm[31] are entrenched in
model-based denoising methods. When contrasted with the
filter algorithm, our GMCM algorithm can more effectively
distinguish noise and real events (as shown in Fig. 9). Addi-
tionally, compared to the neural network-based denoising
algorithms, our GMCM algorithm surpasses several, includ-
ing GEF and EV-gait (as shown in Fig. 10), and it is slightly
inferior to state-of-the-art methods such as EDnCNN and
EventZoom.However, neural network-based denoising algo-
rithms necessitate substantial volumes of labeled data for
training—a prerequisite often elusive for event datasets,
particularly within intricate scenes. Therefore, our GMCM
algorithm emerges as a prospective alternative in the domain
of event denoising, mitigating the aforementioned chal-
lenges.
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(a)
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(c)
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Metal Iron(b)
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Basketbt allBasketbt all(c)

Fig. 4 Histograms and curves showing the Gaussian maximum value
and threshold value under different object materials, motion modes,
light brightness, and Event Numbers. In addition, the Gaussian max-
imum value of Noise Stream (abbreviated as NS-Max) refers to the

largest Gaussian maximum value in all Noise Streams; the Gaussian
maximum value of Motion Stream (abbreviated as MS-Max) refers to
the smallest Gaussian maximum value in all Motion Streams

To quantitatively evaluate the denoising performance, we
employ the DVSCLEAN dataset [14] which provides dis-
tinct labels for the simulated data. Here, the index of SNR
proposed in ref [14] is adopted to evaluate the performance
of denoising. The SNR for benchmarking denoising perfor-
mance is described as:

SNR � 20 · log10(EN/NN) (11)

where ENandNN refer to the number of real events and noise
events remaining after denoising, respectively. As shown in

Eq. 11, a higher SNR value denotes superior denoising effi-
cacy. Compared to other SOTA denoising algorithms, such
as EDnCNN [13], AEDNet [14], ICM [22], Liu et al. [31],
and STP [40], our GMCM algorithm achieves the highest
SNR scores at both 50% and 100% noise ratio. Specifically,
at a 50% noise ratio, our GMCMalgorithm achieves the SNR
score of 37.22, and at a 100% noise ratio, it achieves the SNR
score of 26.79. These outcomes underline the proficiency of
our GMCM algorithm in discriminating between noise and
valid events, even in environments saturated with substantial
noise levels within the experimental spectrum.
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Fig. 5 Raw event data, the CM
denoised, and the GMCM
denoised event data under low
illumination

Raw

CM

Ours

Statue Mental Iron Basketball

(a) (b) (c)

Fig. 6 Raw event data, the CM
denoised, and the GMCM
denoised event data under normal
illumination

Raw

CM

Ours

Statue Mental Iron Basketball

(a) (b) (c)
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Fig. 7 Raw event data, the CM
denoised, and the GMCM
denoised event data under
overexposure

Raw

CM

Ours

Statue Mental Iron Basketball

(a) (b) (c)

Fig. 8 Raw event data, the CM
denoised, and the GMCM
denoised CM denoised event data
at different Event Num

Raw

CM

Ours

10000 20000 30000

(a) (b) (c)

Event Num
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(a) APS frame (b) Raw event frame (c) filters (d) Ours

Fig. 9 a APS frame. b Raw event frame c denoising results based on filters. d Denoising results of the GMCM algorithm

4.6 Computational time

Benchmarking of the runtime for traditional denoising algo-
rithms is summarized in Table 3. Experimental outcomes
illustrate that, in contrast to the enhancedCMalgorithmwith-
out Gaussian denoising preprocessing (denoted as MCM),
our GMCM algorithm showcases a markedly improved run-
time. This suggests that Gaussian denoising preprocessing
can bolster computational efficiency, curbing unnecessary
computational drain. Compared with Liu et al.[31], GMCM
algorithm outperforms in terms of runtime, realizing a boost
in computational efficiency of 166%.

5 Conclusion

In conclusion, a two-stepGMCMalgorithm for event denois-
ing is proposed, encompassing Gaussian denoising prepro-
cessing and motion denoising algorithm . The experimental

results show that the GMCM algorithm not only effectively
distinguishes the Motion Stream and Noise Stream but also
curtails unnecessary computational resource expenditure.
Compared to the advanced spatiotemporal filter algorithm,
the GMCM algorithm has achieved an upgraded computa-
tional efficiency of 166% in run time. Moreover, the GMCM
algorithm achieves excellent denoising performances on
DVSNOISE20 dataset and obtains the highest SNR score
on DVSCLEAN dataset. In addition, low sensitivity to the
number of events and high robustness to noise exhibited by
the GMCM algorithm are other merits. The proposed two-
step GMCM algorithm framework provides a new way to
implement event denoising.
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(a) Ev-gait (b) GEF (c) EDnCNN (d) EventZoom (e) Ours

Fig. 10 a–d Denoising algorithm based on neural network. (e) Denoising results of the GMCM algorithm

Table 3 Comparison of average
denoising runtimes for
DVSNOISE20, DVSCLEAN,
and our proprietary experimental
dataset. (Units: seconds)

CM MCM GMCM Liu et al

DVSNOISE20 467.94 401.65 325.07 458.80

Our data 214.20 360.46 188.35 428.06

DVSCLEAN 9.98 6.47 6.47 413.73

Average 230.71 256.19 173.30 433.53

Bolding implies optimal runtime on datasets and average
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Observational evaluation of event cameras performance in optical
space surveillance. 1st NEO and Debris Detection Conference. pp.
(2019).

4. Liu, S.-C., Rueckauer, B., Ceolini, E., Huber, A., Delbruck, T.:
Event-driven sensing for efficient perception: vision and audition
algorithms. IEEE Signal Process. Mag. 36(6), 29–37 (2019)

5. Zhang, J., Zhao, K., Dong, B., Fu, Y., Wang, Y., Yang, X., et al.:
Multi-domain collaborative feature representation for robust visual
object tracking. Vis. Comput. 37(9–11), 2671–2683 (2021)

6. Parihar, A.S., Varshney, D., Pandya, K., Aggarwal, A.: A com-
prehensive survey on video frame interpolation techniques. Vis.
Comput. 38(1), 295–319 (2021)

7. Guo, S., Wang, W., Wang, X., Xu, X.: Low-light image enhance-
ment with joint illumination and noise data distribution transfor-
mation. The Visual Computer. pp. (2022).

8. Hu, Y., Liu, S-C., Delbruck, T.: v2e: From video frames to realistic
DVSEvents. 2021 IEEE/CVFConference onComputer Vision and
Pattern Recognition Workshops (CVPRW). pp. 1312–21 (2021).

123



Amotion denoising algorithm with Gaussian self-adjusting… 6579

9. Koseoglu, B., Kaya, E., Balcisoy, S., Bozkaya, B.: ST sequence
miner: visualization and mining of spatio-temporal event
sequences. Vis. Comput. 36(10–12), 2369–2381 (2020)

10. Liu, H.-C., Zhang, F.-L., Marshall, D., Shi, L., Hu, S.-M.: High-
speed video generation with an event camera. Vis. Comput.
33(6–8), 749–759 (2017)

11. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128x128 120 dB 15
μs latency asynchronous temporal contrast vision sensor. IEEE J.
Solid-State Circuits 43(2), 566–576 (2008)

12. Guo, S., Delbruck, T.: Low cost and latency event camera back-
ground activity denoising. IEEE Trans Pattern Anal Mach Intell.
PP. pp. (2022).

13. Baldwin, R.W., Almatrafi, M., Asari, V., Hirakawa, K.: Event
probability mask (EPM) and event denoising convolutional neural
network (EDnCNN) for neuromorphic cameras. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 1698–707 (2020).

14. Fang, H., Wu, J., Li, L., Hou, J., Dong, W., Shi, G.: AEDNet:
Asynchronous event denoising with spatial-temporal correlation
among irregular data. Proceedings of the 30th ACM International
Conference on Multimedia. pp. 1427–35 (2022).

15. Guo, S., Kang, Z., Wang, L., Li, S., Xu, W.: HashHeat: An O(C)
complexity hashing-based filter for dynamic vision sensor. 2020
25th Asia and South Pacific Design Automation Conference (ASP-
DAC). pp. 452–7 (2020).

16. Czech, D., Orchard, G.: Evaluating noise filtering for event-based
asynchronous change detection image sensors. 2016 6th IEEE
International Conference on Biomedical Robotics and Biomecha-
tronics (BioRob). pp. 19–24 (2016).

17. Feng, Y., Lv, H., Liu, H., Zhang, Y., Xiao, Y., Han, C.: Event den-
sity based denoising method for dynamic vision sensor. Appl. Sci.
10(6), 2024 (2020)

18. Duan, P., Wang, Z.W., Zhou, X., Ma, Y., Shi, B.: EventZoom:
learning to denoise and super resolve neuromorphic events. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 12819–28 (2020).

19. Khodamoradi, A., Kastner, R.: O(N)-space spatiotemporal filter
for reducing noise in neuromorphic vision sensors. IEEE Trans.
Emerg. Topics Comput. pp. 15–23 (2018).

20. Wang, Z.W.,Duan, P., Cossairt, O.,Katsaggelos,A.,Huang, T., Shi,
B.: Joint filtering of intensity images and neuromorphic events for
high-resolution noise-robust imaging. 2020 IEEE/CVFConference
onComputerVision and PatternRecognition (CVPR). pp. 1606–16
(2020).

21. Suh, Y., Choi, S., Ito, M., Kim, J., Lee, Y., Seo, J., et al.: A 1280×
960 dynamic vision sensor with a 4.95-μm pixel pitch and motion
artifact minimization. 2020 IEEE International Symposium onCir-
cuits and Systems (ISCAS). pp. 1–5 (2020).

22. Wu, J., Ma, C., Li, L., Dong, W., Shi, G.: Probabilistic undirected
graph based denoising method for dynamic vision sensor. IEEE
Trans. Multim. 23, 1148–1159 (2021)

23. Xu,N., Zhao, J., Ren,Y.,Wang, L.:Anoise filter for dynamic vision
sensor based on spatiotemporal correlation and hot pixel detection.
Proceedings of 2021 International Conference on Autonomous
Unmanned Systems (ICAUS 2021). Lecture Notes in Electrical
Engineering. pp. 792–9 (2022).

24. Yang, J., Ma, M., Zhang, J., Wang, C.: Noise removal using an
adaptive Euler’s elastica-based model. The Visual Computer. pp.
(2022).

25. Cheng, W., Luo, H., Yang, W., Yu, L., Chen, S., Li, W.: DET: A
high-resolution DVS dataset for lane extraction. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). pp. 1666–75 (2019).

26. Xie, X., Du, J., Shi, G., Hu, H., Li, W.: An improved approach
for visualizing dynamic vision sensor and its video denoising.

Proceedings of the International Conference on Video and Image
Processing. pp. 176–80 (2017).

27. Baldwin, R.W., Almatrafi, M., Kaufman, J.R., Asari. V., Hirakawa.
K.: Inceptive event time-surfaces for object classification using
neuromorphic cameras. image analysis and recognition. Lecture
Notes in Computer Science. pp. 395–403 (2019).

28. Ieng, S.-H., Posch, C., Benosman, R.: Asynchronous neuromor-
phic event-driven image filtering. Proc. IEEE 102(10), 1485–1499
(2014)

29. Guo, S., Kang, Z., Wang, L., Zhang, L., Chen, X., Li, S., et al.:
HashHeat: a hashing-based spatiotemporal filter for dynamic vision
sensor. Integration. 81, 99–107 (2021)

30. Wu, J., Ma, C., Yu, X., Shi, G.: Denoising of event-based sensors
with spatial-temporal correlaTION. ICASSP 2020, 4437–4441
(2020)

31. Liu, H., Brandli, C., Li, C., Liu, S-C., Delbruck, T.: Design of
a spatiotemporal correlation filter for event-based sensors. 2015
IEEE International Symposium on Circuits and Systems (ISCAS).
pp. 722–5 (2015).

32. Wang,Y.,Du,B., Shen,Y.,Wu,K., Zhao,G., Sun, J., et al.: EV-Gait:
event-based robust gait recognition using dynamic vision sensors.
pp. 6351–60 (2019).

33. Duan, P.,Wang, Z.W., Shi, B., Cossairt, O., Huang, T., Katsaggelos,
A.K.: Guided event filtering: synergy between intensity images and
neuromorphic events for high performance imaging. IEEE Trans.
Pattern Anal. Mach. Intell. 44(11), 8261–8275 (2022)

34. Gallego, G., Rebecq, H., Scaramuzza. D.: A unifying contrast
maximization framework for event cameras, with applications to
motion, depth, and optical flow estimation. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 3867–76
(2018).

35. Stoffregen, T., Kleeman, L.: Event cameras, contrast maximization
and reward functions: an analysis. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 12292–300
(2019).

36. Xiang, X., Zhu, L., Li, J., Tian, Y., Huang, T.: Temporal up-
sampling for asynchronous events. 2022 IEEE International Con-
ference on Multimedia and Expo (ICME). pp. 01–6 (2022).

37. Xu, J., Jiang, M., Yu, L., Yang, W., Wang, W.: Robust motion com-
pensation for event cameras with smooth constraint. IEEE Trans.
Comput. Imag. 6, 604–614 (2020)

38. Gallego,G.,Gehrig,M., Scaramuzza,D.: Focus is all you need: loss
functions for event-based vision. CVPR. pp. 12280–12289 (2019).

39. Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event
camera simulator. In: Aude B, Anca D, Jan P, Jun M, editors. Pro-
ceedings of The 2nd Conference on Robot Learning. Proceedings
of Machine Learning Research: PMLR. pp. 969--82 (2018).

40. Huang, T., Zheng, Y., Yu, Z., Chen, R., Li, Y., Xiong, R., et al.:
1000× Faster camera and machine vision with ordinary devices.
Engineering. pp. (2022).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123



6580 W. Lin et al.

Wanmin Lin is currently a
graduate student at the School
of Electronics and Information
Engineering, Sun Yat-sen Univer-
sity, China, under the supervision
of Prof. Lilin Liu. She received
her B.S. degree at the Sun Yat-
sen University in June 2021.
Her research interests include
computer vision, data processing
of dynamic vision sensors (event
camera), deep learning.

Yuhui Li received his Master’s
degree at South China Normal
University in Guangzhou, China.
He is currently working toward
the Ph.D. degree in the State
Key Lab of Optoelectronic Mate-
rials and Technology, School
of Electronics and Information
Technology, Sun Yat-Sen Uni-
versity, Guangzhou, China. His
research interests include event
camera, 3D reconstruction, image
processing, deep learning.

Chen Xu received his Ph.D.
degree in Machine Electron-
ics Engineering from South
China University of Technology,
Guangzhou, China. Now he is
working at Guangzhou Huangpu
Pazhou Laboratory, China. His
current research interests include
artificial intelligence, intelli-
gent sensing, image processing,
machine vision, 3D reconstruc-
tion, and deep learning.

Lilin Liu received her Ph.D.
degree from Department of
Mechanical Engineering at Hong
Kong University of Science &
Technology. She obtained her
Master and Bachelor degrees
from Beihang University. She
is an full professor at School of
Electronics and Information Tech-
nology, Sun Yat-Sen University.
Her research interests include 3D
information acquisition, imaging
and display, machine vision, and
optical communication.

123


	A motion denoising algorithm with Gaussian self-adjusting threshold for event camera
	Abstract
	List of symbols
	1 Introduction
	2 Related works
	2.1 Noise events
	2.2 Event denoising algorithm

	3 Proposed methods
	3.1 First step: Gaussian denoising preprocessing
	3.2 Second step: Motion denoising
	3.2.1 Linear motion
	3.2.2 Rotational motion
	3.2.3 Motion trajectory estimation
	3.2.4 Distinguishing between real and noise events


	4 Experiments and results
	4.1 Dataset
	4.1.1 Experimental setup of our dataset
	4.1.2 Benchmark datasets

	4.2 Impact of the event num on the GMCM algorithm
	4.3 First step of GMCM: Gaussian denoising preprocessing
	4.4 Second step of GMCM: Motion denoising
	4.5 Comparison with other denoising algorithms
	4.6 Computational time 

	5 Conclusion
	Acknowledgements
	References




