
The Visual Computer (2024) 40:6369–6387
https://doi.org/10.1007/s00371-023-03170-9

ORIG INAL ART ICLE

Obtaining the user-defined polygons inside a closed contour with
holes

R. Molano1 · J. C. Sancho2 ·M. M. Ávila2 · P. G. Rodríguez2 · A. Caro2

Accepted: 9 September 2023 / Published online: 7 December 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In image processing, computer vision algorithms are applied to regions bounded by closed contours. These contours are
often irregular, poorly defined, and contain holes or unavailable areas inside. A common problem in computational geometry
includes finding the k-sided polygon (k-gon) of maximum area or maximum perimeter inscribed within a contour. This paper
presents a generic method to obtain user-defined polygons within a region. Users can specify the number k of sides of the
polygon to obtain. Additionally, users can also decidewhether the calculated polygon should be the largest in area or perimeter.
This algorithm produces a polygon or set of polygons that can be used to segment an image, allowing only relevant areas to
be processed. In a real-world application, the validity and versatility of the proposed method are demonstrated. In addition,
the source code developed in Java and Python is available in a GitHub repository so that researchers can use it freely.

Keywords k-Gon · Closed contour · Polygon · Holes · Computational geometry

1 Introduction

The definition of regions of interest within images plays an
important role in computer vision.Many computer animation
and simulation, image processing, medical imaging, shape
modeling and analysis, visual analytics, or scientific visual-
ization systems require geometric modeling and processing
to delimit regions of interest. For this purpose, computa-

J. C. Sancho,M.M.Ávila, P. G. Rodríguez andA.Caro have contributed
equally to this work.

B R. Molano
rmolano@unex.es

J. C. Sancho
jcsanchon@unex.es

M. M. Ávila
mmavila@unex.es

P. G. Rodríguez
pablogr@unex.es

A. Caro
andresc@unex.es

1 Department of Mathematics, Universidad de Extremadura,
10003 Cáceres, Spain

2 Department of Computer and Telematics Systems
Engineering, Universidad de Extremadura, 10003 Cáceres,
Spain

tional geometry algorithms are typically the best option to
identify subregions within an image. These computational
geometry algorithms typically have high computational com-
plexity and usually produce straightforward polygons (e.g.,
triangles, rectangles, quadrilaterals) without the real possi-
bility of including constraints specified by the practical needs
demanded by the users. For example, one user might be
interested in obtaining a polygon with the maximum area,
while another might be interested in obtaining a polygon
with the maximum perimeter. Alternatively, one user may
wish to obtain polygons with three sides (triangles), while
another may desire polygons with many more sides (e.g.,
quadrilaterals, pentagons, hexagons, etc.). In addition, many
practical applications are based on obtaining polygons that
are inscribed in a given region of interest. Inmost cases, these
regions of interest are straightforward, and it is atypical to
consider surfaces containing inaccessible areas (i.e., regions
containing one or more holes).

All of these constraints have proven insurmountable to
date in computational geometry applied to computer vision,
because no method has been published that solves the com-
putational problem of obtaining the simple polygon with any
number of sides (k-gon) with maximum area or perimeter
within a region of interest with holes.

This problem can be formulated as follows: given a fixed
number k, compute the simple k-gon with maximum area

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-03170-9&domain=pdf
http://orcid.org/0000-0001-5410-6589
http://orcid.org/0000-0002-4584-6945
http://orcid.org/0000-0002-8717-442X
http://orcid.org/0000-0001-8168-7892
http://orcid.org/0000-0002-6367-2694

6370 R. Molano et al.

or perimeter contained in any closed contour C (region of
interest) with h-holes. Figure 1 shows the initial problem,
the closed contour C and holes, H1 and H2, the inaccessible
areas.

1.1 Practical applications

Many practical applications are possible for the algorithm
proposed in this paper, including geographic information
system (GIS) [1, 2], robotics [3, 4], medical imaging [5–
7] or agricultural plots [8, 9]. Thus, we downloaded images
from the Ministry of Farming, Fishing and Food of Spain
[10] using the application Visor SigPac v4.8 [11], as shown
in Fig. 2a. The closed contour C was then created (Fig. 2b),
generating a collection of points. Finally, the lattice poly-
gon P (Fig. 2c) that is applied in Algorithm 8 (i.e., the
main algorithm) is built, where there are 3 unavailable zones
(H1, H2, H3) and #(P) = 110. Then,
⎧
⎪⎪⎨

⎪⎪⎩

points = P = P0 − ⋃h
i=1(ı Hi) = {p1, . . . , p110}

polygon = ∂P0 = {p1, . . . , p42}
holes = ∂H1 ∪ ∂H2 ∪ ∂H3 =

= {p92, . . . , p97} ∪ {p98, . . . , p104} ∪ {p105, . . . , p110}

Using Algorithm 8, we obtain the solutions shown in Fig. 3,
which describes how the area of the simple k-gon increases
when the number of sides increases. In addition, the solution
to obtain the rectangle with maximum area is included to
demonstrate the versatility of the proposed algorithm.

2 Related works

The computation of the maximum area or perimeter within
a region of interest is an important optimization problem for
computational geometry. This calculation is typically per-

Fig. 1 Closed contour C with two holes H1 and H2

formed on convex or simple polygons but without adding
whether it is possible to perform it on a region of interest
(closed contour) with or without holes. In all the reviewed
papers, the longest perimeter (or the largest area) is under-
stood on a closed contour delimited by a finite set of points.

Considering area, several authors have proposed different
solutions to find the polygon with the largest area contained
in a polygon with n vertices and h holes. For triangles, Lee
et al. [12] presented an algorithm to find the largest triangle
that can be inscribed in a polygon with holes but under vari-
ous conditions. If the polygon does not have holes, the best
solutions were reported by Kallus [13] for convex polygons
in O(n) time, andMelissaratos and Souvaine [14] solved the
problem for simple polygons in O(n4) time.

For rectangles, Alt et al. [15] computed the largest area
axis-parallel rectangle in a convex polygon in O(log n) time
andBoland andUrrutia [16] solved the problem inO(n log n)

time for a simple polygon. Daniels et al. [17] added the con-
dition of polygons with holes and solved it in O(n log2 n).
Removing the axis-aligned condition, Kanuer et al. [18]
considered approximation algorithms and proved that the
rectangle with the largest area in a convex polygon could
be computed in O(1

ε
log 1

ε
log n) time. For simple polygons,

Molano et al. [19] solved the problem in O(n3) time, and if
the initial polygon has holes, Choi et al. [20] showed how
to solve it in O(n3 log n) time. For parallelograms, Jin [21]
developed an algorithm to compute the largest parallelogram
inside a convex polygon in O(n log2 n) time and Molano et
al. [22] solved the same problem in O(n3) time but for simple
polygons. None of these methods can manage holes. Finally,
Keikha et al. [23] and Rote et al. [24] found an algorithm to
compute the quadrilateral of the largest area contained in a
convex polygon in O(n) time, without mentioning whether
it is operates correctly with holes. Table 1 shows the compu-
tational costs of the previous papers.

Two conclusions can be deduced from the literature.
First, there is a large difference in computational cost when
the initial polygon changes from convex to nonconvex.
Second, there are few papers that mention polygons with
holes.

In general, this type of problem can be reduced to a geo-
metric optimization problem in the class of polygon inclusion
problems as follows:

I nc(P,Q, μ): Given P ∈ P , find the μ-largest Q ∈ Q
that is included in P , whereP andQ are families of polygons
and μ is a real function on polygons such that:

∀Q, Q′ ∈ Q, Q′ ⊆ Q ⇒ μ(Q′) ≤ μ(Q)

The ”potato peeling problem” or the problem of finding
the largest convex polygon contained in a simple polygon is
the inclusion problem I nc(Pall ,Pcon, μ), where Pall is the
family of all simple polygons, Pcon denotes the class of all

123

Obtaining the user-defined polygons inside a closed contour with holes 6371

Fig. 2 Image extraction for real
practical application

the convex polygons andμ is the real function with respect to
area or perimeter. The problem was introduced by Goodman
[25] and solved by Chang and Yap [26] in O(n7) time under
the area measure and in O(n6) time for the perimeter. Later,
Cabello et al. [27] reported an approximation algorithm in
O(n(log2 n + (1/ε3) log n + 1/ε4)) time.

The goal of this paper is to develop an algorithm that given
a fixed number k, to compute the simple k-gon of amaximum
area or perimeter inscribed in any closed contour with holes.
That is, to solve the inclusion problem I nc(Phole,Pk sim, μ),
where Phole is the family of all polygons with holes and
Pk sim denotes the class of all simple k-gons. Thus, with the
proposed algorithm, the user chooses the k-gon to be shown
(e.g., triangle, quadrilateral, pentagon, hexagon, etc.) and the
type of solution desired maximum area or perimeter. In addi-
tion, we have developed the algorithm in pseudocode and
defined it in 8 subprograms so that any researcher can use
it in future investigations. Additionally, a link to a GitHub
repository with all the source code developed in Java and
Python is included [28].

The algorithm developed in this paper is described in the
following sections. Section 3 introduces the concept of a
lattice polygon with holes, and Sect. 4 describes how to cal-
culate the adjacency matrix associated with that polygon.
Section5 explains how to compute the maximum area or

perimeter simple k-gon inscribed in a lattice polygon with
holes, and Sect. 6 extends the previous section and describes
how to compute the maximum area or perimeter simple k-
gon inscribed in a closed contour with holes. Section7 shows
where the source code can be downloaded. Finally, Sect. 8
presents the conclusions of this paper.

3 Preliminary

We define a lattice polygon as a polygon whose points have
integer coordinates and which has the following properties:

1. It is defined on a regular partition� = �x ×�y of order
r × s formed by r + 1, s + 1 equally spaced points that
satisfy:

�x = {a = x0 < x1 < . . . < xr = b}
�y = {c = y0 < y1 < . . . < ys = d}

where a, b, c, d ∈ Z.
2. We denote GL = {(xi , y j) : 0 ≤ i ≤ r , 0 ≤ j ≤ s}, the

square grid composed of points of the partition �. We
define partition size, L = |xi+1 − xi | = |y j+1 − y j |, the
length of the side of each square formed by the square

123

6372 R. Molano et al.

Fig. 3 Practical application
solutions

123

Obtaining the user-defined polygons inside a closed contour with holes 6373

Table 1 Computational cost Reference Polygon k-gon Computational cost

[12] Holes Triangle O(n4)

[13] Convex Triangle O(n)

[14] Simple Triangle O(n4)

[15] Convex Axis-parallel rectangle O(log n)

[16] Simple Axis-parallel rectangle O(n log n)

[17] Holes Axis-parallel rectangle O(n log2 n)

[18] Convex Rectangle O(1
ε
log 1

ε
log n)

[19] Simple Rectangle O(n3)

[20] Holes Rectangle O(n3 log n)

[21] Convex Parallelogram O(n log2 n)

[22] Simple Parallelogram O(n3)

[23, 24] Convex Quadrilateral O(n)

Proposed algorithm Holes Any O(n5k)

Fig. 4 Construction of the
lattice polygon

grid. In addition, we state that partition �̇ is finer than
partition �, if it is verified that all points of � belong to
�̇. We denote � 	 �̇.

3. The connections between consecutive vertices are not
necessarily established in the eight directions, πk/4, k =
0, . . . , 7.

4. The edges of the polygon do not intersect except at their
vertices.

In Fig. 4 shows how to construct a lattice polygon P from
the initial problem (Fig. 1). First, we define a partition � on
the closed contourC with partition size L (Fig. 4a), extracting
a collection of points (xi , y j) inside the closed contour. Then,
in (Fig. 4b), we obtain the lattice polygon by joining those
points such that we obtain the largest area polygon contained

in C , and for the holes, the smallest area polygon containing
H1 and H2. The lattice polygon P shown in Fig. 5.

If A(P) denotes the area of P , A(P0) is the area of P0
(the outer lattice polygon) and A(Hi) is the area of each hole
with 1 ≤ i ≤ h, then:

A(P) = A(P0) −
h∑

i=1

A(Hi)

By Pick’s theorem [29],

A(P) =
(

I + B

2
+ h − 1

)

· L2

where I = I0 −
∑h

i=1
(Ii + Bi) and B = B0 +

∑h

i=1
Bi

are the number interior (ı P) and boundary (∂P) points of

123

6374 R. Molano et al.

Fig. 5 Lattice polygon P with two holes on a regular partition of order
5 × 6 with partition size L

P , I0 and B0 the number interior (ı P0) and boundary (∂P0)
points of P0 and Ii and Bi the number interior (ı Hi) and
boundary (∂Hi) points of each hole Hi , 1 ≤ i ≤ h.

Then we decompose the lattice polygon P with h holes as
follows:

{
P = ∂P ∪ ı P = {p1, p2, . . . , pn+o}
Hi = ∂Hi ∪ ı Hi = {qi1, qi2, . . . , qimi+ri }

where if # represents the cardinality of the set, #(∂P) = n,
#(ı P) = o, #(P) = N = n+o
 λn, λ ∈ N, and #(∂Hi) =
mi , #(ı Hi) = ri , #(Hi) = M = mi + ri
 μmi , μ ∈ N.
Furthermore, let m = max{m1,m2, . . . ,mh}.

Thus, for Fig. 5:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂P = ∂P0 ∪ ∂H1 ∪ ∂H2 = {p1, . . . , p14, p19, . . . , p22, p23, . . . , p26}
ı P = ı P0 − (H1 ∪ H2) = {p15, p16, p17, p18}

∂H1 = {p19, p20, p21, p22} = {q11 , q12 , q13 , q14 }
ı H1 = {q} = {q15 }
∂H2 = {p23, p24, p25, p26} = {q21 , q22 , q23 , q24 }
ı H2 = ∅

We compute themaximum area or perimeter simple k-gon
in a lattice polygon P with h holes and coordinates belonging
to the square grid GL , and we use the following sets:

⎧
⎪⎪⎨

⎪⎪⎩

points = P = {p1, p2, . . . , p26} = P0 − ⋃h
i=1(ı Hi)

polygon = ∂P0 = {p1, p2, . . . , p14}
holes = ∂H1 ∪ ∂H2 = {p19, p20, p21, p22} ∪ {p23, p24, p25, p26}
holes[i] = ∂Hi , 1 ≤ i ≤ 2

The only points that are not considered are those belonging
to ı Hi with 1 ≤ i ≤ h because it is not possible to calculate
a polygon with points from the interior of a hole.

4 Compute of the adjacencymatrix of a
lattice polygon with holes

Given N points of the lattice polygon P with h holes, the
adjacency matrix A = (ai j) is a symmetric square matrix of
order N such that:

ai j =
{
1 if there is an edge between i and j
0 otherwise

Matrix A is required for the aimof the proposed article. For
Fig. 5, the adjacency matrix is of order 26; thus, we develop
a procedure to calculate matrix A using 5 subprograms that
have been presented in pseudocode and defined in three steps:

1. Determine if a point is inside or on a side of polygon or
a hole of holes (Algorithm 1).

2. Determine whether intersection of a segment with poly-
gon or holes is allowed or not allowed (Algorithms 2, 3
and 4).

3. Compute of the adjacency matrix (Algorithm 5).

4.1 Point in polygon (Algorithm 1)

We compute if a given point (p) is inside or on a side of poly-
gon = ∂P0 or a hole of holes =

⋃h
i=1 holes[i] = ⋃h

i=1(∂Hi)

with Algorithm 1.
We traverses all sides of "poly" in sequence (Lines 5–9),

calculating the angle formed by its points and straight lines
connecting them to point p. Adding all the angles, two solu-
tions are possible, 0 and ±2π , which determine the position
of the point in the polygon: 0 if the point is outside, and 2π if
inside (Lines 10–11). In addition, in the path, we can deter-
mine if the point is on one of the sides using the functions
DIRECTION (p,q,r: points), which returns the orientation of
the three points [30], and ALIGNEDp (p,q,r: points), which
tells us if the points are aligned. If the values output by these
functions are 0 and true, respectively, the algorithm is fin-
ished, and point p is on one side of "poly".

The computational cost is determined by Line 5 in
O(n) for polygon and O(m) for holes[i], where m =
max{m1,m2, . . . ,mh}. The functions DIRECTION(p,q,r:
points) and ALIGNEDp(p,q,r: points) are computed in O(1)
time and the function ANGLE(u,v: vectors) is computed in
O(1) time, which calculates the angle formed by the vectors
�u and �v.

123

Obtaining the user-defined polygons inside a closed contour with holes 6375

Algorithm 1: PointIn (points, p, poly)
Input: p: point, poly: polygon or holes[i], 1 ≤ i ≤ h
Output: true if point p is inside or on side of poly and false if

they do not

1 point-in ← false; pol ← ∅
2 for i ← 1 to Length(poly) do
3 Insert(pol, poly[i])

4 Insert(pol, poly[1])
5 for i ← 1 to Length(pol)-1 do
6 point-in ← DIRECTION (points[pol[i]], points[pol[i+1]], p)

= 0 and ALIGNEDp(points[pol[i]], points[pol[i+1]], p) = true
7 if point-in = true then
8 Break

9 sum ← sum + ANGLE (points[poly[i]]-p,
points[poly[i+1]]-p)

10 if Abs(sum) = 2π then
11 point–in ← true

12 return point–in

4.2 Segment-polygon intersection

Wecomputewhen the intersection of a segmentwith polygon
or holes is allowed or not allowed with Algorithm 2 in O(1)
time; Algorithm 3 in O(n) time for polygon and O(m2) time
for holes[i]; and Algorithm 4 in O(n2) time.

4.2.1 Intersection point of segments (Algorithm 2)

Wenowcompute the intersection point of the nonconsecutive
segments l1 and l2 by considering three cases according to
their relative position (Fig. 6).

Let l1 = {l1[1], l1[2]} with l1[1] = (l1[1][1], l1[1][2]) =
(x1, y1) and l1[2] = (l1[2][1], l1[2][2]) = (x2, y2). Then, if
�u1 = (x2 − x1, y2 − y1) is the director vector of the line r
passing through l1, r can be written as follows:

x − x1
x2 − x1

= y − y1
y2 − y1

⇒ (y2 − y1) · (x − x1) = (x2 − x1) · (y − y1)

⇒ (y2 − y1)x + (x1 − x2)y = x1 · y2 − x2 · y1

Therefore, r ≡ Ax + By = C , where:

⎧
⎨

⎩

A = y2 − y1 = l1[2][2] − l1[1][2]
B = x1 − x2 = l1[1][1] − l1[2][1]
C = x1 · y2 − x2 · y1 = l1[1][1] · l1[2][2] − l1[2][1] · l1[1][2]

Doing the same for side l2 = {l2[1], l2[2]} with l2[1] =
(l2[1][1], l2[1][2]) = (x3, y3), l2[2] = (l2[2][1], l2[2][2]) =
(x4, y4) and �u2 = (x4 − x3, y4 − y3) as director vector, then
the line s is of the form s ≡ Dx + Ey = F , where:

⎧
⎨

⎩

D = y4 − y3 = l2[2][2] − l2[1][2]
E = x3 − x4 = l2[1][1] − l2[2][1]
F = x3 · y4 − x4 · y3 = l2[1][1] · l2[2][2] − l2[2][1] · l2[1][2]

To calculate the point of intersection of segments l1 and
l2 the following system of linear equations must be solved:

Ax + By = C
Dx + Ey = F

}

If the straight lines intersect at a point (p), the solution of
the system is:

p = (x, y) =
(
BF − CE

BD − AE
,
AF − CD

AE − BD

)

Considering the cases of the Fig. 6:

• Case 1: l1[1][1] = l1[2][1] ⇒ x1 = x2 ⇒ B = 0 ⇒
p =

(
C

A
,
AF − CD

AE

)

• Case 2: l1[1][2] = l1[2][2] ⇒ y1 = y2 ⇒ A = 0 ⇒
p =

(
BF − CE

BD
,
C

B

)

• Case 3: A, B �= 0 ⇒ p =
(
BF − CE

BD − AE
,
AF − CD

AE − BD

)

Algorithm 2 begins with the assumption that the two
segments intersect (Line 4). In such a case, the segments

Fig. 6 Algorithm 2: relative
position of segments l1 and l2

123

6376 R. Molano et al.

can be secant or coincident. If they are secant (Line 5),
the intersection point p is calculated considering case 1
(Line 10), case 2 (Line 12) or case 3 (Line 14). If they
are coincident (Line 16), infinite intersection points are
obtained and, for example, p = l2[1] is considered to be
the intersection point. The computational cost is determined
by the function INTERSECTION (seg1, seg2: segments)
in O(1) time. This algorithm returns true if the segments
intersect and false if they do not. Except for minor mod-
ifications, this function can be found in Cormen et al.
[30].

Algorithm 2: INTERSECTIONp (l1, l2)
Input: l1, l2: segments
Output: point of intersection of segments l1 and l2

1 u1 ← {l1[2][1] − l1[1][1], l1[2][2] − l1[1][2]]}
// �u1 = (x2 − x1, y2 − y1)

2 u2 ← {l2[2][1] − l2[1][1], l2[2][2] − l2[1][2]]}
// �u2 = (x4 − x3, y4 − y3)

3 paral ← u1[1] · u2[2] = u1[2] · u2[1]
// �u1// �u2 ⇔ (x2 − x1) · (y4 − y3) = (y2 − y1) · (x4 − x3)

4 if INTERSECTION (l1, l2) = true then
5 if paral = false then
6 A ← l1[2][2] − l1[1][2]; B ← l1[1][1] − l1[2][1]
7 C ← l1[1][1] · l1[2][2] − l1[2][1] · l1[1][2]
8 D ← l2[2][2] − l2[1][2]; E ← l2[1][1] − l2[2][1]
9 F ← l2[1][1] · l2[2][2] − l2[2][1] · l2[1][2]

10 if l1[1][1] = l1[2][1] then
11 p ← {C/A, (A · F − C · D)/(A · E)}
12 else if l1[1][2] = l1[2][2] then
13 p ← {(B · F − C · E)/(B · D),C/B}
14 else
15 p ← {(B · F − C · E)/(B · D − A · E), (A · F − C ·

D)/(A · E − B · D)}
16 else
17 p ← l2[1]
18 return p

4.2.2 Segment-side intersection (Algorithm 3)

This algorithm allows us to determine when the intersec-
tion of a segment l and a side s is possible within a polygon
or a hole of holes. This algorithm returns true if the inter-
section is not allowed and false otherwise. It begins by
assuming that the intersection exists (Line 2) in O(1) time
and computes the intersection point by Algorithm 2 (Line
3) in O(1) time. Because there are three relative positions
for the intersection of the segments (Fig. 6) (Lines 4, 6,
8), the algorithm calculates the points m1 and m2, given
an epsilon (Line 1, ε ≈ 0) radio environment. The cal-
culation of m1 and m2 is made from the relative position
of segment l and side s considering Fig. 6 and is as fol-
lows:

Fig. 7 Algorithm 3: segment-side intersection

• Case 1: l1[1][1]=l1[2][1] ⇒
{
m1=(l1[1][1], p[2] − ε)

m2=(l1[1][1], p[2] + ε)

• Case 2: l1[1][2]=l1[2][2] ⇒
{
m1=(p[1] − ε, l1[1][2])
m2=(p[1] + ε, l1[1][2])

• Case 3: Let r ≡ Ax + By = C be the straight line passing
through the segment l. If p = (x, y) and an epsilon radius
environment is made, x±ε, we obtain A(x±ε)+By = C .

Then, y = C − A(x ± ε)

B
and the coordinates of m1 and

m2 are as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m1=
(

p[1] − ε,
C − A(x − ε)

B

)

m2=
(

p[1] + ε,
C − A(x + ε)

B

)

Figure7 shows three intersections, one for each of the
cases presented in Fig. 6, and a new function ALIGNEDpol
(points, p, holes[i]) is used. The algorithm returns true if
point p belongs to one of the sides of holes[i] and can be
computed in O(m) time. In addition, num = {0, 1} does not
allowus todecide if the intersection is forpolygon (num = 0)
or for holes[i] (num = 1). The first intersection, l1 ∩ s1, is
possible for H1 because the points m1 and m2 are outside,
PointIn (points, m1, H1) = false and PointIn (points, m2, H1)
= false (Line 17); the second, l2 ∩ s2, is not possible because
m1 belongs to the interior of H2 and is not a point on side
s2, PointIn (points, m1, H2) = true and ALIGNEDpol (points,
m1, H2) = false (Line 17); and the third, l3 ∩ s3, is also not
possible becausem2 is outside the polygon, PointIn (points,
m2, polygon) = false (Line 14).

The computational cost of Algorithm 3 is determined by
polygon (Line 13, num = 0) in O(n) time by the PointIn

123

Obtaining the user-defined polygons inside a closed contour with holes 6377

function and holes[i] (Line 16, num = 1) in O(m2) time
by the functions PointIn in O(m) time and ALIGNEDpol in
O(m) time.

Algorithm 3: INTERSECTIONpoly (l, s, poly, num)
Input: l: segment, s: side of poly (polygon or holes[i]), num =

{0, 1}
Output: true if the intersection segment l and side s is not

allowed and false if they do

1 int ← false; ε ≈ 0
2 if INTERSECTION (l, s) = true then
3 p = INTERSECTIONp (l, s) // Alg.2
4 if l[1][1] = l[2][1] then
5 m1 ← {l[1][1], p[2] − ε}; m2 ← {l[1][1], p[2] + ε}
6 else if l[1][2] = l[2][2] then
7 m1 ← {p[1] − ε, l[1][2]}; m2 ← {p[1] + ε, l[1][2]}
8 else
9 A ← l[2][2] − l[1][2]; B ← l[1][1] − l[2][1]

10 C ← l[1][1] · l[2][2] − l[2][1] · l[1][2]
11 m1 ← {p[1] − ε, (C − A · (p[1] − ε))/B}
12 m2 ← {p[1] + ε, (C − A · (p[1] + ε))/B}
13 if num = 0 then
14 if PointIn (points, m1, poly) = false or PointIn (points,

m2, poly) = false then
15 int ← true

16 else
17 if (PointIn (points, m1, poly) = true and ALIGNEDpol

(points, m1, poly) = false) or (PointIn (points, m2, poly) =
true and ALIGNEDpol (points, m2, poly) = false) then

18 int ← true

19 return int

4.2.3 Segment-polygon intersection (Algorithm 4)

We compute when the intersection of a segment l with
polygon or holes is possible. This algorithm returns true
if the intersection is not allowed and false otherwise, and
begins by first calculating the polygon sides using the func-
tion SIDESpol (points, poly: polygon or holes[i]) in O(n)

time (Line 2) and then applies Algorithm 3 (Line 4) to
determine if the intersection of segment l with any poly-
gon side is not allowed. If true, the algorithm terminates
and returns true (Line 5). If all intersections are possible
(Line 7) the algorithm compare segment l with all sides of
the holes: holes[1], holes[2], . . . , holes[h] (Lines 9, 13) and
perform the same process as done for polygon. If for some
holes[i], 1 ≤ i ≤ h, the intersection is not allowed, the algo-
rithm terminates, returns true (Line 11) and is not executed
for the following holes: i + 1, . . . , h. In addition, Algorithm
4 allows us to decide if the initial polygon is with holes or
without holes (Line 8); thus, it is possible to calculate the
solution in the same algorithm for each of the two versions.

The computational cost of Algorithm 4 can be solved for
polygon in O(n2) time by loop (Line 3) computed in O(n)

time and Algorithm 3 (Line 4) in O(n) time. If the polygon
has holes (Line 8), the computational cost is O(hm4) because
we must compute a loop (Line 9) in O(h) time; function
SIDESpol (points, poly: polygon or holes[i]) in O(m) time;
loop (Line 13) in O(m) time; and Algorithm 3 (Line 14)
in O(m2) time. Therefore, the final computational cost of
Algorithm 4 is Max(n2, hm4) = n2 if we assume #(P)

n >> m = max{m1,m2, . . . ,mh}. This cost is valid for an
initial polygon with holes or without holes.

Algorithm 4: INTERSECTIONpol (l)
Input: l : segment
Output: true if the intersection of segment l with polygon or

holes is not allowed and false if they do

1 int ← false
2 sides ← SIDESpol (points, polygon)
3 for i ← 1 to Length(sides) do
4 int ← INTERSECTIONpoly (l, sides[i], polygon, 0)

// Alg.3
5 if int = true then
6 Break

7 if int = false then
8 if holes �= ∅ then
9 for i ← 1 to Length(holes) do

10 hol ← SIDESpol (points, holes[i])
11 if int = true then
12 Break

13 for j ← 1 to Length(holes[i]) do
14 int ← INTERSECTIONpoly (l, hol[j], holes[i],

1) // Alg.3
15 if int = true then
16 Break

17 return int

4.3 Computation of the adjacencymatrix (Algorithm
5)

We compute the adjacency matrix for a lattice polygon with
holes or without holes by Algorithm 5 in O(n5) time using
the sets:

⎧
⎨

⎩

points = P = P0 − ⋃h
i=1(ı Hi)

polygon = ∂P0
holes = ⋃h

i=1 holes[i] = ⋃h
i=1(∂Hi)

Algorithm 5 first initializes the adjacency matrix with all
its terms equal to 0 (Line 1). Then, all polygon sides are
calculated (Line 2), and using two loops (Lines 3, 4), all
the points of the set points are traversed with j = i + 1 to

123

6378 R. Molano et al.

form the l sides. If side l belongs to a polygon side (Line 6),
the value 1 is assigned to the matrix for points pi and p j ;
otherwise (Line 8), Algorithm 4 (Line 9) is used to decide if
the intersection of l with polygon or holes is allowed or not.
If the intersection is allowed, themidpoint of the side is taken
(Line 11), and if that point is inside or on a polygon side (Line
12), the adjacency matrix is assigned the value 1. Of all the
intersections that have been considered valid (Line 9) (i.e.,
those in which the intersection of a segment l and any side s
is not allowed), we must remove or assign the matrix value
0 when we find holes such as those shown in Fig. 5. Thus,
if for H1 we consider the segment l formed by the points
{19, 21},matri x[19, 21] = 0 because the midpoint is not on
one of the sides of H1. Similarly, matri x[20, 22] = 0 and
matri x[24, 26] = 0. Finally, the assignmentmatri x[j, i] =
matri x[i, j] (Line 21) is performed because the adjacency
matrix is a symmetric matrix and for the moment, only the
values above the primary diagonal have been calculated, thus
forming an upper triangular matrix.

The computational cost of Algorithm 5 is determined by
Lines 3–13 in O(n5) time by loop (Line 3) computed in
O(n) time, loop (Line 4) in O(n) time, Algorithm 4 (Line
9) in O(n2) time and the PointIn function (Line 12) in O(n)

time. If, in addition, the polygon has holes (Line 14), the
computational cost is O(hm3) by loop (Line 15) computed
in O(h) time, loop (Line 16) in O(m) time, loop (Line
17) in O(m) time and the function ALIGNEDpol in O(m)

time. Therefore, Algorithm 5 can be solved in O(n5) time
for an initial polygon with holes or without holes, because
Max(n5, hm3) = n5.

5 Maximum area or perimeter simple k-gon
in a lattice polygon with holes

Once the adjacencymatrix has been calculated, we obtain the
maximum area or perimeter simple k-gon in a lattice polygon
P with h holes and #(P) = N
 n. We thus follow the next
process in three steps:

1. Determine if a hole is contained within a k-sided polygon
(Algorithm 6).

2. Compute the sides of polygons that are a certain distance
from two points (Algorithm 7).

3. Compute the simple k-gon of amaximum-area or perime-
ter inscribed in a lattice polygon with holes (Algorithm
8).

5.1 Hole contained in a k-sided polygon (Algorithm
6)

Algorithm 6 allows us to determine when a hole H is con-
tained in a k-sided polygon, and returns false if it is not

Algorithm 5: MATRIX (points)
Input: points
Output: adjacency matrix

1 Initialize matrix, matrix[i,j] ← 0
2 sides ← SIDESpol (points, polygon)
3 for i ← 1 to Length(points)-1 do
4 for j ← i + 1 to Length(points) do
5 l ← {points[i], points[j]}
6 if Length(Union(sides, {l})) = Length(sides) then
7 matrix[i,j] ← 1
8 else
9 if INTERSECTIONpol (l) = False // Alg.4

10 then
11 m ← MEDIO (points[i], points[j])
12 if PointIn (points, m, polygon) = true then
13 matrix[i,j] ← 1

14 if holes �= ∅ then
15 for i ← 1 to Length(holes) do
16 for j ← 1 to Length(holes[i])-1 do
17 for k ← j + 1 to Length(holes[i]) do
18 m ← MEDIO (points[holes[i][j]],

points[holes[i][k]])
19 if ALIGNEDpol (points, m, holes[i]) = False then
20 matrix[holes[i][j], holes[i][k]] ← 0

21 Symmetric matrix, matrix[j,i] ← matrix[i,j]
22 return matrix

contained or does not intersect the polygon and true oth-
erwise.

The computational cost of Algorithm 6 can be solved in
O(k2m) time by loop (Line 5) computed in O(m) time,Algo-
rithm 1 (Line 7) in O(k) time and the function ALIGNEDpol
(Line 9) in O(k) time. Figure8 shows two holes: H1 = (19,

Fig. 8 Algorithm 6: hole contained in a k-sided polygon

123

Obtaining the user-defined polygons inside a closed contour with holes 6379

Fig. 9 SEGMENTS (points,
path) and ALIGNED (points,
path) functions

20, 21, 22) and H2 = (23, 24, 25, 26), and two polygons:
A = (15, 20, 12, 19) and B = (5, 6, 25, 8, 16). Algorithm 6
gives the following results: HOLES (points, A, H1) = true
and HOLES (points, B, H2) = true.

Algorithm 6: HOLES (points, polygon, H)
Input: points, polygon, H: hole
Output: false if the hole H is not contained or not intersect the

k-sided polygon and true otherwise

1 int ← false; hole ← ∅
2 for i ← 1 to Length(H) do
3 Insert(hole, H[i])

4 Insert(hole, H[1])
5 for i ← 1 to Length(hole)-1 do
6 m ← MEDIO (points[hole[i]], points[hole[i+1]])
7 if PointIn (points, m, polygon) = true // Alg.1
8 then
9 if ALIGNEDpol (points, m, polygon) = false then

10 int ← true
11 break

12 return int

5.2 Sides (Algorithm 7)

We compute the sides of the polygons that are a certain dis-
tance from point1 to point2 using Algorithm 7. First, the
algorithm begins by considering that the two points are con-
nected (Line 2). Then, three subalgorithms are used: Lines
3–11, Lines 12–15 and Lines 16–24, with computational cost
of O(n3k), O(n2k3) and O(n2k2hm), respectively. There-
fore, Algorithm 7 can be solved in O(n3k) time because

Max(n3k, n2k3, n2k2hm) = n3k if k >> h and k >> m
is assumed. An exhaustive analysis of each of the subalgo-
rithms is as follows:

Subalgorithm 1 (Lines 3–11): Computes all edges from
point1 to point2. First, this subalgorithm computes all the
edges that are at distance 1 from point1 and successively
stores them until the chosen distance is reached. The compu-
tational cost is determined by the loops: Line 3 is computed
in O(k) time because k = distance+1; Line 5 is computed
in O(n2), because the maximum number of edges coincides

with the combinatorial number

(
N

2

)

= N ∗ (N − 1)

2

N 2
 n2; Line 8 is computed in O(n) time, because the adja-
cency matrix is a symmetric square matrix of order N
 n.
Therefore, the computational cost is O(n3k).

Subalgorithm 2 (Lines 12–15): Of all the solutions that
appear in "temp" (Line 11), we keep those where the final
point coincides with point2 (Line 14). In addition, functions
SEGMENTS (points, path) and ALIGNED (points, path) are
used to discard those possible solutions that cannot form a
polygon. The first function determines when two segments
(edges) intersect or not, in O(k2) time, and the second, in
O(k) time, returns 0 if three consecutive points of the path
are aligned and not 0 otherwise. In Fig. 9a we see that no
possible solutions, A = (10, 26, 9, 17) and B = (3, 16, 23,
15) can form a quadrilateral, and in Fig. 9b, we observe that
C = (20, 16, 17, 10, 21) cannot be a pentagon because the
points 10, 21 and 20 are aligned, because the polygon is a
quadrilateral. However, D = (2, 3, 4, 15) is a quadrilateral.
The computational cost is determined by the loop in Line
13 in O(n2) and the above functions, therefore obtaining a
computational cost of O(n2k3) time.

123

6380 R. Molano et al.

Subalgorithm 3 (Lines 16–24): From all of the polygons
obtained in Line 15, we remove those containing one or more
holes. The computational cost is determined by the loops:
Line 17 computed in O(n2) time; Line 19 computed in O(h),
because P is a lattice polygonwith h holes; Line 20 computed
in O(k2m) by Algorithm 6. Thus, the computational cost is
O(n2k2hm).

Algorithm 7: SIDES (point1, point2, distance, matrix)
Input: point1, point2 ∈ points, distance ∈ N, matrix: adjacency

matrix
Output: sides between point1 and point2 for a certain distance

1 temp ← {point1}
2 if matrix(point1, point2) = 1 then
3 for i ← 1 to distance do
4 edges ← ∅
5 for j ← 1 to Length(temp) do
6 last ← temp[j][i]
7 if last �= point2 then
8 for k ← 1 to N do
9 if matrix(last,k) = 1 and

Length(Union(temp[j],k)) �= Length(temp[j])
then

10 Insert(edges, Insert(temp[j],k))

11 temp ← edges

12 edges ← ∅
13 for i ← 1 to Length(temp) do
14 if temp[i][distance + 1] = point2 and SEGMENTS

(points, temp[i]) = false and ALIGNED (points, temp[i])
�= 0 then

15 Insert(edges, temp[i])

16 sides ← ∅
17 for i ← 1 to Length(edges) do
18 h ← 0
19 for j ← 1 to Length(holes) do
20 if HOLES (points, edges[i], holes[j]) = false

// Alg.6
21 then
22 h ← h+1

23 if h = Length(holes) then
24 Insert(sides, edges[i])

25 return sides

5.3 Solutions (Algorithm 8)

We compute the maximum-area or perimeter simple k-gon
contained in a lattice polygon P with h holes and with coor-
dinates belonging to the square grid GL by Algorithm 8.
First, the algorithm computes all simple k-gons (Lines 1–6)
by Algorithm 7 in O(n5k) time by the loops in Lines 2–
3 computed in O(n2) time and the function SIDES (point1,
point2, distance, matrix) in O(n3k) time. Then, the functions

UPDATE (polygons, function) andDUPLICATES (polygons)
are computed in O(n2k) and O(n4k log k) time, respec-
tively [28]. The first function calculates the largest area or
perimeter polygon depending on the value of the "function"
parameter (0 for the largest area and 1 for the perimeter),
and the second function eliminates repeated solutions. For
example, if we take one of the solutions of the simple 5-
gon, (4, 18, 10, 12, 21) in Fig. 5, there are 2k solutions
with the same area and perimeter for each k-gon. Thus,
the function DUPLICATES(polygons) chooses a represen-
tative of the above solutions. Therefore, Algorithm 8 can be
solved in O(n5k) time, becauseMax(n5k, n2k, n4k log k) =
n5k.

Fig. 10 Example 1: maximum-area and perimeter simple k-gon

Fig. 11 Example 2: maximum-area and perimeter simple k-gon

123

Obtaining the user-defined polygons inside a closed contour with holes 6381

Fig. 12 Example 3:
maximum-area simple k-gon

Fig. 13 Example 4:
maximum-area simple k-gon

Algorithm 8: POLYGONS (N, distance, matrix, func-
tion)
Input: N: number of points of P , distance ∈ N, matrix:

adjacency matrix, function = {0, 1}
Output: simple k-gons contained in P with h holes

1 polygons ← ∅; sides ← ∅
2 for i ← 1 to N-1 do
3 for j ← i + 1 to N do
4 if SIDES (i , j , distance, matrix) �= ∅ // Alg.7
5 then
6 Insert(sides, SIDES (i , j , distance, matrix))

7 polygons ← DUPLICATES (UPDATE (sides, function))
8 return polygons

5.4 Our experimental results

Using Algorithm 8, proven it is possible to compute the
maximum-area or maximum-perimeter simple k-gon con-
tained in a lattice polygon with holes.We now consider some
solutions inFig. 5 (Fig. 10)with computation time in seconds.

In addition,we consider three newexamples (Figs. 11, 12, 13)
to demonstrate how Algorithm 8 can be applied to random
polygons and Tables 2, 3, 4 and 5, where the solutions of the
simple k-gons of maximum-area or perimeter are presented.

• Figure10. N = #(points) = 26, k = distance +1, func-
tion = {0,1}.

• Figure 11. N = #(points) = 29, k = distance +1, func-
tion = {0,1}.

• Figure12. N = #(points) = 47, k = distance +1, func-
tion = {0,1}.

• Figure13. N = #(points) = 64, k = distance +1, func-
tion = {0,1}.

Finally, Figure14 geometrically shows some solutions for
the maximum area of a simple 9-gon for Example 3 and
Example 4.

123

6382 R. Molano et al.

Table 2 Solutions example 1:
maximum-area and perimeter
simple k-gon

Dist. k-gon POLYGONS (26, distance, matrix, 0), area Time

2 Triangle (3,10,9) 0,01

3 Quadrilat. (3,10,9,4) 0,54

Rectangle (10,20,23,18) 0,67

4 Pentagon (1,20,10,9,3), (1,20,10,9,4), (2,20,10,9,4), (3,23,26,9,10) 1,23

5 Hexagon (1,20,10,9,4,2), (1,20,10,9,4,3), (2,19,20,10,9,4) 4,76

6 Heptagon (1,19,20,10,9,4,2), (1,20,10,9,4,3,2), (1,13,19,20,10,9,3) 34,67

(1,19,20,10,9,4,3), (1,20,10,9,26,23,3), (1,13,19,20,10,9,4)

(1,20,10,18,23,7,5), (2,19,20,10,9,4,3), (2,13,19,20,10,9,4)

(2,14,19,20,10,9,4), (2,13,7,25,22,19,6), (2,20,10,18,23,7,6)

7 Octagon (1,13,7,25,22,19,6,2), (1,13,19,20,10,9,4,2) 210,45

(1,20,10,18,23,7,6,2), (1,13,19,20,10,9,4,3)

(1,20,10,9,26,23,7,5), (2,19,20,10,18,23,7,6)

(2,20,10,9,26,23,7,6)

8 Nonagon (1,20,10,9,26,23,7,6,2), (2,19,20,10,9,26,23,7,6) 1.820,34

Dist. k-gon POLYGONS (26, distance, matrix, 1), perimeter Time

2 Triangle (3,10,9) 0,01

3 Quadrilat. (3,18,22,9) 0,45

4 Pentagon (3,18,4,9,10) 1,12

5 Hexagon (2,13,7,22,19,6) 5,01

6 Heptagon (2,26,23,25,13,7,6) 32,67

7 Octagon (2,13,7,22,19,23,15,6) 207,19

8 Nonagon (2,22,17,3,18,4,9,12,13) 1.914,56

6 Approximation for themaximum area or
perimeter simple k-gon in a closed contour
with holes

Let C be a closed contour with h holes, H1, H2, . . . , Hh and
C0 the outer contour toC .Moreover, let R the rectangle of the
minimum area that encloses the closed contour C0 [31] and
� be a regular partition of R with partition size L . We define
lower area A(C0,�) as the largest area lattice polygon P0
contained in C0 and upper area A(Hj ,�) as the smallest
area lattice polygon Q j containing each Hj , 1 ≤ j ≤ h and
both built by points of GL . By Pick’s theorem [29],

A(C0,�) =
(

#(ı P0) + #(∂P0)

2
− 1

)

· L2

A(Hj ,�) =
(

#(ı Hj) + #(∂Hj)

2
− 1

)

· L2

Theorem 6.1 Let C be a closed contour with h holes,
H1, H2, . . . , Hh and C0 the outer contour to C. Then,
there exists a sequence of regular partitions {�n}n∈N with
�i 	 �i+1 for all i such that limn→∞(A(C0,�n) −
∑h

j=1 A(Hj ,�n)) = A(C), where A(C) is the area of the
closed contour C.

Proof We consider a regular partition �̇ as finer than �.
Then, A(C0,�) ≤ A(C0, �̇) and A(Hj ,�) ≥ A(Hj , �̇)

with 1 ≤ j ≤ h. Therefore, A(C0,�) − ∑h
j=1 A(Hj ,�) ≤

A(C0, �̇)−∑h
j=1 A(Hj , �̇). Then, exists a sequence of reg-

ular partitions {�n}n∈N with �i 	 �i+1 for all i such that
limn→∞(A(C0,�n) − ∑h

j=1 A(Hj ,�n)) = A(C). ��

In general, Fig. 15 shows how to obtain the area of the
closed contour C with h holes from the outer contour C0

and the holes Hj , by the inscribed limit area within the lat-
tice polygon P with h holes, constructing finer partitions
with Li+1 = Li/2 if �i 	 �i+1 for all i . Moreover, if
by Algorithm 8 we prove that it is possible to compute the
maximum-area or perimeter simple k-gon contained in a lat-
tice polygon P with h holes, with Theorem 6.1 we achieve
the goal of the paper, the simple k-gon contained in P is also
the maximum in area or perimeter withinC . In particular, we
show three partitions for the same closed contourC with two
holes, with partition sizes: L1 = 4, L2 = 2, L3 = 1, num-
ber of points: 26, 112, 450 and adjacency matrix: A, Ȧ, Ä,
respectively, and compute the maximum area simple 4-gon:
POLYGONS (26,3,A,0) (Fig. 10), POLYGONS (112,3, Ȧ,0)
and POLYGONS (450,3, Ä,0). As the results show, the area
of the simple 4-gon is larger if the partition is thinner each
time.

123

Obtaining the user-defined polygons inside a closed contour with holes 6383

Table 3 Solutions example 2:
maximum-area and perimeter
simple k-gon

Distance k-gon POLYGONS (29, distance, matrix, 0), area

2 Triangle (1,11,3)

3 Quadrilateral (1,11,18,2), (1,13,25,3), (1,11,18,4), (1,15,18,11)

(2,12,11,3), (2,18,21,12), (7,13,25,8), (8,25,20,19)

Rectangle (1,14,15,3), (5,26,27,24)

4 Pentagon (1,11,10,25,3), (1,11,18,4,3)

5 Hexagon (1,25,8,7,21,2), (1,11,18,19,4,3), (1,25,8,7,21,18)

(2,21,7,8,25,12), (2,21,7,25,10,12), (2,21,8,25,10,12)

6 Heptagon (1,11,18,19,9,4,3), (2,21,7,8,25,10,12)

7 Octagon (1,11,10,25,8,7,21,2), (1,25,8,7,21,18,4,3)

(1,18,21,7,8,25,10,11), (2,21,20,19,8,25,10,12)

8 Nonagon (1,11,10,25,8,19,20,21,2), (1,11,10,25,7,21,18,4,3)

(1,11,10,25,8,7,21,18,3), (1,11,10,25,8,21,18,4,3)

(1,11,25,8,7,21,18,4,3), (1,25,8,19,20,21,18,4,3)

(1,18,21,20,19,8,25,10,11)

Distance k-gon POLYGONS (29, distance, matrix, 1), perimeter

2 Triangle (1,11,3)

3 Quadrilateral (2,25,7,21)

4 Pentagon (2,21,7,25,11)

5 Hexagon (2,21,7,25,10,12)

6 Heptagon (3,25,28,27,6,10,12)

7 Octagon (1,11,14,25,7,21,18,4)

8 Nonagon (3,25,28,27,4,5,6,10,12)

Table 4 Solutions example 3:
maximum-area simple k-gon

Distance k-gon POLYGONS (47, distance, matrix, 0), area

2 Triangle (5,33,8)

3 Quadrilateral (1,43,6,4)

Rectangle (3,41,43,37), (19,38,40,21), (37,44,47,38)

4 Pentagon (2,25,24,37,13), (2,38,41,15,13)

5 Hexagon (1,24,37,43,6,4)

6 Heptagon (1,25,24,37,43,6,4), (2,25,24,37,43,6,4)

(2,25,24,37,41,15,13), (3,25,24,37,43,6,4)

7 Octagon (2,25,24,37,43,41,15,13)

8 Nonagon (1,25,24,37,43,41,15,13,2), (2,25,21,17,40,37,41,15,13)

(2,25,23,40,37,43,41,15,13), (2,25,24,37,43,41,15,14,13)

If we were interested in computing the rectangle with
the largest area by only slightly modifying the algorithms,
we could obtain the images shown in Fig. 16. We have
taken the same partition sizes, number of points and adja-
cency matrices as in Fig. 15 and renamed the Algorithm 8,
POLYGONS-RECT, which computes the rectangle of the
maximum area.

The algorithm always provides a solution inside the orig-
inal contour, being closer to the original contour as the order
of the adjacency matrix increases. Figures 15 and 16 show

this idea, in (a), the order of the adjacency matrix is 26, in
(b) it is 112 and in (c) it is 450.

7 Source code

To perform the experiments in this paper, including a practi-
cal application, and to verify the efficiency of the algorithm
that has been generated, the source code, has been developed
from pseudocode into Java and Python. This source code is

123

6384 R. Molano et al.

Table 5 Solutions example 4:
maximum-area simple k-gon

Distance k-gon POLYGONS (64, distance, matrix, 0), area

2 Triangle (2,49,24), (3,6,5), (4,59,5)

3 Quadrilateral (2,27,26,24), (3,6,5,4), (8,13,11,10), (8,13,12,10)

Rectangle (3,35,49,25), (8,37,38,10), (9,55,41,11)

4 Pentagon (10,55,56,19,18), (10,55,56,44,18)

5 Hexagon (10,55,48,20,19,18)

6 Heptagon (3,52,53,35,49,21,5), (4,52,53,35,49,21,5)

(8,55,48,20,19,18,10), (9,56,19,18,61,13,11)

(9,56,44,18,61,13,11), (10,55,56,19,18,61,12)

(10,55,56,44,18,61,12), (10,55,56,57,20,19,18)

(10,62,61,18,19,56,55), (10,62,61,18,44,56,55)

7 Octagon (4,59,55,18,10,8,6,5)

8 Nonagon (3,20,19,18,10,55,56,44,5), (4,59,55,56,18,10,8,6,5)

Fig. 14 Maximum area simple
9-gon

123

Obtaining the user-defined polygons inside a closed contour with holes 6385

Fig. 15 Maximum area simple 4-gon with different partition sizes

Fig. 16 Maximum area rectangle with different partition sizes

available on GitHub [28] so that any researcher can adapt
and configure it to their desired programming language.

8 Conclusions

This paper investigates the problem of finding the simple k-
gon with maximum area or perimeter contained in a region
of interest with holes. Regions of interest can be irregular
and may have inaccessible areas called holes. We developed
an algorithm to address these regions of interest that might
have been discarded if this algorithm were not available. To
compute solutions, the user decides what type of polygon
is required (triangle, quadrilateral, pentagon, hexagon, etc.),
and the required solution: maximum area or perimeter. The
polyvalence of the algorithm is evident, and the user is the one
who decides what to calculate. All pseudocode is explained,
defined in 8 subprograms, and tested in a practical appli-

cation. Finally, the source code was developed in Java and
Python and has been made available in a public repository
on GitHub.

Data availability Data sharing not applicable to this article as no
datasets were generated or analysed during the current study. Source
code is available at [28].

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

References

1. Girard, N., Smirnov, D., Solomon, J., Tarabalka, Y.: Polygonal
building extraction by frame field learning. In: 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),

123

6386 R. Molano et al.

pp. 5887–5896. https://doi.org/10.1109/CVPR46437.2021.00583
(2021)

2. Xu, Z., Liu, Y., Gan, L., Hu, X., Sun, Y., Liu, M., Wang, L.:
csboundary: city-scale road-boundary detection in aerial images
for high-definition maps. IEEE Robot. Autom. Lett. 7(2), 5063–
5070 (2022). https://doi.org/10.1109/LRA.2022.3154052

3. Bast, H., Hert, S.: The area partitioning problem. https://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.29.7473 (2000)

4. Wei, Q., Sun, J., Tan, X., Yao, X., Ren, Y.: The simple grid poly-
gon exploration problem. J. Comb. Optim. 41(3), 625–639 (2021).
https://doi.org/10.1007/s10878-021-00705-5

5. Ali, H., Faisal, S., Chen, K., Rada, L.: Image-selective segmen-
tation model for multi-regions within the object of interest with
application to medical disease. Vis. Comput. 37(5), 939–955
(2021). https://doi.org/10.1007/s00371-020-01845-1

6. Qasmieh, I.A., Alquran, H., Alqudah, A.M.: Occluded iris clas-
sification and segmentation using self-customized artificial intel-
ligence models and iterative randomized hough transform. Int. J.
Electr. Comput. Eng. 11(5), 4037 (2021). https://doi.org/10.1049/
iet-ipr.2017.0509

7. Gibert, G., D’Alessandro, D., Lance, F.: Face detection method
based on photoplethysmography. In: 2013 10th IEEE International
Conference onAdvancedVideo and Signal Based Surveillance, pp.
449–453. https://doi.org/10.1109/AVSS.2013.6636681 (2013)

8. Oksanen, T.: Shape-describing indices for agricultural field plots
and their relationship to operational efficiency. Comput. Electron.
Agric. 98(1), 252–259 (2013). https://doi.org/10.1016/j.compag.
2013.08.014

9. Anderson, S.L., Murray, S.C.: R/uastools: plotshpcreate: create
multi-polygon shapefiles for extraction of research plot scale agri-
culture remote sensing data. Front. Plant Sci. 11, 511768 (2020).
https://doi.org/10.3389/fpls.2020.511768

10. Ministry of Farming, Fishing and Food of Spain. https://www.
mapa.gob.es/es/cartografia-y-sig (2023)

11. Visor SigPac v4.8. https://sigpac.mapa.gob.es/fega/visor (2023)
12. Lee, S., Eom, T., Ahn, H.-K.: Largest triangles in a polygon. Com-

put. Geom. 98, 101792 (2021). https://doi.org/10.1016/j.comgeo.
2021.101792

13. Kallus,Y.:A linear-time algorithm for themaximum-area inscribed
triangle in a convex polygon. arXiv:1706.03049 (2017)

14. Melissaratos, E.A., Souvaine, D.L.: Shortest paths help solve geo-
metric optimization problems in planar regions. SIAM J. Comput.
21(4), 601–638 (1992). https://doi.org/10.1137/0221038

15. Alt, H., Hsu, D., Snoeyink, J.: Computing the largest inscribed
isothetic rectangle. In: CCCG, pp. 67–72. https://www.cs.ubc.ca/
sites/default/files/tr/1994/TR-94-28_0.pdf (1995)

16. Boland, R.P., Urrutia, J.: Finding the largest axis-aligned rectangle
in a polygon in... In: Proceedings of the 13th the Canadian Con-
ference on Computational Geometry. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.20.7210 (2001)

17. Daniels, K., Milenkovic, V., Roth, D.: Finding the largest area axis-
parallel rectangle in a polygon. Comput. Geom. 7(1–2), 125–148
(1997). https://doi.org/10.1016/0925-7721(95)00041-0

18. Knauer, C., Schlipf, L., Schmidt, J.M., Tiwary, H.R.: Largest
inscribed rectangles in convex polygons. J. Discrete Algorithms
13, 78–85 (2012). https://doi.org/10.1016/j.jda.2012.01.002

19. Molano, R., Rodríguez, P.G., Caro, A., Durán, M.L.: Finding the
largest area rectangle of arbitrary orientation in a closed contour.
Appl. Math. Comput. 218(19), 9866–9874 (2012). https://doi.org/
10.1016/j.amc.2012.03.063

20. Choi, Y., Lee, S., Ahn, H.-K.: Maximum-area and maximum-
perimeter rectangles in polygons. Comput. Geom. 94, 101710
(2021). https://doi.org/10.1016/j.comgeo.2020.101710

21. Jin, K.: Maximal parallelograms in convex polygons.
arXiv:1512.03897 376. https://iiis.tsinghua.edu.cn/uploadfile/
2015/0605/20150605101629915.pdf (2015)

22. Molano, R., Caballero, D., Rodríguez, P.G., Ávila, M.D.M.,
Torres, J.P., Durán, M.L., Sancho, J.C., Caro, A.: Finding the
largest volume parallelepipedon of arbitrary orientation in a solid.
IEEE Access 9, 103600–103609 (2021). https://doi.org/10.1109/
ACCESS.2021.3098234

23. Keikha, V.: Linear-time algorithms for largest inscribed quadrilat-
eral. https://invenio.nusl.cz/record/432419 (2020)

24. Rote, G.: The largest quadrilateral in a convex polygon.
arXiv:1905.11203 381. arXiv:1905.11203v2 (2019)

25. Goodman, J.E.: On the largest convex polygon contained in a non-
convex n-gon, or how to peel a potato. Geom. Dedicata. 11(1),
99–106 (1981). https://doi.org/10.1007/BF00183192

26. Chang, J.-S., Yap, C.-K.: A polynomial solution for the potato-
peeling problem. Discrete Comput. Geom. 1(2), 155–182 (1986).
https://doi.org/10.1007/BF02187692

27. Cabello, S., Cibulka, J., Kyncl, J., Saumell, M., Valtr, P.: Peel-
ing potatoes near-optimally in near-linear time. SIAM J. Comput.
46(5), 1574–1602 (2017). https://doi.org/10.1137/16M1079695

28. Media Engineering Group (GIM): Source code, Scripts,
and Documentation. https://github.com/UniversidadExtremadura/
user-defined-polygons-inside-a-contour. Accessed 2023/02/20
(2023)

29. Varberg, D.E.: Pick’s theorem revisited. Am. Math. Mon.
92(8), 584–587 (1985). https://doi.org/10.1080/00029890.1985.
11971689

30. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to algorithms, third. New York (2009)

31. Freeman, H., Shapira, R.: Determining theminimum-area encasing
rectangle for an arbitrary closed curve. Commun.ACM 18(7), 409–
413 (1975). https://doi.org/10.1145/360881.360919

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

R. Molano received the B.Sc.
degree in mathematics, in 1998,
and the B.Sc. degree in computer
science, in 2009. He is currently
pursuing the Ph.D. degree with
the Department of Mathematics,
University of Extremadura. He has
been an Assistant Professor with
the Department of Mathematics,
University of Extremadura, since
2008. His research interests include
the development of statistical anal-
ysis in the field of pattern recogni-
tion and image analysis.

123

https://doi.org/10.1109/CVPR46437.2021.00583
https://doi.org/10.1109/LRA.2022.3154052
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.7473
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.7473
https://doi.org/10.1007/s10878-021-00705-5
https://doi.org/10.1007/s00371-020-01845-1
https://doi.org/10.1049/iet-ipr.2017.0509
https://doi.org/10.1049/iet-ipr.2017.0509
https://doi.org/10.1109/AVSS.2013.6636681
https://doi.org/10.1016/j.compag.2013.08.014
https://doi.org/10.1016/j.compag.2013.08.014
https://doi.org/10.3389/fpls.2020.511768
https://www.mapa.gob.es/es/cartografia-y-sig
https://www.mapa.gob.es/es/cartografia-y-sig
https://sigpac.mapa.gob.es/fega/visor
https://doi.org/10.1016/j.comgeo.2021.101792
https://doi.org/10.1016/j.comgeo.2021.101792
http://arxiv.org/abs/1706.03049
https://doi.org/10.1137/0221038
https://www.cs.ubc.ca/sites/default/files/tr/1994/TR-94-28_0.pdf
https://www.cs.ubc.ca/sites/default/files/tr/1994/TR-94-28_0.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.7210
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.7210
https://doi.org/10.1016/0925-7721(95)00041-0
https://doi.org/10.1016/j.jda.2012.01.002
https://doi.org/10.1016/j.amc.2012.03.063
https://doi.org/10.1016/j.amc.2012.03.063
https://doi.org/10.1016/j.comgeo.2020.101710
http://arxiv.org/abs/1512.03897
https://iiis.tsinghua.edu.cn/uploadfile/2015/0605/20150605101629915.pdf
https://iiis.tsinghua.edu.cn/uploadfile/2015/0605/20150605101629915.pdf
https://doi.org/10.1109/ACCESS.2021.3098234
https://doi.org/10.1109/ACCESS.2021.3098234
https://invenio.nusl.cz/record/432419
http://arxiv.org/abs/1905.11203
http://arxiv.org/abs/1905.11203
https://doi.org/10.1007/BF00183192
https://doi.org/10.1007/BF02187692
https://doi.org/10.1137/16M1079695
https://github.com/UniversidadExtremadura/user-defined-polygons-inside-a-contour
https://github.com/UniversidadExtremadura/user-defined-polygons-inside-a-contour
https://doi.org/10.1080/00029890.1985.11971689
https://doi.org/10.1080/00029890.1985.11971689
https://doi.org/10.1145/360881.360919

Obtaining the user-defined polygons inside a closed contour with holes 6387

J. C. Sancho received the M.Sc.
and Ph.D. degrees in computer
science from the University of
Extremadura, Spain, in 2014 and
2021, respectively. He has been
an Assistant Professor with the
Department of Computer and
Telematics Systems Engineering,
University of Extremadura, since
2018. He is the coauthor of sev-
eral research SCI journal articles.
His research interest includes audit,
and security software development.

M. M. Ávila received the B.Sc.
and M.Sc. degrees in computer
science from the University of
Extremadura, in 1997 and 1999,
respectively, and the Ph.D. degree
in computer science, in 2018. She
has been an Assistant Professor
with the Department of Computer
and Telematics Systems Engineer-
ing, University of Extremadura,
since 2002. She has participated
in several research projects, being
the coauthor of several SCI jour-
nal articles. Her research interests
include pattern recognition, data

mining and machine learning, information retrieval, and cybersecurity.

P. G. Rodríguez received the
Doctor (Ph.D.) degree in com-
puter science, in 2000. He belongs
to the Research Group of Media
Engineering (GIM) in the area
of Computer Languages and Sys-
tems in the University of
Extremadura (Spain). He was the
Director of the School of Tech-
nology (Escuela Politécnica) in
Cáceres. His teaching is mainly
centered on subjects of Program-
ming and Databases. His research
interests include the Internet of
Things (IoT), bigdata and pattern

recognition, and image analysis.

A. Caro received the B.Sc.,
M.Sc., and Ph.D. degrees in com-
puter science from the University
of Extremadura, Spain, in 1993,
1998, and 2006, respectively. He
has been an Associate Professor
with the Department of Computer
and Telematics Systems Engineer-
ing, University of Extremadura,
since 1999. He is currently the
Laboratory Head of the Media
Engineering Group. He has par-
ticipated in the management of
both national and international
research and development projects

and private financing. He is the coauthor of numerous research SCI
journal articles and book chapters. His research interests include
cybersecurity, big data, machine learning, and pattern recognition.

123

	Obtaining the user-defined polygons inside a closed contour with holes
	Abstract
	1 Introduction
	1.1 Practical applications

	2 Related works
	3 Preliminary
	4 Compute of the adjacency matrix of a lattice polygon with holes
	4.1 Point in polygon (Algorithm 1)
	4.2 Segment-polygon intersection
	4.2.1 Intersection point of segments (Algorithm 2)
	4.2.2 Segment-side intersection (Algorithm 3)
	4.2.3 Segment-polygon intersection (Algorithm 4)

	4.3 Computation of the adjacency matrix (Algorithm 5)

	5 Maximum area or perimeter simple k-gon in a lattice polygon with holes
	5.1 Hole contained in a k-sided polygon (Algorithm 6)
	5.2 Sides (Algorithm 7)
	5.3 Solutions (Algorithm 8)
	5.4 Our experimental results

	6 Approximation for the maximum area or perimeter simple k-gon in a closed contour with holes
	7 Source code
	8 Conclusions
	References

