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Abstract
To improve the low accuracy problem of existing point cloud registration algorithms attributed to deficient point cloud
geometric features, we proposed a new point cloud registration network inspired by dynamic feature extraction and the
graph attention mechanism. The model uses the dynamic graph edge convolution neural network to characterize the multi-
level semantics of the point cloud at first, then uses a feature fusion module based on attention mechanism to fuse the
representation information, and finally uses the singular value decomposition (SVD) method to generate the transformation
matrix. The experimental verification was carried out on theModelNet40, ShapeNet Part datasets, and the local industrial part
dataset. Experiment results show that our model gets competitive registration performance compared with other advanced
models on three datasets. When tested on the untrained data class and the noisy circumstances, our model gets lower average
registration errors than compared models. It shows that our framework has not only the characteristics of high registration
accuracy and generalization ability but also strong robustness.

Keywords Point cloud registration ·Dynamic feature extraction ·Edge convolution ·Graph attention network ·Offset-attention

1 Introduction

Due to the application and popularization of high-precision
3D sensors in recent years, the point cloud data have become
indispensable and widely used in numerous engineering
practices and research. Especially deep learning has shown
amazing excellent capabilities in many fields including but
not limited to computer vision [1, 2], medical image analysis
[3], and unsupervised learning [4]. Therefore, researchers
began to focus on using various deep learning methods to
solve the problemof point cloud in 3Dobject detection [5–8],
quality monitoring [9], path planning of robots [10], point
cloud registration [11], and other aspects.

In the field of point cloud registration that we focus on,
the impact of surroundings, equipment, or angle of sampling
caused the generated point cloud data are various even from
the same scene, so how to register two-point clouds quickly
and accurately has become complex and important research.
The point cloud registration (PCR) is to estimate themapping
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between the source point cloud X and the target point cloud
Y , including translation, rotation, stretch, affine, transmis-
sion, polynomial, and other transformed forms. We studied
here mainly for translation and rotation problems in rigid
registration from the same-source point clouds. Currently,
there are two implementations of point cloud registration
[12]: optimization-based methods and depth-based methods.

The optimization-based method is a process of gradually
optimizing registration accuracy by iterating correspondence
searching and transformation estimation adoptingmathemat-
ical theory. Correspondence searching is a process to find
the corresponding relation, and transformation estimation
uses the corresponding relation to calculate the transfor-
mation matrix. These methods are mainly represented by
iterative closest point (ICP) [13], normal distributions trans-
form (NDT) [14], and 4-points congruent sets (4PCS) [15]. In
addition, there are somemethods designedwith artificial cod-
ing features to improve the correspondence searching, such
as point feature histograms (PFH) [16], fast point feature
histograms (FPFH) [17], SHOT [18], the spin image pro-
posed by Johnson [19], the 3D and harmonic shape contexts
proposed by Frome [20], etc. They all implemented shape
descriptors in various ways and made better improvements
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in robustness. However, most of the optimization-based reg-
istration doesn’t perform satisfactorily facing the effects of
noise, outliers, and low overlap, which cannot be avoided
when sampling a point cloud. Not only that, but sensitivity
to the initial position of the point cloud is also one of their
disadvantages [12].

In addition to the optimization-based method, another
method widely studied by scholars is the depth-based reg-
istration method. Due to the excellent intelligence, wide
coverage and data-driven advantages of deep neural net-
works, suchmethods provide better accuracy, robustness, and
generalization for point cloud registration tasks. According
to the different functions and outputs of the neural network,
two registration methods in depth-based methods have been
divided [12]: end-to-end learning-based and feature learning-
based registration methods.

The end-to-end learning-based registration methods esti-
mate themapping directly through an end-to-end framework,
whose input is two-point clouds and the output is a trans-
formation matrix. That is, the transformation estimation is
embedded into the neural network optimization. It integrates
feature extraction, correspondence, and transformation. One
idea of end-to-end learning-based methods is to treat regis-
tration as a regression problem and fit it into a regression
model for the transformation matrix estimation [21–23].
Besides, some methods combine conventional registration-
related optimization theories with deep neural networks,
like the maximum likelihood estimate (MLE) and Gaus-
sian mixture model utilized in DeepGMR [24], and the
minkowski proposed in DGR [25]. In addition, focus on the
feature extraction provides feasible schemes, like rotation-
invariant (RI) in DWC [26], two shape tensors proposed in
PR-Net (Wang L et al. [27]), and two-point clouds align-
ment algorithms in PCRNet [28]. Generally, the end-to-end
learning-based registration methods could leverage both the
merits of mathematical theories and deep neural networks,
also its neural network could be designed and optimized for
registration tasks specifically. But an end-to-end framework
is a black box that includes correspondence searching and
transformation estimation, causing the network model to be
sensitive to different environmental data [12].

The feature learning-based registration methods use deep
neural networks for feature extraction and estimate accurate
correspondences before optimization, and then, using a one-
step optimization, like Singular Value Decomposition (SVD)
algorithm, to determine the final transformation matrix.
It provides robust and accurate correspondence searching
because of the deep learning-based point feature, and the one-
step estimation leads to more accurate registration results
through accurate correspondences. And recent research has
made some improvements. To solve the low correspondence
between point clouds caused by insufficient semantic infor-
mation, which further affects the registration effect, the

existing methods hope to obtain as many feature maps as
possible from multiple dimensions, to improve the ability
of the network to complete the determination of correspon-
dence. The deep closest point (DCP) proposed byWang et al.
[29] estimates correspondences with depth features based on
dynamically updating the graph structure [30] between lay-
ers combined with an attention module while maintaining
the permutation of points, and it uses SVD computational
transformation finally for the registration, which performs
robustness to noise. Wang and Sun et al. propose the PRNet
[31] to improve theDCPmodel,which utilizes global pooling
to aggregate point-by-point features to obtain global features,
then predicts annealing parameters through a subnetwork to
control the sharpening degree of matching. RPM-Net [32]
used the differentiable Sinkhorn layer and annealing algo-
rithm to obtain the matching relation between point pairs by
learning and integrating spatial features and local geometric
information. Furthermore, IDAM [33] proposed an iterative
distance-aware similaritymatrix convolution network,which
can be easily integrated with traditional features (such as
FPFH [17]) or learning-based features to achieve registra-
tion. When the high-dimensional semantic information of
each point is of the same importance in the point cloud, the
network cannot accurately distinguishwhether there are irrel-
evant points such as noise, so the network cannot show better
performance in complex point cloud registration tasks.Many
existing approaches try to overcome this problem by using
attention mechanisms, but we find that the performance of
attentionmechanisms is spottywhenprocessing featuremaps
obtained in different ways and dimensions.

To address the problem of feature richness and change
the influence factor of feature vectors, a dynamic learning
framework integrating the attention mechanism is proposed
in this paper inspired by the ideas of dynamic feature fusion
and attention mechanism. In our framework, the features of a
point cloud could be extracted and fused dynamically by the
multi-layer of EdgeConv in series. This method can effec-
tively extract features from multiple dimensions to enrich
semantic information. And we import a variant attention
module of self-attention to measure the importance of fea-
ture maps; it integrates contextual information and enhances
the features’ representation. Our framework has been tested
on ShapeNet Part and ModelNet40 datasets extensively and
compared with other advanced networks. The experimen-
tal results prove that our framework takes advantage of
robustness and generalization, and it has higher registration
accuracy.

This paper extends a preliminary version of this work
presented at the 2022 2nd International Conference on Con-
sumer Electronics and Computer Engineering (ICCECE).
Compared with the conference version, this paper provides
some new additions. First of all, more theoretical additions
about the edge convolution and offset-attention module are
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Fig. 1 The framework structure of this paper’s network

provided. It is convenient for readers to understand and
reproduce the ideas in this paper by means of mathematical
modeling. Secondly, new contrast and ablation experiments
are shown to fairly and objectively demonstrate the excellent
results achieved by our framework. In addition, an analysis
of the effect of our implementation on field regularity and
runtime is added in this paper.

2 Method

The registration process of our framework is mainly divided
into three parts: feature extraction, integration, and registra-
tion (as shown in Fig. 1). The source point cloud and the
target point cloud are fed into the same feature extraction
network, respectively, to embed them to high-dimensional,
then rescreen the feature matrixes and obtain the correlation
information between them using the attention module [34],
and finally estimate transformation matrixes using SVD.

2.1 Feature extraction

When there is a large distribution difference between the
unknown scene and the training data, the registration per-
formance will drop sharply, which limits the generalization
ability of the network [35]. We found that the accuracy of the
corresponding relation and generalization can be effectively
improved by fusing the global and local spatial features of
point clouds. This cannot only be evidenced by the afore-
mentioned DCP and RPM-Net, but also by Dynamic Graph
CNN (DGCNN) [30]. DGCNN proposes to construct the
K-nearest neighbor graph of points and uses the edge convo-
lution (EdgeConv) module to capture the edges connecting
pairs of points.

At the extraction stage, the point cloud data are embedded
in a high-dimensional space and transforms local features
and global features using multiple stacked EdgeConv mod-
ules [30]. The EdgeConv module performs convolution-like

operations on edges connecting neighboring pairs of points
using local neighborhoodgraphs.Weuse theEdgeConvmod-
ule in feature extraction so that the local feature information
can be extractedwithout changing the number of features and
preserving the feature information to the maximum extent.
This cannot only improve the network’s ability to extract
local features and enrich feature information, but also take
into account the relationships between pairs of points, which
can more effectively characterize local features.

The directed graph is constructed dynamically in front
of each EdgeConv module to enrich the expression of fea-
ture information. Our feature extraction exploits a Spatial
Transformer and multi-layer edge convolutional network
EdgeConv cascade (as shown in a dashed box in Fig. 1).
The Spatial Transformer aligns all points to a unified point
set space for learning rotation invariance. And the key lies
in the multi-layer EdgeConv module which adopts dynamic
feature extraction.

When calculating the features at each EdgeConv mod-
ule, it is divided into three steps: constructing the k-nearest
neighbor (k-NN) graph, calculating the edge feature, and the
channel-wise symmetric aggregation operation (Fig. 2). The
point cloud feature is described by a point set with n points,
denoted as P � {p1, p2, ..., pn} ∈ R

F , where F represents
the feature dimension and pi � (xi1, xi2, ..., xi F ), i � 1, 2,
..., F . Before the feature matrix is encoded into EdgeConv,
the k-NN digraph G � (V , E) should be constructed, where
V � {1, 2, ..., n} and E ⊆ V × V represent the set of
vertices and edges, respectively. Then, calculating edge fea-
ture by ei j � h�(pi , p j ), where h� : RF ×R

F → R
F ′

is a
nonlinear function containing a set of learning parameters�.
The edge feature is a local feature expression about the edges
of pi connecting neighboring pairs of points. Finally, we
use a channel-wise symmetric aggregation operation� (e.g.,
∑

or max) to represent pi with a new feature p′
i :
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Fig. 2 a k-NN points of pi ; b Edge feature; c Aggregation operation

p′
i � �

j :(i , j)∈E
h�(p j − pi , pi ) (1)

Here, each new feature p′
i corresponds to pi to ensure that

reduces the loss of feature information. h�(p j − pi , pi ) is
an asymmetric function to select edge features; it is the way
of fusion operation and was designed to have an impact on
the performance of EdgeConv.

This equation h� takes into account both the local feature
pj - pi containing the nearest neighbor points and the global
feature pi . In M-layer filters, �m � (θ1, θ2, ..., θM , φ1, φ2,
..., φM ) is the encoding weight, and the nonlinear function
h� : RF ×R

F → R
F ′

can be noted as follows:

e′
i jm � ReLU(θm · (p j − pi ) + φm · pi ) (2)

θm and φm have the same dimension as p, and · is the
Euclidean inner product. Eventually, the aggregation oper-
ation is implemented by the symmetric function max as
follows:

p′
im � Max

j :(i , j)∈E e
′
i jm (3)

The output will not be affected by different permutations
because of the symmetry of the max function, which ensures
the invariance of displacement.

2.2 Integration

To prevent the interference of too many features on the regis-
tration accuracy, the attention mechanism is added to screen
the obtained point cloud features; it improves the general-
ization ability of the model on the premise of ensuring the
registration accuracy. Attention mechanisms are introduced
into point cloud tasks recently to extract feature information
more effectively. Wang et al. [34]. proposed a Graph Atten-
tion Network (GAT), which achieved state-of-the-art tasks
related to graph structure at that time. GAT can calculate the
local attention coefficient or global attention coefficient for
each point. The size of the coefficients is changed through
training of the attention module so that more important
features can be highlighted and the influence of irrelevant
features can be reduced.

In the second step, integration, the goal is to rescreen
the feature matrixes and obtain the correlation information
between the source point cloud and the target point cloud.
This paper introduced a variant of self-attention, offset-
attention, which is used to process the graph structure data
from the EdgeConv modules and focus the task on obtaining
high-quality feature sets to realize the above work. Differ-
ent features will get different attention scores according to
their importance so that the feature information obtained in
the extraction step can be rescreened and combined to obtain
a similar relationship with a higher degree of fit for feature
matching.

The offset-attentionmechanism calculates the attention of
a node in the graph relative to each adjacent node and con-
nects the feature of the node itself and the attention feature as
the node’s final feature. The main purpose of the graph atten-
tion network is to learn a function g : RF → R

K , where F
and K identify the feature dimension. This function maps the
input feature H into a new set of vertex features H ′ � {

h′
1,

h′
2 . . . h′

N

}
, h′

i ∈ R
K . At the same time, the function can keep

the relationship between these output features unchanged,
that is, the category represented by the point cloud remains
unchanged. Different from the relatively fixed neighborhood
relations in 2D images, graph attention convolution can han-
dle disordered and variable-sized neighborhoods according
to the disordered structure of point clouds and assign weights
reasonably. As shown in Fig. 3, it shows the effects of the
point cloud convolution operation whether there is an atten-
tion mechanism. Unlike convolution without attention (as
Fig. 3a), the attention mechanism distinguishes the degree
of importance between point pairs (reflected in the thick-
ness of edges in Fig. 3b). The importance degree between
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Fig. 3 The difference between the two types of convolution

the point pairs is the weight of the network, which is con-
stantly updated by the network training after initialization, to
obtainmore excellentweights. Theneighborhoodpoint cloud
with similar features to the point cloud will be assigned high
weight and defined as associated point pair, while the neigh-
borhood point cloud that is not similar to the point cloud will
be assigned low weight and defined as non-associated point
pair to distinguish matching point pairs, which is critical for
efficient point cloud registration capabilities.

From a given point cloud set P � (p1, p2, . . . pn) ∈ R
3

construct a point cloud graph structure G � (V , E) accord-
ing to its neighborhood information, where V � {1, ..., N }
is the vertices of the graph, N represents the number of ver-
tices, and E represents the edges between the points. Define
N (i) � { j : (i , j) ∈ E} ∪ {i} to represent the neighborhood
set of a point pi in the point cloud. In our network, its input is
a node feature vector matrix. In the point cloud registration
task, the input is defined as H � {h1, h2 . . . hN }, hi ∈ R

F ,
which represents the feature set of the input point cloud, and
each feature hi ∈ R

F corresponds to the graph vertex pi ,
where F represents the dimension of the point cloud fea-
ture. The output is the new node feature matrix H ′ � {

h′
1,

h′
2 . . . h′

N

}
, h′

i ∈ R
F .

The offset-attention, which is an improved version of [36]
and more suitable for point cloud processing, is used to
generate the output Pout

S , Pout
T ∈ R

GAT, so that the inter-
nal point cloud and between the two-point clouds contextual
information can be exchanged. The offset-attention used is a
variant of multi-head self-attention. Its framework is shown
in Fig. 4. The multi-head attention mechanism divides the
feature space into N independent subspaces (here, N � 4)
and calculates the attention scores in each subspace.Then, the
scores of the subspaces are combined through the concatena-
tion operator. This improves the parallel processing capacity
of the self-attention mechanism. In addition, inspired by

the idea of using the Laplace matrix in graph neural net-
works, offset-attention calculates the difference between the
self-attention (SA) features and the input features by element-
wise subtraction [34].

The calculation process of offset-attention is shown in
Fig. 5. It is divided into three stages: calculating the sim-
ilarity score eij, the probability distribution of attention αij,
and the final attention score. To obtain ampler feature expres-
sion capabilities, a learnable and shared linear transformation
parameter matrix W ∈ R

F′×F is first applied to each node
feature vector to obtain a new representation z � Wh i. The
similarity score eij between the i-th (h i ) and j-th (h j ) nodes
is shown in Eq. (4), which is obtained from the features of
itself and its neighbor points, and the convolution kernel can
dynamically adapt to the structure of the object.

eij �LeakReLU(αT [zi , z j ]) (4)

The linear transformation zi , z j obtained by h i and h j is
concatenated. Then do a dot product with a weight vector α,
and obtain eij by using the LeakRelu activation function. The
expression of LeakRelu is shown in Eq. (5).

LeakReLU(z) �
{

z z > 0
0.1z z < 0

(5)

Next, in order to deal with neighbors that vary on different
vertices and spatial scales, the attention weights are normal-
ized in all neighbor points of vertex i as shown in Eq. (6):

αij � SoftMax(eij) � exp(ei j )
∑

k∈N (i) exp(eik)

αij � αij
∑

k
αij

(6)

and the self-attention weight value αi j is calculated by
the SoftMax function. It should be pointed out that offset-
attention uses a unique calculation method here, the exper-
imental results show that it can reduce the interference of
noise and is beneficial to downstream tasks.

Finally, a new node feature matrix is obtained using the
offset-attention weight αi j , and the symbolic representation
is shown in Eq. (7), the symbol · stands for convolution and
b i is bias.

Attention(hi ) �
∑

j∈N (i)

αi j · f (hi ) + bi (7)

The PS and PT encoded the contextual features of the
source point cloud and the target point cloud, respectively.
but the point clouds are not understood. To enhance the corre-
lation between features, it is necessary to add some cross-talk
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Fig. 4 The structure of offset-attention

Fig. 5 The calculation process of the offset-attention

at the level of superpoints to the network and learn the impor-
tanceweight of proximity [37]. Before concatenating the two
feature codes, a graph neural network (GNN) is first used to
further aggregate and strengthen their contextual relations.
First, K-NN is used to connect the superpoints from Pfeature
to the graph in Euclidean space. Let xi ∈ R

F ′
denote the

feature encoding of the superpoints Pfeature, and (i , j) ∈ E
be the graph edge between xi and x j in Pfeature. The encoded
features are iteratively updated by the k-th EdgeConv block,
and using Eq. (8).

(k+1)xi � max
(i , j)∈ e

hθ (cat[
(k)xi ,

(k)x j − (k)xi ]) (8)

The hθ represents linear layer, LeakyReLU activation
function, and instance normalization. The function max rep-
resents the maximum pooling layer. And the cat function
represents concatenation.

The update is performed twice using the unshared param-
eter θ , and the final feature xGNNi ∈ R

G is shown in Eq. (9):

xGNNi � hθ (cat[
(0)xi ,

(1)xi ,
(2)xi ]) (9)

Then, for obtaining the correlation information between
the twopoint clouds, the two superpoints obtained byEq. (12)
are connected to form a bipartite graph. Inspired by the atten-
tion, based on the key value k j ∈ RF ′

, the query vector
si ∈ RF ′

is used to retrieve other superpoints v j ∈ RF ′
, the
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symbols are expressed as Eq. (10) whereWk ,Wv andWs are
learnable weight matrices:

k j � Wk · xGNNj

v j � Wv · xGNNj

si � Ws · xGNNi

(10)

2.3 Registration based on SVD

After obtaining the encoded point cloud features, the final
step is to estimate the transformation matrix. For the case
where T is a rigid transformation, the point cloud registra-
tion problem can be described by Eq. (11). The purpose of
this equation is to calculate the rotation matrix R and the
translation matrix t that have a lower deviation between the
transformed source point cloud R · PS + t and target point
cloud PT .

(R, t) � argmin
R, t

|PS |∑

i�1

wi

∥
∥
∥Pi

T − (R · Pi
S + t)

∥
∥
∥
2

(11)

Let P̂S be the center of PS and P̂T be the center of PT .
In theory, the center points of P̂S and P̂T should be the same
after registration, denoted as t � P̂T − R · P̂S . So Eq. (11)
can be equivalent to Eq. (12).

R � argmin
R, t

|xi |∑

i�1

wi‖yi − Rxi‖2 (12)

where yi � Pi
T − P̂T and xi � Pi

S − P̂S . Through this step,
the rotation matrix R can be obtained first eliminating the
influence of the translation matrix t. In the subsequent steps
of solving the rotation matrix R separately, Eq. (12) is equiv-
alent to solving a matrix R satisfying Eq. (13) using SVD.
Let S � XWYT , we have tr (RXWYT ) � tr (RU�V T ) �
tr (�V T RU ). After the rotation matrix R is calculated by
SVD, the translation matrix t is obtained by t � P̂T − R · P̂S .

R � argmax
R, t

|xi |∑

i�1

wi yi Rxi

� argmax
R, t

[tr (RXWYT )]

(13)

To avoid choosing a non-differentiable hard specification,
a probabilistic approach from DCP [29] is used to generate
a soft map from one point cloud to another. That is, each
xi ∈ PS is assigned a probability vector in PT as shown in
Eq. (14).

m(xi , PT ) � softmax(yGNN(xGNNi )T ) (14)

Among them, yGNN ∈ R
GAT is the point cloud feature

generated by offset-attention, xGNNi is the i-th rowof the point
cloud feature matrix, and m(xi , PT ) here can be regarded as
the soft pointer that each xGNNi points to yGNN. In this way,
a matching average point in Pout

T can be generated for each
point in Pout

S , as shown in Eq. (15).

ŷi � (PT )
Tm(xi , P

out
T ) ∈ R

3 (15)

2.4 Summary and analysis of our algorithm

The main idea of this model is to use EdgeConv to achieve
the goal of enriching the feature map (Sect. 2.1). And using
offset-attention to change the influence factor of the feature
vectors (Sect. 2.2).

The point cloud feature extraction algorithm introduced in
Sect. 2.1 is shown in Algorithm 1. It has a time complexity
O(n12), where n1 is influenced by the number of EdgeConv
modules and points. Its space complexity is S(n2), where n2
refers to the dimension of layers. And the attention mecha-
nism algorithm introduced in Sect. 2.2 is shown inAlgorithm
2. It has a time complexity of O(n3), where n3 is influenced
by the heads of offset-attention. Its space complexity is S(1)
due to the network and data dimensions have not changed.
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3 Experiment

3.1 Setup of experiments

Compare the performance between our model and recent
deep learning-based registration methods: RPMNet [38],
DCP-V2 [29], PTRNet [39], GeoTransformer [40], and the
classic optimization-based point cloud registration algorithm
ICP, of which RPMNet, DCP-V2, and GeoTransformer are
the more advanced feature-based deep point cloud registra-
tion method in recent years, and PTRNet is an advanced
end-to-end registration method.

The experiment is performed utilizing PyTorch, and the
hardware configuration involves an NVIDIA GTX 2080ti
GPU. The initial learning rate is established at 0.001, the

number of training epochs is 250, and the batch size is con-
figured as 8. Meanwhile, we measured the total parameter
number as 4,514,176 using a third-party libraries thop from
Python.

3.2 Datasets

When evaluating the effectiveness of our model, it is com-
pared with other methods on two public datasets, Mod-
elNet40 [41] and ShapeNet Part [42]. And we tested our
model’s universal and robust performance on the local indus-
trial parts dataset; we will be covered this dataset in detail
separately in Sect. 4.2.

The ModelNet40 dataset used in our experiment comes
from the ModelNet dataset [41]. And this dataset contains
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Table 1 ModelNet40: Contrast
experimental results Models MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 9.458 3.075 5.987 7.642 2.764 0.036

DCP-V2 7.825 2.717 1.967 0.000 0.008 0.006

RPMNet 3.704 1.925 1.538 0.034 0.200 0.016

PTRNet 6.447 2.545 1.762 0.000 0.007 0.023

GeoTransformer 2.084 1.443 1.395 0.000 0.005 0.002

Ours 1.363 1.168 1.311 0.000 0.002 0.001

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting

Table 2 ShapeNet Part: Contrast
experimental results Models MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 3.326 1.824 4.613 1.481 1.217 0.021

DCP-V2 1.661 1.289 0.877 0.000 0.002 0.001

RPMNet 1.328 1.167 0.797 0.001 0.044 0.009

PTRNet 1.649 1.284 0.762 0.000 0.005 0.004

GeoTransformer 1.197 1.094 0.594 0.000 0.012 0.003

Ours 1.213 1.101 0.630 0.000 0.000 0.001

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting

12,311 mesh CAD models from 40 categories. It is a large
dataset released in recent years and is widely used in point
cloud processing tasks. In this paper, the experimental con-
figuration on the ModelNet40 dataset is consistent with that
of DCP [29], and the training and testing are performed on
the ModelNet40 complete dataset, using 9843 models for
training and 2468 models for testing.

ShapeNet Part is a subset of ShapeNet Core, containing
16,881 models in 16 categories. To make training and eval-
uation of learning-based methods possible, ShapeNet Part is
split into three parts: 12,136 trainingmodels, 1870 evaluation
models, and 2874 test models. Also sample 1024 points uni-
formly from the outer surface of each model, as in previous
work.

3.3 Evaluationmetrics

The mean square error (MSE), root mean square error
(RMSE), and mean absolute error (MAE) between the true
value and the predicted value were measured experimentally,
and MSE, RMSE, and MAE were used as the evaluation
indicators in this paper. Ideally, if the source and template
point clouds are perfectly registered, all of these errormetrics
should be zero. In our results, both the rotationmatrix (R) and
the translation matrix (t) are evaluated, which were denoted
as MSE(R), RMSE(R), MAE(R), and MSE(t), RMSE(t),
MAE(t) in table, respectively. And all angle measurements
in the results are in degrees.

4 Results

4.1 Results on public datasets

(1) Contrast experiment
In the contrast experiment, all categories in ModleNet40

and ShapeNet Part datasets were divided into training and
testing sets randomly without knowing their category labels.
Tables 1 and 2 are the experiment results under ModelNet40
and ShapeNet Part datasets, respectively.

Comparing the results in Tables 1 and 2, it can be seen that
the registration results based on the ShapeNet Part dataset are
generally higher than those in theModelNet40 dataset, which
is related to the amount of data in each category in training.
ShapeNet Part has an average of 1055 models for each type
of object, while ModelNet40 is only equivalent to 30% of
it, and the more data, the more fully train the model, so the
registration effect of eachmodel on the ShapeNet Part dataset
is better than that on the ModelNet40 dataset.

Based on the ModelNet40 dataset, our model is slightly
better than that of advanced networks proposed in recent
years but underperforms the GeoTransformer model on the
ShapeNet Part dataset. The rotation matrices MSE, RMSE,
and MAE of GeoTransformer are 0.016, 0.013, and 0.036
lower than ours. It is worth noting that the registration effect
of PTRNet is slightly worse than that of the advanced net-
work, which is precisely because it is not sufficient in local
feature extraction, and the transformation generation method
has a strong dependence on the data, which is confirmed in
Table 2.
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Fig. 6 The registration performance visualization of our framework

Figure 6 shows the registration results of some objects
in our framework, the top is the registration results in the
ModelNet40 dataset, and the bottom is the ShapeNet Part
dataset. The green points and red points represent the source
and target point cloud, respectively. The blue points represent
the position of the source point cloud after transformation,
and the higher the coincidence degree between it and the
target point cloud, the darker the color.

(2) Generalizability experiment
For testing the generalization ability of networks, the

ModelNet40 dataset is divided into two groups by category
randomly: 30 categories are training sets and 10 categories
are test sets. Uniformly, 10 categories from the ShapeNet
Part dataset are used as the training sets, and 6 categories are
used as the test sets.

The experimental results on different datasets are shown
in Tables 3 and 4, respectively. Combined with the results of
comparison and generalization experiments, the registration
errors of all models are larger in the generalization exper-
iment. On the ModelNet40 dataset, GeoTransformer gets a
relatively low RMSE(t) value. Our framework reduces the
MSE(R), RMSE(R), MAE(R), and MAE(t) to 4.592, 2.143,
1.800, and 0.010, which are lower than all compared mod-
els. On the ShapeNet Part dataset, DCP-V2 performs better
than others at MSE(t) and RMSE(t). Our framework gets
the lower MSE(R), RMSE(R), MAE(R), and MAE(t) val-
ues. This suggests that the framework that focuses more on
point cloud geometry is more suitable for the generalization
task of PCR.

(3) Robustness experiment
To test the robustness of our framework and other mod-

els, the noise was sampled independently from N(0, 0.01);
and the noise was clipped to [-0.05, 0.05] adding to the data
during testing. This experiment uses models trained on all
ModelNet40 noise-free data, and the experimental results
are shown in Tables 5 and 6.

Comparing Tables 1 and 5 based on the ModelNet40
dataset, and Tables 2 and 6 based on the ShapeNet Part
dataset, it is easy to see that GeoTransformer does not per-
form better than ours, and our framework still comes out
on top in the robustness experiments. And DCP-V2 has a
large error fluctuation on the ShapeNet Part dataset, which is
caused by poor performance on individual data. Although the
MAE of RPMNet is not disturbed much, it can be seen from
the MSE and RMSE indicators that its registration perfor-
mance is not stable. In addition, the registration accuracy
is not ideal because ICP is prone to fall into local opti-
mal solutions. In summary, our model performs optimally in
robustness experiments on the two datasets, indicating that
our framework is relatively robust.

(4) Ablation experiment
We added ablation experiments to verify the performance

improvement of each module in the proposed framework.
Only the EdgeConv module in the framework proposed

in this paper was changed into ordinary convolution, and
the dimensions of each layer of convolution were kept
unchanged. The experimental results obtainedwere shown in
Table 7. In theory, the EdgeConv module should have excel-
lent performance because it can extract semantic information
from multiple dimensions and takes into account both local
and global features. This point is also verified by the exper-
imental results in Table 7, which show that the error will be
greatly increased when a common convolutional network is
adopted.

Similarly, the offset-attention module is changed to self-
attention, and the experimental results are shown in Table 8.
The results show that offset-attention is more depressed than
self-attention in the registration task.

4.2 Results on local industrial parts dataset

(1) Local industrial parts dataset
The local industrial parts dataset is composed of two-parts

point cloud data, which are point cloud data collected from
two actual parts, respectively, denoted as part a and part b.
After denoising, the original data of part a are a point cloud
with 344,962 (173 × 1994) points as shown in Fig. 7, and
the original data of part b is a point cloud with 346,236 (172
× 2013) points as shown in Fig. 8. For using the method in
this paper to register the local actual data set, 1024 points
are uniformly sampled from each part point cloud when pro-
cessing the data, and the same method as PointNet [29] is
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Table 3 ModelNet40:
Generalizability experimental
results

Models MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 11.120 3.335 6.912 9.095 3.154 0.024

DCP-V2 12.604 3.550 2.629 0.003 0.057 0.013

RPMNet 11.529 3.395 2.338 0.001 0.042 0.017

PTRNet 8.168 2.858 2.664 0.003 0.056 0.017

GeoTransformer 6.428 2.535 2.278 0.001 0.037 0.015

Ours 4.592 2.143 1.800 0.003 0.055 0.010

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting

Table 4 ShapeNet Part:
Generalizability experimental
results

Models MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 23.946 4.893 6.310 3.942 1.985 0.349

DCP-V2 8.188 2.862 1.975 0.000 0.005 0.004

RPMNet 5.573 2.361 1.361 0.001 0.044 0.006

PTRNet 2.849 1.688 1.235 0.003 0.054 0.011

GeoTransformer 4.485 2.118 1.528 0.004 0.060 0.008

Ours 2.058 1.434 0.961 0.001 0.035 0.003

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting

Table 5 ModelNet40:
Robustness experimental results Models MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 29.343 5.417 9.831 4.023 2.006 0.201

DCP-V2 24.774 4.977 3.249 0.000 0.007 0.015

RPMNet 22.561 4.750 1.764 0.004 0.061 0.016

PTRNet 10.504 3.241 2.312 0.001 0.034 0.012

GeoTransformer 13.448 3.667 2.007 0.001 0.028 0.008

Ours 9.404 3.067 1.528 0.000 0.017 0.006

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting

used to analyze the two part point clouds. And the data were
normalized.

(2) Registration visualization
Combined with the actual industrial application scenario,

we select GeoTransformer, PTRNet, and our framework to
test the local industrial parts data, which have high registra-
tion accuracy, generalization, and noise resistance ability on

public datasets. It helps to save the public resources of the
enterprise. These 3 models all run 50 tests on point clouds
with different initial positions, and the mean square error
(MSE) was used as the evaluation index. The registration
effect is shown in Fig. 9.

It shows that in the test based on the point cloud of part
a, the mean square errors of rotation matrix MSE(R) and

Table 6 ShapeNet Part:
Robustness experimental results Models MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 21.203 4.605 8.231 2.734 1.653 0.120

DCP-V2 80.443 8.969 6.421 0.004 0.065 0.046

RPMNet 13.710 3.703 1.320 0.025 0.158 0.013

PTRNet 15.713 3.964 1.924 0.055 0.235 0.032

GeoTransformer 12.005 3.465 1.635 0.056 0.237 0.025

Ours 6.507 2.551 0.761 0.002 0.048 0.004

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting
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Table 7 Ablation experimental
results of the EdgeConv module Matrix Module ModelNet40 ShapeNet part

MSE RMSE MAE MSE RMSE MAE

Rotation (R) EdgeConv 1.363 1.168 1.311 1.213 1.101 0.630

Convolution 13.752 3.708 4.407 10.487 3.238 2.080

Translation (t) EdgeConv 0.000 0.002 0.001 0.000 0.000 0.001

Convolution 3.574 1.891 1.122 3.214 1.793 0.845

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting

Table 8 Ablation experimental
results of the offset-attention
module

Matrix Module ModelNet40 ShapeNet part

MSE RMSE MAE MSE RMSE MAE

Rotation (R) Offset-attention 1.363 1.168 1.311 1.213 1.101 0.630

Self-attention 2.213 1.488 1.437 1.434 1.198 0.700

Translation (t) Offset-attention 0.000 0.002 0.001 0.000 0.000 0.001

Self-attention 0.000 0.001 0.001 0.000 0.000 0.001

Bold value represent the lowest error, or highest performance of the model in that specific experimental setting

Fig. 7 Schematic diagram of part a

the mean square errors of translation matrix MSE(t) of our
framework are 0.056 and 0.000, respectively. The two errors
of PTRNet are 0.472 and 0.005. And The two errors of Geo-
Transfomer are 1.376 and 0.070, respectively. And the test
based on the point cloud of part b, the mean square errors of
rotation matrixMSE(R) and the mean square errors of trans-
lation matrixMSE(t) of our framework are 0.121 and 0.001,
respectively. The two errors of PTRNet are 0.179 and 0.004.
And The two errors of GeoTransfomer are 1.740 and 0.023,
respectively.

Fig. 8 Schematic diagram of parta

According to the experimental results, our framework per-
forms better in industrial data. The reason is our framework
fully considers the geometric fusion relationship between the
point cloud which leads to a good registration effect, and bet-
ter generalization and robustness are also factors for success.

5 Conclusion

This paper proposes a point cloud registration framework
based on feature fusion. By combining the graph attention
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Fig. 9 Registration effect on local industrial parts dataset

network with offset-Attention, a new integration module that
integrates point cloud context information and fuses point
cloud information is proposed. The experiments show that
our framework using this integration module can effectively
improve the point cloud feature learning performance, which
improves the accuracy of PCR with better generalizability
and robustness. And it is highly integrated and can be embed-
ded into other networks. Moreover, the experiments on the
local parts dataset also show that our framework can be well
applied to real data and is more universal.

We noticed that in actual production operations, the inter-
ference caused by complex environments to the point cloud
data generated by 3D sensors should not be underestimated.
Inspired by the operation of dehazing in 2D images [43, 44],
we hope to solve the above problem of excessive point cloud
noise effectively.
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