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Abstract
The CNN framework has gained widespread attention in texture feature analysis; however, handcrafted features still remain
advantageous if computational cost needs to take precedence and in cases where textures are easily extracted with few intra-
class variation. Among the handcrafted features, the local binary pattern (LBP) is extensively applied for analysing texture
due to its robustness and low computational complexity. However, in local difference vector, it only utilizes the sign compo-
nent, resulting in unsatisfactory classification capability. To improve classification performance, most LBP variants employ
multi-feature fusion. Nevertheless, this can lead to redundant and low-discriminative sub-features and high computational
complexity. To address these issues, we propose the neighbourhood feature-based local binary pattern (NF-LBP). Inspired by
gradient’s definition, we extract the neighbourhood feature in a local region by simply using the first-order difference and 2-
norm. Next, we introduce the neighbourhood feature (NF) pattern to describe intensity changes in the neighbourhood. Finally,
we combine the NF pattern with the local sign component and the centre pixel component to create the NF-LBP descriptor.
This approach provides better complementary texture information to traditional local sign pattern and is less sensitive to
noise. Additionally, we use an adaptive local threshold in the encoding scheme. Our experimental results of classification
accuracy and F1 score on five texture databases demonstrate that our proposed NF-LBP method attains outstanding texture
classification performance, outperforming existing state-of-the-art approaches. Furthermore, extensive experimental results
reveal that NF-LBP is strongly robust to Gaussian noise and salt-and-pepper noise.
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feature-based local binary pattern (NF-LBP) · Texture classification
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1 Introduction

Texture classification has become a major research topic
in various fields, including biomedical image analysis [1],
remote sensing [2], image retrieval [3], object recognition [4],
and face recognition [5], among others. Texture classifica-
tion poses a primary challenge in dealing with variations that
occur within a given class, which are usually caused by rota-
tion, illumination, viewpoint, and scale. Feature extraction
methods based on local descriptors garnered considerable
interests owing to the stronger robustness to noise compared
to global descriptors, which are easily affected by external
conditions. However, most local descriptors face challenges
when dealing with high-dimensional and low-discriminatory
sub-features, which lead to redundant and inefficient fea-
ture information. To address these challenges, some local
descriptors like scale-invariant feature transform (SIFT) [6]
and speeded-up robust features (SURF) [7] are presented for
describing patches surrounding carefully selected keypoints
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within a texture image. Other descriptors like Histogram of
Oriented Gradients (HOG) [8] are utilized to extract global
image features. Among all local descriptors, local binary pat-
tern (LBP) [9] has become one of the primary methods for
texture feature extraction, owing to its theoretical simplicity
and computational efficiency. LBP is a nonparametric texture
feature descriptor that extracts features from different texture
regions and combines them together as an overall texture fea-
ture. In the LBPmethod, the centre pixel gc is compared with
its neighbourhood pixels in the sampling template to obtain
a binary code (0 or 1), which is then converted into the corre-
sponding decimal number, which represents the local feature.
The conventional LBP method has a limitation in that it only
takes into account the sign component of the local difference
vector and fails to incorporate other important local structural
texture information, leading to incomplete representation of
the texture features. As a result, its practical applications are
significantly hindered.

Since Ojala’s original work [9], many LBP variants have
been proposed to overcome the limitations of the origi-
nal LBP. The local ternary pattern (LTP) [10] applies three
quantization intervals to threshold the centre pixel, mak-
ing it effective in dealing with minor noise. The ResExLBP
[11] utilizes image resizing and greyscale transformation to
improve its classification accuracy in detecting COVID-19.
In recent years, it has been suggested that capturing and
combining more discriminative and complementary local
features is an effective approach to achieve stronger robust-
ness and attain a comprehensive texture representation. [12]
proposed a completed local binary pattern (CLBP), which
achieves a comprehensive representation of local features
by combining the three highly complementary local fea-
tures: sign, magnitude, and centre pixel. Inspired by the
framework of CLBP, lots of LBP variants have been pro-
posed, including CLBC [13] and multi-scale CLBP [14]. To
enhance the noise robustness, several approaches have been
proposed. One such approach is the SFB-OCPS presented by
[15]. This technique replaces centre pixels on edges with an
optimal pixel based on statistical features, which effectively
improves the classification performance. Another approach
is the ACPS strategy [16] that chooses an adaptable cen-
tre pixel to transform non-uniform patterns into uniform
patterns while preserving crucial microstructural texture fea-
tures. Additionally, the BRINT descriptor presented by [17]
replaces the sampled neighbourhood pixels with the average
greyscales of the neighbourhood pixels, while the RCLBP
framework [18] enhances the robustness of feature extraction
in the presence of noise by integrating the non-local means
filter, wavelet thresholding, and completed local binary pat-
tern framework. SALBP [19] selects an adaptive sampling
scale for every neighbourhood pixel. In order to enhance the
robustness of the centre pixel, a novel approach called image
segmentation-based central multi-scale local binary pattern

(ISCM-LBP) was introduced [20], which connects the centre
pixel with its surrounding neighbourhood pixels.

To fully exploit texture features and enhance the clas-
sification capabilities of the LBP algorithm, several LBP
variants have been presented. LTrPs [21] extract the rela-
tionship between the centre pixel and its neighbourhood
pixels in the vertical and horizontal directions. LETRIST [22]
constructs features from extremum responses of Gaussian
derivative filters and quantizes them into texture codes. The
Single Direction Gradient (LBP-SDG) [23] extracts discrim-
inative movement features. In order to depict local feature
information, FbLBP algorithm [24] leverages both the sign
information and the mean and variance of magnitude of
the difference vector dP . Local Binary Circumferential and
Radial Derivative Pattern (CRDP) [25] fuses circumferential
and radial derivative features based on different orders. By
leveraging a pixel to patch-based sampling structure to emu-
late the sampling pattern, the innovative Local Neighbouring
Intensity Relationship Pattern (LNIRP) [26] captures local
features by investigating neighbourhood greyscale proper-
ties. Sorted Local Gradient Pattern [27] utilizes two local
gradient patterns to encode gradient information in the local
neighbourhood and extracts local features by classifying pix-
els into two classes based on their intensities.. The Local
NeighbourhoodDifference Pattern (LNDP) [28] captures the
interdependencies among neighbourhood pixels gp at a par-
ticular scale R and demonstrates exceptional classification
performance on natural scenes. The CMPE [29] combines
themaxima andminima of the neighbourhood pixelswith the
conventional sign information, improving the classification
capability. The CJLBP [30] joins neighbourhoods across dif-
ferent scales to acquire large-scale texture features. The OD-
LBP [31] suggests the utilization of orthogonal values from
the surrounding texture region to portray local texture charac-
teristics. A neighbourhood and centre difference-based-LBP
(NCDB-LBP) [32] considers the differences between dif-
ferent neighbourhood as the local features. [33] proposes
the LBP-RGB feature to specially extract image features in
RGB mode. To enhance the quality of extracted features,
a novel approach based on genetic programming (GP) [34]
was introduced,which utilizes a three-layer tree-based binary
program, learned through the GP optimization process, to
integrate patch detection, feature fusion, and classification.
In addition, local grouped order pattern and non-local binary
pattern (LGONBP) [35] were proposed to combine two
innovative texture descriptors, including LGOP that groups
nearby points based on a dominant direction, encoding their
intra-group intensity order, andNLBP that computes anchors
using global image statistics and progressively encodes non-
local intensity differences between neighbouring points and
anchors. A descriptor CLGC [36] was proposed to combine
local and global information to extract colour-texture fea-
tures, incorporatingwavelet transformandamodifiedversion
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of local ternary pattern for global feature fusion, and utilizing
speeded-up robust feature descriptor and bag of wordsmodel
for local features. A hybrid texture feature extraction method
called Hess-ACS-LBP [37] was proposed, which combines
the Hessian matrix and ACS-LBP to effectively reveal the
macro- and microstructural changes in textures.

Besides the handcrafted LBP and its variants, the CNN
architecture [38] showcased exceptional classification capa-
bilities in 2012, and it has gained considerable interest ever
since. It has found numerous applications in texture analysis,
including medical image analysis [39], remote sensing [40],
and face recognition [41]. In recent years, many algorithms
for texture feature description and extraction have made sig-
nificant progress, such as the LPMF2Net model [42] that
explores complementary features at diverse hierarchical lev-
els. Additionally, the dynamic reparameterization network
(DRPN) [43] is effective in dealing with scale variations
in the classification of infrared images. Researchers have
proposed other CNN-based models, such as the attention
mechanism-based CNN proposed by [44], which combines
LBP features and attention mechanisms to improve classi-
fication results, and the local LBP feature and deep feature
blending approach proposed by [45] to enhance the recogni-
tion capability of handwritten digits. Despite some inherent
limitations such as high computational complexity and chal-
lenging parameter tuning, the use of deep features for texture
representation remains a topic of debate. In [46], the authors
conducted a comparative analysis of handcrafted features
versus CNN-based features. Notably, the study revealed that
handcrafted features outperformed CNN-based features in
cases where textures were easily extracted with few intra-
class variation. As a result, this paper focuses on exploring
the improvement of the traditional handcrafted descriptors.

For instance, most currently existing LBP variants com-
pletely discard the local features in the neighbourhood,
resulting in misclassification of different patterns. Further-
more, LBP-based algorithms extract different sub-features to
represent local texture features. The sub-features employed
in theseLBPvariants often lack rotational invariance and tend
to possess low discriminative capability while being high-
dimensional, thereby contributing to complex and redundant
classification process. Additionally, there is still untapped
potential in leveraging the complementarity between the
extracted features of LBP variants. The extraction of local
features requires a more comprehensive combination of sub-
features to adequately describe the local region, as low com-
plementarity leads to suboptimal classification capabilities.

To tackle these challenges, we introduce a neighbourhood
feature-based local binary pattern (NF-LBP) descriptor for
texture classification, which highlights the local neighbour-
hood features by using the proposed neighbourhood feature
(NF) pattern and combines it with local sign component and

centre pixel component. Themain contributions of this paper
are as follows:

1. We propose a novel method to represent the neighbour-
hood features by simply using the first-order difference
and 2-norm.

2. We apply a new and effective coding method to encode
the neighbourhood feature into a local neighbourhood
feature pattern with a local adaptive thresholding quanti-
zationmethod.The resulting local neighbourhood feature
pattern is denoted as NF pattern. Our experiments have
proved that it has a strong feature classification capability
and is strongly complementary to sign information.

3. We propose a texture descriptor called neighbourhood
feature-based local binary pattern (NF-LBP), which inte-
grates the local sign component and the centre pixel
component with neighbourhood feature pattern. This
integration results in a highly comprehensive local tex-
ture representation.

4. We perform comprehensive experiments on 5 differ-
ent texture databases, which includes texture databases
with complex conditions (Outex, CUReT, XU−HR, and
ALOT) and real-world database (UIUC). Our compar-
ison demonstrates that NF-LBP achieves the outstand-
ing classification performance. Furthermore, extensive
experiments with noise demonstrate the excellent noise
robustness of the proposed NF-LBP.

The remainder of this paper is as follows: Section 2 pro-
vides a brief review of LBP and its related works. Section 3
presents the detailed description of the proposed NF-LBP.
Section 4 presents experimental results and analyses. Sec-
tion 5 concludes the paper.

2 A concise overview of relevant works

Ojala et al. [47] proposed local binary pattern (LBP) and
improved it in the consequent works [9]. The conventional
LBP focuses on extracting relations of centre pixel gc and
the corresponding neighbourhood pixels in a circular local
neighbourhood template, which is defined by the chosen
radius R and P neighbourhood pixels gp (p = 0, 1, . . . , P−
1), as shown in Fig. 1. The original coding method of LBP is
described as follows:

LBPP, R(gc) =
P−1∑

p=0

2p × s(gp − gc),

s(x) =
{
1, x ≥ 0
0, otherwise

(1)
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Bilinear interpolation is utilized to estimate neighbour-
hood pixels gp located at non-integer positionswithin texture
image. The LBP method is utilized to every centre pixel gc
and thus extracts texture features of a whole image.

Additionally, [48] discovered that the frequency of occur-
rence of some LBP patterns is obviously higher than other
LBP patterns. To classify LBP patterns, they proposed the
uniform measureU to represent the spatial transition, which
counts the number of bitwise “0/1” and “1/0” in a LBP pat-
tern. The uniform measureU of a LBP pattern LBPP, R(gc)
is defined as follows:

U (LBPP, R(gc)) =
P−1∑

p=1

|s(gp − gc) − s(gp−1 − gc)|

+|s(gP−1 − gc) − s(g0 − gc)| (2)

The value U quantifies the frequency of local pattern
changes, where lower values represent low-frequency image
signal and higher values indicate high-frequency image sig-
nal. Given that natural images are predominantly composed
of low-frequency signal, LBP patterns which satisfy U ≤ 2
are considered uniform patterns. Meanwhile, non-uniform
patterns refer to the remaining LBP patterns.

To improve classification performance and achieve rota-
tion invariance, based on the definition of the uniform
measure U , rotation-invariant uniform LBP operator, which
is usually abbreviated as LBPriu2P,R(gc), is defined as follows:

LBPriu2P,R(gc) =
{∑P−1

p=0 s(gp − gc), U (LBPP,R(gc)) ≤ 2
P + 1, otherwise

(3)

The LBP referred to in the following context is the
LBPriu2P,R(gc),which is particularly useful for rotation-invariant
texture classification.

Figure2 shows an example of LBPriu2P,R(gc).

3 The proposedmethod

3.1 Neighbourhood feature in local region

The conventional LBP method describes the texture feature
of a local region by extracting the difference vector dP =[
g0 − gc, g1 − gc, . . . , gP−1 − gc

]
(p = 0, 1, . . . , P − 1).

In order to depict the local features, the corresponding LBP
pattern in the sampled image region uses the sign compo-
nent sP of difference vector dP . However, the texture feature
may not be comprehensively represented by only the sign
component sP . To complement the sign component sP and
enhance the classification capability, CLBP [12] introduced
magnitude component CLBP−M and centre pixel compo-
nent CLBP−C. Magnitude component is generally denoted
as mP . As shown in Fig. 3, sP and mP can be directly

obtained from dP . Based on the framework of CLBP, BRINT
[17] achieved excellent classification capability by using
the arc-based averaging method. The BRINT descriptor can
be decomposed into three components: the sign BRINT−S,
the magnitude BRINT−M, and the centre pixel BRINT−C.
BRINT uses the magnitude information of dP in the same
way as CLBP. Although mP can supply complementary tex-
ture feature information, there are certain problems with its
use. One of these is that in certain cases, if mP cannot be
used properly, it is low-informative and low-discriminative,
thus leading to inefficient classification performance. The
other problem is that the mP is high-dimensional, but it may
provide redundant texture feature information. Therefore,
how to enhance the classification performance of the LBP
algorithms and how to sufficiently extract distinctive texture
features in the local region have become the main research
direction in the field of texture classification.

Most current existing LBP variants are dedicated to
extracting the relations of neighbourhood pixels gp and the
corresponding centre pixel gc. Under these circumstances,
the texture feature information of the neighbourhood is
completely discarded, and this can lead to inefficient clas-
sification. As shown in Fig. 4, in conventional LBP, the same
LBP code can be obtained even if the centre pixels gc are the
same, and the sampled neighbourhood pixels gp are different
in the local texture structure.

Actually, the texture feature information of the neighbour-
hood has strong texture classification capability. To avail the
local features, texture features of sampled neighbourhood
pixels can be exploited to contribute auxiliary and useful
neighbourhood feature information. Based on this consid-
eration, neighbourhood feature-based local binary pattern
(NF-LBP) is proposed. The important feature contained in
sampled neighbourhood pixels can reflect the local intensity
and provide crucial complementary texture feature, which is
informative and discriminative.

Gradient information has been considered as a significant
texture feature of an image since it can indicate the contrast of
the local image texture. For the high-contrast areas or edges
of an image, the gradient is large; conversely, the gradient
is small in the smooth texture regions of an image. For the
purpose of discriminative and additional feature extraction,
unlike most variants of LBP, we forgo the use of the magni-
tude part mP extracted from dP . We propose to extract the
texture feature contained in sampled neighbourhood pixels
in the local image region. Gradient is selected as the feature
of the sampled neighbourhood in the local pattern.

Strictly speaking, gradient calculation requires a deriva-
tive, but to simplify the calculation process and reduce
computational complexity, we obtain an approximate deriva-
tive of the gradient by directly calculating the first-order
difference of the neighbourhood pixels along the arc of
the circular neighbourhood. As shown in Fig. 5, we define
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Fig. 1 Different circular
neighbourhood templates of
LBP

Fig. 2 An example of
LBPriu2P,R(gc) descriptor

Fig. 3 An example to show the decomposition of the difference vector dP

Fig. 4 An example to represent
that different local structures
with the same gc may be
encoded into the same value

123



3390 S. Lan et al.

the two gradients of the neighbourhood pixel in terms of
the first-order difference in clockwise and counterclock-
wise directions, denoted, respectively, as G+, gp and G−, gp
(p = 0, 1, . . . , P − 1). The formulas are as follows:

G+, gp =
{
gP−1 − g0, p = 0
gp−1 − gp, otherwise

(4)

G−, gp =
{
g0 − gP−1, p = P − 1
gp+1 − gp, otherwise

(5)

where P is the number of neighbourhood pixels in the sam-
pling template.

The defined gradient of neighbourhood pixel Ggp (p =
0, 1, . . . , P − 1) merges its respective gradients G+, gp and
G−, gp in the form of 2-norm, which is defined as follows:

Ggp =
√
G2+, gp + G2−, gp (6)

After the calculations above, we can obtain a new fea-
ture vector in the local region of a texture image. Taking
Fig. 5 as an example, in the end, we get a feature vector of
neighbourhood pixel gradientsGgp in the local sampling pat-
tern, abbreviated as GP . Our proposed gradient vector GP

can succinctly describe neighbourhood features and has a
number of outstanding advantages. First, the gradient infor-
mation can straightforwardly reflect the local contrast of a
texture image. Second, the difference vector between neigh-
bourhood pixels remains the same regardless of how the
image is rotated. Thus, the gradient vector GP is rotation
invariant. Third, the centre pixel gc may be easily polluted
by noise. As shown in Fig. 6, in this case, the difference
vector dP = [

g0 − gc, g1 − gc, . . . , gP−1 − gc
]
will be

completely changed, thus losing its discriminative capability.
Compared with the difference vector dP , the gradient vector
GP will not be altered by the noise and still contain discrim-
inative feature information of the local texture. Hence, the
gradient vector GP is more robust to noise than dP .

3.2 Neighbourhood feature (NF) pattern

The gradient vector GP consists of Ggp , which are continu-
ous values. Same as the difference vector dP , GP cannot be
straightforwardly utilized for texture classification but needs
to be converted to binary strings. Therefore, we propose a
neighbourhood feature (NF) pattern by applying a novel cod-
ing method for the gradient vector GP .

Firstly, as shown in Fig. 7, we perform an image segmen-
tation to obtain N×N discrete sub-images in a whole texture
image. Then, local adaptive threshold of each sub-image is
used for binary quantization of gradient vector GP because
of the strong correlation of the same feature in a local region
of a texture image. We define each local adaptive threshold

ofGP as the mean value ofGgp of each sub-image. It is clear
that the local adaptive threshold is more reflective of texture
changes in local regions than the global threshold used in
LBP and most LBP variants. To achieve a trade-off between
computational complexity and discrimination capability, we
set N = 4 in our experiments, thus acquiring 4 × 4 = 16 sub-
images. The gradient vector GP in the local region can be
therefore encoded into a localNFbinary pattern to participate
in the subsequent texture classification task.

Secondly, as proposed in Ojala’s work [9], there are high-
frequency and low-frequency patterns in the localNF pattern,
and their contribution to the texture classification is not of
equal importance. Accordingly, we need to encode them dif-
ferently. The uniform metric parameter, denoted as Ũ in the
following, which represents the bitwise of “0/1” and “1/0”
in NF binary string, is taken as the threshold to distinguish
between uniformNF patterns that occur with high-frequency
and non-uniform NF patterns that occur with low frequency.
WhenU (NF) ≤ Ũ , then this NF binary pattern is defined as
an NF uniform pattern; conversely, it is a non-uniform NF
pattern.

Subsequently, to fix a reasonable threshold Ũ , we select
different Ũ and conduct a series of experiments on the UIUC
texture database, which contains 25 different texture classes,
and each class consists of 40 different texture images. The
texture image size on the UIUC database is 640 × 480.
Table 1 shows that for different choices of U values, the
average percentage of non-uniformNF patterns on the UIUC
database. Observations reveal that if Ũ is chosen to be less
than or equal to 4, the non-uniform NF patterns occur with
higher frequency than uniform NF patterns, which is incon-
sistent with the previous definition. If Ũ = 6, at sampling
radius R = 1 or R = 2, the non-uniform NF patterns hardly
appear, which is not a reasonable situation. When Ũ is fixed
at 4, the occurrence frequency of non-uniform NF patterns
is consistent with Ojala’s research. We, therefore, set the Ũ
at 4 in the following encoding process of the NF pattern.

Finally, we propose the definition of neighbourhood fea-
ture (NF) pattern. Inspired by the local binary pattern (LBP)
method [47], the NF pattern is calculated by comparing
a pixel with its corresponding local adaptive threshold in
a sub-image. We introduce the coding strategy of locally
rotation-invariant pattern LBPriu2P, R [9]. Thus, the definition
of the NF pattern is as follows:

NFP, R =
{∑P−1

p=0 s(Ggp − tG), U (NF) ≤ 4
P + 1, otherwise

(7)

where the function s(x) is defined in Eq. (1), Ggp is the pro-
posed gradient of neighbourhood pixel gp,U (NF) represents
the number of bitwise changes between “0” and “1” in the
NF binary pattern, and the local adaptive threshold tG is the
average of Ggp in corresponding located sub-image.
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Fig. 5 An illusion of the two gradients G+, gp and G−, gp of the neighbourhood pixels in a local region

Fig. 6 An example to show that the gradient vector GP will not be changed when the centre pixel gc is polluted by noise

Fig. 7 The generation flow gram of local adaptive threshold
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Table 1 Average percentage of
non-uniform patterns (%) on
UIUC database using different
Ũ

The selection of Ũ (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

0 67.88 88.25 94.12

2 19.60 64.00 82.72

4 0.24 22.98 55.44

6 0.00 3.40 24.17

3.3 Neighbourhood feature-based local binary
pattern (NF-LBP)

In the subsection, we introduce a neighbourhood feature-
based local binary pattern (NF-LBP), which consists of three
parts: the sign part NF-LBP−S, the neighbourhood feature
part NF-LBP−NF, and the centre pixel part NF-LBP−C. The
sign part NF-LBP−S is the same as the locally rotation-
invariant pattern LBPriu2P, R . The neighbourhood feature part
NF-LBP−NF, defined in Eq. (7), reflects the local con-
trast and therefore preserves the neighbourhood feature of
the local texture region. The centre pixel part NF-LBP−C
expresses important local intensity information. We convert
it to binary code by employing the local adaptive threshold
as follows:

NF-LBP−C = s (gc − tc) (8)

where the function s(x) is the sign function defined in Eq. (1),
gc is the centre pixel, tc is the mean of gc in corresponding
located sub-image.

For clarity, the complete flowdiagramofNF-LBPdescrip-
tor is shown in Fig. 8.

In the end, we combine NF-LBP−S, NF-LBP−NF, and
NF-LBP−C jointly to build a 3D feature histogram of the
texture image for texture classification.

3.4 Complementarity to LBP and classification
performance comparisons of NF-LBP−NF and
CLBP−M

To verify the complementarity of our proposed NF-LBP−NF
to LBP and to demonstrate its excellent texture classifica-
tion capability, in this subsection, we conduct a series of
experiments on the UIUC database [49]. The UIUC database
consists of 25 different texture image classes, each containing
40 different texture images. In our experiments, k images of
every texture class are randomly chosen for training. The rest
texture images of each texture class are used for testing. k is
usually chosen as 5, 10, 15, or 20 to evaluate the algorithms’
discrimination performance of texture classification.

To illustrate the complementarity of the proposed NF-
LBP−NF to LBP, we test its texture classification capability
on the UIUC database and compare it with LBP and
CLBP−M. In this validation experiment, the sampling radius

R is chosen as 1, the number of sampled neighbourhood pix-
els is chosen as 8, and k is set to 10. That is, we randomly
select 10 images from each texture class as training images,
and the remaining 30 images as test images.

Firstly, as shown in Fig. 9, compared with LBP and
CLBP−M, NF-LBP−NF can correctly classify the largest
number of texture images, which implies that the classifi-
cation capability of NF-LBP−NF is better than LBP and
CLBP−M. Secondly, we assess the complementarity of NF-
LBP−NF to LBP and make a comparison with CLBP−M.
How well NF-LBP−NF and CLBP−M complement LBP is
demonstrated by howmany texture images they can correctly
classify that LBP misclassifies. Of the 374 texture images
correctly classifiedbyCLBP−M,227 images canbe correctly
classified by LBP, i.e. it correctly classifies 147= 374− 227
texture images, which are misclassified by LBP. Meanwhile,
for NF-LBP−NF, of the 465 texture images it correctly clas-
sifies, 264 can be correctly classified by LBP, which means
that NF-LBP−NF can additionally correctly classify 201 =
465− 264 texture images which are incorrectly classified by
LBP. Therefore, NF-LBP−NF shows stronger complemen-
tarity to LBP than CLBP−M, which proves the efficacy of
the proposed NF-LBP descriptor.

To further illustrate the outstanding classification capa-
bility of the neighbourhood feature NF-LBP−NF, we con-
struct 2D joint histograms, namely “CLBP−S/M” and “NF-
LBP−S/NF”, and conduct supplementary experiments on the
UIUC database. To ensure the reliability and authenticity of
our experimental results, we randomly select training images
and repeat this process independently 100 times. The decid-
ing result is the mean value of 100 experiments.

Firstly, we fixed R to 1 and P to 8. Then, we choose the
number of training images k to be 5, 10, 15, and 20, respec-
tively. As shown in Fig. 10, regardless of the choice of k,
NF-LBP−NF achieves a higher classification accuracy than
CLBP−M. The classification accuracy of NF-LBP−S/NF is
also higher than that of CLBP−S/M when combined with
LBP.This experiment further reveals that the proposed neigh-
bourhood feature NF-LBP−NF can extract discriminative
information from the local region.

Secondly, we set the number of training images k to 10
and choose (R, P) as (1, 8), (2, 16) and (3, 24), separately.
As shown in Fig. 11, accuracy results of NF-LBP−S/NF
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Fig. 8 The complete flow diagram of NF-LBP descriptor

Fig. 9 The classification results
of LBP, CLBP−M and
NF-LBP−NF on UIUC

Fig. 10 The classification accuracy of CLBP−M, CLBP−S/M, NF-LBP−NF, and NF-LBP−S/NF on UIUC database
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Fig. 11 The classification
accuracy of CLBP−S/M and
NF-LBP−S/NF on UIUC
database with different sampling
parameters

are always higher than CLBP−S/M, thus proving that NF-
LBP−NF has superior classification performance.

Table 2 illustrates the accuracy results of ablation study by
using three components of our proposed NF-LBP descriptor,
namely NF-LBP−S, NF-LBP−NF, and NF-LBP−C, and D
represents the corresponding the dimensionality of feature
histogram. It can be observed that the highest texture clas-
sification accuracy is achieved when all parts are used (i.e.
NF-LBP), which can further prove the overall complemen-
tarity among these components. Additionally, by comparing
the classification accuracy of different combinations, we
can also observe the mutually complementary relationships
between two corresponding parts. Combining the sign part
and neighbourhood feature part (i.e. NF-LBP−S/NF) consis-
tently outperforms than other combining methods. Similarly,
using the sign component and centre pixel component (i.e.
NF-LBP−S/C), as well as the neighbourhood feature part
and centre pixel part (i.e. NF-LBP−NF/C), also demonstrate
improved classification accuracy. Therefore, we can observe
from the ablation results that the three parts of the proposed
NF-LBP exhibit complementary relationships, and the best
texture classification accuracy is always achieved when all
parts are utilized.

3.5 Dissimilarity measure

In order to calculate the similarity between different texture
images, we adopt Chi-square statistics χ2 as the distance
between different extracted feature histograms in this paper.
If M = mi and N = ni represent two feature histograms
of two texture images, respectively, the χ2 statistics can be
calculated as follows:

Disχ2(M, N )) =
B∑

i=1

(mi − ni )2

mi + ni
(9)

where B is the dimension of these two histograms M and N .
The effectiveness of content-based feature descriptors can

be evaluated by the accuracy of texture classification. In
the experiments, we used the nearest-neighbour classifier
(NNC), which is determined by the ratio of accurately clas-
sified images to the total number of images, and this reflects
the precision of the nearest-neighbour classifier in classifying
texture images.

Moreover, we employed the F1 score as another per-
formance assessment metric to demonstrate the superior
classification capability of the proposed NF-LBP method.
The F1 score is a widely recognized metric for assessing
the performance of content-based image classification. It
takes into account both precision P(L) and recall R(L). In
our experiments, we firstly employ LBP-based algorithms
to obtain a collection of the L highest-ranked images cor-
responding to every query image. We then determine the
number of texture images that are relevant in both the top
L list and corresponding texture database. At last, we can
compute P(L) and R(L) using the following formulas:

P(L) = Nr/M

R(L) = Nr/Nt
(10)

where the count of relevant images obtained from the top
L ranked images is denoted as Nr , while Nt represents the
number of relevant images of entire texture database corre-
sponding to query images.

As the average evaluation metric depending on P(L) and
R(L), F1 score f (L) is calculated as follows:

f (L) = P(L) × R(L)

P(L) + R(L)
× 2 (11)
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4 Experimental results and analyses

In order to showcase effectiveness and superior performance
of our proposed NF-LBP algorithm in texture classification,
we conducted a range of experiments using six representative
texture databases, which include UIUC [49], CUReT [50],
Outex [48], XU−HR [51], and ALOT [52]. Table 3 summa-
rizes key characteristics of the chosen five databases.

In order to demonstrate the performance and efficacy
of our proposed NF-LBP method, we compare its clas-
sification accuracy with that of the LBP algorithm and
several widely used and notable LBP variations LBP vari-
ants, including LBP [9], CLBP [12], LTP [10], CLBC [13],
CRDP [25], BRINT [17], LNDP [28], CMPE [29], and
LNIRP/LBP/DCI (denoted as LNIRP) [26]. In following
subsections, R indicates selected sampling radius, and P
indicates neighbourhood pixels’ number. In the following
result tables of classification accuracy, the bold numbers rep-
resent the highest classification accuracy of all LBP-based
algorithms.

4.1 Detailed analyses of the computational
complexity and feature histogram dimension of
the NF-LBP

In this subsection, we discuss the computational complexity
and feature histogram dimension of the proposed NF-LBP
descriptor and analyse them experimentally, as the algo-
rithm’s complexity can significantly impact its evaluation.
However, accurately calculating the computational complex-
ity of texture classification algorithms can be challenging and
is not always represented by a simple formula. To address
this, we consider the runtime as the computational cost of the
LBP-based algorithm, which allows for a direct comparison
of computational complexity among LBP-based algorithms.

A series of experiments are conducted on the CUReT tex-
ture database using a PC equipped with an AMD Ryzen 5
4600U, 2.1 GHz CPU, 16GB RAM, and MATLAB R2019b.
There are 61 texture classes in CUReT database, each con-
taining 92 different texture images. For our runtime tests, we
randomly select 46 images from each class for training and
use the remaining 46 images for testing.

Generally, a texture classification algorithm typically con-
sists of two primary stages: feature extraction and texture
classification. Thus, the computational complexity includes
the time for both stages. Table 4 presents the average time
taken for feature extraction of one image on the CUReT
database for the original LBP, LBP variants, and the pro-
posed NF-LBP. Table 5 shows the average time for texture
classification of one image on the CUReT database, as well
as the feature histogram dimension of the original LBP, LBP
variants, and the proposed NF-LBP.
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Table 3 A prospectus of each representative texture database’s key characteristic

Texture database Rotation Variation of illumination Variation of scale Classes Size Images each class Total number of images

UIUC � � � 25 640×480 40 1000

CUReT � � × 61 200×200 92 5612

Outex_TC10 � × × 24 128×128 180 4320

Outex_TC12‘t’ � � × 24 128×128 200 4800

Outex_TC12‘h’ � � × 24 128×128 200 4800

XU_HR � � � 25 1280×960 40 1000

ALOT � � � 250 384×256 100 25,000

Table 4 Average runtime (s) of
feature extraction for one image
on CUReT database

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

LBP 0.0108 0.0251 0.0363

CLBP 0.0233 0.0486 0.0645

LTP 0.0166 0.0312 0.0465

CLBC 0.0225 0.0373 0.0534

CRDP 0.0344 0.0938 0.2285

BRINT 0.0320 0.0476 0.0649

LNDP 0.0242 0.0649 0.0955

CMPE 0.0291 0.0485 0.0674

LNIRP 0.9903 0.9365 0.9098

NF−LBP 0.0397 0.0688 0.1356

Table 5 Feature histogram dimension of LBP-based algorithm and their average runtime (s) of texture classification for one image on CUReT
database

Method (R, P) = (1, 8) Histogram dimension (R, P) = (2, 16) Histogram dimension (R, P) = (3, 24) Histogram dimension

LBP 0.0041 10 0.0055 18 0.0075 26

CLBP 0.1844 200 0.6269 648 1.1865 1352

LTP 0.0062 20 0.0096 36 0.0374 52

CLBC 0.1593 162 0.5681 578 1.1009 1250

CRDP 0.1844 200 0.6269 648 1.1865 1352

BRINT 0.1305 144 0.1305 144 0.1305 144

LNDP 0.0062 20 0.0096 36 0.0374 52

CMPE 0.0719 80 0.1305 144 0.1923 208

LNIRP 0.1844 200 0.1844 200 0.1844 200

NF-LBP 0.1844 200 0.6269 648 1.1865 1352

Table 4 shows the results of the runtime analysis of the
proposed NF-LBP and other LBP-based methods for feature
extraction on the CUReT texture database. The computa-
tional time of NF-LBP is linearly related to the radius R and
the number of neighbourhood pixels P . For instance, with
R = 1 and P = 8, NF-LBP can extract texture features
from an image in the CUReT database in 0.0397s, and the
time increases to 0.1356s for R = 3 and P = 24. Although
the computational cost of NF-LBP for feature extraction
exceeds that of the original LBP and its variants, exclud-
ing LNIRP, due to its extraction of neighbourhood features

and local adaptive thresholding method for neighbourhood
pattern encoding, it does not grow exponentially, and it is an
acceptable cost considering its strong complementarity and
excellent classification capability.

Following feature extraction, a feature histogram is gener-
ated to represent each texture image. For feature classification
stage, LBP-based algorithms utilize the χ2 statistics to mea-
sure the dissimilarity between two histograms, as discussed
in Sect. 3.5. As shown in Eq. (9), the computational cost of
texture classification is closely tied to the dimensionality of
the feature histogram. Therefore, the dimension of the fea-
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ture histogram should be taken into account when evaluating
the computational complexity of texture classification algo-
rithms.

The results shown in Table 5 confirm that the runtime of
the classification process is influenced by the dimensional-
ity of the feature histogram. Significantly, when the feature
dimension is large, the runtime of texture classification sur-
passes that of feature extraction. With R = 3 and P = 24,
the runtime of NF-LBP for texture classification is 1.1865s,
and that of CLBP for texture classification is also 1.1865s.
Despite the increased computational cost for feature extrac-
tion, the runtime of NF-LBP is still lower than that of texture
classification. Furthermore, feature histogram dimension of
MC-LBP is as large as that of CRDP and CLBP, resulting
in the same runtime for texture classification. Although the
feature histogram dimension of NF-LBP is larger than that of
other LBP variants, the additional feature dimension brings
about improvements in classification capability. Thus, the
increased feature histogram dimension is justified.

Using our proposed NF-LBP descriptor incurs additional
computational cost. However, it enables a comprehensive
extraction of local features by effectively utilizing neigh-
bourhood features, thereby improving the discrimination
capability of texture classification. Nonetheless, the program
code used in our experiments is not fully optimized, nor is
it parallelized. In future work, we will focus on optimizing
the program code for large texture images and implementing
LBP-based methods on GPU to improve their speed.

4.2 Experimental results and analyses on UIUC
database

Figure12 shows a collection of 25 high-definition texture
image categories from the UIUC database. This database
consists of 40 texture images in each class, all captured in
real-world environments with notable variations in view-
ing angles. Therefore, texture classification on the UIUC
database poses a significant challenge. We select N images
randomly from each class for training, where N is set to 5,
10, 15, or 20. The remaining 40 - N images are then used
for testing. To evaluate the algorithm’s texture classifica-
tion capability, we conduct experiments by choosing N as
5, 10, 15, and 20. To ensure reproducibility, we repeat each
experiment 100 times. The accuracy result is determined by
calculating average classification accuracy.

As presented in Table 6, NF-LBP, CLBP, and CLBC all
exhibit significantly higher accuracy compared with other
LBP-based algorithms. Compared to CLBC, the accuracy
of the NF-LBP is 4.25%, 3.94%, 5.08%, and 4.65% higher
when R = 3 and P = 24.Moreover, NF-LBP showsmore than
a 9% improvement in classification accuracy over BRINT
across all (P , R). Additionally, in the case of (R, P) = (1,
8), LNIRP’s classification accuracy is lower thanNF-LBP by

Fig. 12 The 25 different texture classes on UIUC

9.18%, 9.89%, 11.62%, and 14.43%, respectively. The com-
parison of classification accuracy demonstrates the superior
performance of the NF-LBP.

Table 7 shows the F1 scores of LBP and its vari-
ants on UIUC. We can observe that NF-LBP outperforms
all other LBP variants. The NF-LBP achieves F1 scores
of 62.03%, 70.31%, 75.78%, 76.15%, 63.32%, 72.20%,
78.31%, 79.25%, 63.68%, 72.48%, 78.31%, and 78.73%
for different combinations of R and P . Comparing NF-LBP
with other LBP variants, it is clear that NF-LBP significantly
outperforms all other methods in terms of F1 scores. For
example, the F1 scores of NF-LBP are about 3−16% higher
than the second-best performing method, CLBP, across all
combinations of R and P . The F1 scores of NF-LBP are also
significantly higher than other LBP variants. In summary,
the proposed NF-LBP method achieves the best F1 scores
on the UIUC texture database compared to all other LBP
variants, demonstrating its superior performance in texture
classification tasks.

4.3 Experimental results and analyses on CUReT
database

Figure13 illustrates that CUReT database comprises 61 dis-
tinct image classes, which were captured under varying
external conditions including illumination, viewing angles,
and rotations. Each class includes 92different texture images.
N images of each class are chosen randomly for training,
where N is set to 6, 12, 23, or 46. The remaining images
(92 − N ) are then used for testing. We conduct per experi-
ment 100 times. The mean accuracy will be computed as the
outcome.

Table 8 presents the classification accuracy, where 46, 23,
12, and 6 indicate the values of N .
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Table 6 Texture classification accuracy (%) on UIUC

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

20 15 10 5 20 15 10 5 20 15 10 5

LBP 55.33 52.02 47.47 40.09 60.67 56.76 51.70 42.63 64.23 60.19 54.66 44.83

CLBP 87.64 85.67 82.65 75.05 91.04 89.42 86.29 78.57 91.19 89.21 85.95 78.05

LTP 68.56 65.21 60.34 51.21 78.50 75.45 69.96 59.46 82.28 78.48 73.19 61.84

CLBC 87.83 85.66 82.35 74.57 91.04 89.66 86.63 79.48 91.39 90.10 86.45 79.75

CRDP 84.39 81.69 77.28 68.42 89.48 86.94 83.04 73.02 89.69 87.44 83.05 73.66

BRINT 79.20 76.12 70.95 61.77 83.71 81.68 77.15 67.98 86.68 83.93 79.76 70.53

LNDP 59.97 56.46 50.89 42.60 61.80 58.11 52.21 42.23 64.06 60.70 54.85 44.78

CMPE 78.91 76.21 71.94 62.24 83.13 80.38 76.17 66.35 84.09 81.48 77.06 67.03

LNIRP 83.50 81.33 76.76 67.40 88.25 86.30 82.14 72.78 90.94 89.16 85.23 76.09

NF-LBP 92.68 91.22 88.38 81.83 95.15 93.73 91.41 85.20 95.64 94.04 91.53 84.40

Table 7 The F1 scores (%) on UIUC

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

20 15 10 5 20 15 10 5 20 15 10 5

LBP 36.78 40.11 40.79 37.30 40.70 43.78 44.24 39.46 42.71 46.48 46.78 41.74

CLBP 58.14 65.96 70.67 69.76 60.67 68.85 73.97 73.28 60.68 68.58 73.61 72.71

LTP 45.66 50.18 51.26 47.26 52.42 58.29 60.04 55.19 54.81 60.33 62.33 57.71

CLBC 48.89 53,38 55.11 50.46 52.82 58.24 60.61 56.16 53.73 59.58 61.90 58.08

CRDP 56.29 62.83 66.27 64.16 59.52 66.77 70.77 68.76 59.91 67.32 71.19 68.25

BRINT 52.94 58.48 60.77 57.82 55.97 62.72 66.22 63.53 57.74 64.28 68.14 65.77

LNDP 39.74 43.33 43.86 39.39 41.11 44.71 44.74 39.52 42.81 46.57 47.06 41.78

CMPE 52.64 58.67 61.77 58.40 55.36 61.96 65.21 62.13 56.05 62.71 66.18 62.58

LNIRP 55.72 62.49 65.72 63.11 58.97 66.35 70.29 68.22 60.78 68.37 73.36 71.07

NF-LBP 62.03 70.31 75.78 76.15 63.32 72.20 78.31 79.25 63.68 72.48 78.31 78.73

Fig. 13 The different texture
classes on CUReT
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As the classification accuracy presented in Table 8, among
the LBP-based methods, compared to LBP and LTP, NF-
LBP, CLBP, CLBC, CRDP, BRINT, LNDP, CMDP, and
LNIRP exhibit significantly superior classification accuracy.
Notably, BRINT shows better performance when R = 1. The
proposed NF-LBP achieves the highest classification accu-
racy for (R, P) = (1, 8) or (2, 16), surpassing CLBP, CLBC,
CRDP, BRINT, LNDP, CMPE, and LNIRP. The best classifi-
cation accuracy forNF-LBP is 96.85%, 93.41%, 87.28%, and
77.04%, respectively, for N of 46, 23, 12, and 6. On CUReT
database, NF-LBP attains its best classification accuracy at
radius R = 2 with the same dimensionality of CLBP and
CRDP. The comparison results on CUReT database demon-
strate the effectiveness and outstanding performance of the
proposed NF-LBP in texture classification.

Table 9 shows the F1 scores on the CUReT database
for different LBP variants. Among all the LBP-based algo-
rithms, NF-LBP has the highest F1 score. Specifically, with
(R, P) = (1, 8), NF-LBP outperforms other algorithmswith
the F1 scores of 64.29%, 79.56%, 80.49%, and 74.04%.
When R = 2 and P = 16, NF-LBP also performs the
best, achieving F1 scores of 64.52%, 80.01%, 81.13%, and
74.51%. At R = 3 and P = 24, NF-LBP achieves F1 scores
of 63.15%, 77.61%, 77.71%, and 70.71%, which is lower
than the best-performing algorithm, CLBP. Overall, based
on the F1 scores on the CUReT database, NF-LBP demon-
strates superior classification performance compared to the
majority of other LBP variants.

4.4 Experimental results and analyses on Outex
database

The popular Outex database consists of two subsets of
images, namely Outex−TC10 and Outex−TC12. The sample
images of Outex database are shown in Fig. 14. Each subset
includes a total of 24 texture image classes, which were cap-
tured with three distinct illuminations (“inca”, “tl84”, and
“horizon”) and nine unique rotation angles (0◦, 5◦, 10◦, 15◦,
30◦, 45◦, 60◦, 75◦, and 90◦), with each rotation angle under
a given illumination condition having twenty corresponding
texture images. For the Outex−TC10 subset, images cap-
tured with “inca” illumination and a rotation angle of 0◦ are
used for training, while the images with illumination “inca”
are employed for testing. On the Outex−TC12 subset, we
select texture images obtained with illumination “tl84” and
“horizon” for testing. In this case, the images for training are
chosen exactly the same as for the Outex−TC10 subset.

The accuracy result of LBP-based algorithms is presented
in Table 10, where ‘h’ represents the “horizon” illumination
condition, and ‘t’ represents the “tl84” illumination condi-
tion.

Table 10 showcases the superior texture classification
accuracy achieved by our proposed NF-LBP algorithm in

comparisonwith otherLBP-basedmethods.OnOutex−TC10
image subset, NF-LBP has the highest accuracy results of
98.44%, 99.45%, and 98.96%, which is 1.93%, 0.8%, and
0.03% higher than CLBP, and 1.64%, 1.25%, and 0.97%
higher than CRDP, respectively. Compared with LNDP,
NF-LBP achieves 3.75%, 10.37%, and 10.44% higher clas-
sification accuracy when (R, P)=(3, 24) on three different
subsets, respectively. Hence, the NF-LBP method demon-
strates outstanding texture discrimination performance.

Table 11 shows the F1 scores of compared LBP-based
methods onOutex.When considering (R, P)= (1, 8), theNF-
LBP algorithm achieved an F1 score of 92.65% on the TC10
dataset, which is the highest score achieved by any algorithm
in this category. In contrast, the LBP algorithm achieved an
F1 score of 79.88%, which is significantly lower than NF-
LBP. Similarly, on the TC12 dataset, the NF-LBP algorithm
achieved an F1 score of 85.59%, which is higher than all
other LBP variants, except for CLBP, CMPE and LNIRP.
When (R, P) = (2, 16), the NF-LBP algorithm achieved the
highest F1 score of 93.60% on the TC10 dataset, which is
significantly higher than the LBP algorithm’s F1 score of
84.14%. Similarly, on the TC12 dataset, the NF-LBP algo-
rithm’s F1 score of 88.05% is higher than most of other LBP
variants, except for CRDP,CMPE, andLNIRP. Finally,when
(R, P) = (3, 24), the NF-LBP algorithm achieved an F1 score
of 93.01% on the TC10 dataset, which is higher than all other
LBP variants, except for CRDP and CMPE. Similarly, on the
TC12 dataset, the NF-LBP algorithm achieved an F1 score of
89.19%, which is higher than all other LBP variants, except
for CLBP and LNIRP.

These comparison results suggest that the proposed NF-
LBP algorithm is able to capture more discriminative texture
features than these existing algorithms. Compared to CLBP
and CRDP, which achieve the highest F1 scores in some
cases, NF-LBP has comparable performance. However, it is
worth noting that the computation complexity of NF-LBP
is much lower than that of CRDP, as shown in Table 4.
Therefore, NF-LBP is a more efficient alternative for practi-
cal applications where computational resources are limited.
In conclusion, NF-LBP demonstrates superior performance
compared to several LBP variants on the Outex texture
database, and it is an efficient and effective approach for
texture analysis.

4.5 Experimental results and analyses on XU−HR
database

XU−HR database consists of similar images as those on
UIUC, butwith a larger size of 1280× 960,which is shown in
Fig. 15. The XU−HR database has the same size and factors
contributing to intra-class variations as UIUC, containing 25
diverse classes. Every class comprises 40 texture images,
with notable changes in viewing angles, illumination, and
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Table 8 Texture classification accuracy (%) on CUReT

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

20 15 10 5 20 15 10 5 20 15 10 5

LBP 81.71 75.59 68.01 58.45 85.90 79.95 72.82 63.43 87.78 82.43 75.76 67.05

CLBP 95.94 91.93 85.18 75.13 96.27 92.53 86.33 76.19 96.41 92.91 86.70 76.91

LTP 85.24 77.66 68.25 57.33 91.26 85.38 77.61 67.01 93.77 88.59 81.18 70.87

CLBC 96.02 91.06 84.44 73.65 96.55 92.9 87.15 76.32 96.07 91.42 85.75 74.01

CRDP 95.01 91.22 84.92 74.75 94.35 90.10 83.58 73.40 89.88 84.74 77.62 67.68

BRINT 95.02 90.95 84.44 74.20 93.95 89.26 82.43 72.38 94.12 89.40 82.17 71.97

LNDP 84.61 79.19 71.83 62.26 86.36 80.69 73.29 64.01 87.77 82.48 75.86 67.37

CMPE 93.75 89.22 82.78 73.04 94.59 90.35 84.06 74.34 94.84 90.36 83.76 73.64

LNIRP 95.03 91.11 84.44 74.51 94.98 91.03 84.65 74.77 94.49 90.07 82.99 72.67

NF−LBP 96.57 93.03 86.88 77.01 96.85 93.41 87.28 77.04 94.87 90.45 83.60 73.21

Table 9 The F1 scores (%) on CUReT

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

46 23 12 6 46 23 12 6 46 23 12 6

LBP 54.47 64.80 63.34 56.59 57.26 68.69 67.69 61.15 58.53 70.71 70.65 64.86

CLBP 63.99 78.69 79.33 71.66 64.24 79.32 80.39 74.03 64.33 79.55 80.69 74.45

LTP 56.86 66.59 63.58 55.35 60.81 73.18 72.20 64.77 62.52 76.01 75.58 68.44

CLBC 64.04 77.95 78.64 70.25 64.43 79.64 81.15 74.16 64.10 78.27 79.81 71.64

CRDP 63.38 78.13 78.89 72.38 62.89 77.22 77.65 71.09 59.97 72.60 72.14 65.23

BRINT 63.40 77.95 78.63 71.93 62.66 76.49 76.74 69.90 62.78 76.59 76.57 69.66

LNDP 56.43 67.80 66.79 59.99 57.51 69.09 68.08 61.45 58.54 70.71 70.66 64.86

CMPE 62.55 76.66 77.16 70.59 63.12 77.52 78.12 71.83 63.21 77.49 77.94 71.15

LNIRP 63.38 78.11 78.88 72.02 63.36 78.05 78.83 72.33 63.08 77.21 77.28 70.21

NF−LBP 64.29 79.56 80.49 74.04 64.52 80.01 81.13 74.51 63.15 77.61 77.71 70.71

Fig. 14 The 24 different texture
classes on Outex
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Table 10 Texture classification
accuracy (%) on Outex

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

TC10 TC12 TC10 TC12 TC10 TC12

‘t’ ‘h’ ‘t’ ‘h’ ‘t’ ‘h’

LBP 84.87 65.19 64.03 89.40 82.48 75.30 95.16 85.05 80.88

CLBP 96.51 90.09 92.13 98.65 93.54 93.91 98.93 95.32 94.48

LTP 94.56 72.25 71.83 96.09 88.26 86.20 97.83 93.38 89.26

CLBC 97.16 89.79 92.92 98.54 93.26 94.07 98.78 94.00 93.24

CRDP 96.80 92.82 93.89 98.20 94.93 93.89 97.99 94.07 91.67

BRINT 91.87 86.46 88.50 96.43 93.38 93.98 96.04 94.47 94.40

LNDP 82.76 67.85 66.44 89.53 82.38 75.32 95.21 85.09 80.88

CMPE 96.82 92.01 91.00 97.89 93.89 93.50 98.41 94.33 93.33

LNIRP 96.48 91.55 92.20 97.60 95.44 94.77 98.57 95.25 94.93

NF−LBP 98.44 90.35 91.67 99.45 92.94 92.06 98.96 95.46 91.32

Table 11 The F1 scores (%) on
Outex

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

TC10 TC12 TC10 TC12 TC10 TC12

‘t’ ‘h’ ‘t’ ‘h’ ‘t’ ‘h’

LBP 79.88 61.65 60.66 84.14 78.14 71.34 89.56 80.56 76.62

CLBP 90.83 85.35 87.28 92.89 88.64 88.73 93.19 90.26 89.45

LTP 89.00 68.44 68.05 90.93 83.62 81.67 92.67 88.46 84.56

CLBC 87.25 72.04 74.23 89.80 78.31 78.11 88.73 75.81 77.41

CRDP 91.10 87.94 88.90 92.43 89.93 88.95 92.18 89.12 86.84

BRINT 86.50 82.13 83.77 90.83 88.57 89.39 90.39 89.52 89.39

LNDP 77.89 64.28 62.94 84.26 78.05 71.36 89.61 80.61 76.62

CMPE 91.13 87.17 86.21 92.13 88.95 88.57 92.62 89.36 88.42

LNIRP 90.81 86.73 87.35 91.86 90.42 89.78 92.77 91.18 89.93

NF−LBP 92.65 85.59 86.84 93.60 88.05 87.21 93.01 89.19 86.51

Fig. 15 The 25 different texture classes on XU−HR

scales. N images are selected randomly from each class for
training, where N is set to 5, 10, 15, or 20. The remaining
images (40 −N ) are then used for testing. We conduct per

experiment 100 times and compute the deciding result by
calculating the average accuracy of these 100 experiments.

The accuracy on XU−HR is presented in Table 12. As the
average classification results shown in Table 12, NF-LBP
achieves the best performance compared to other LBP-based
algorithms for all parameter settings of (R, P). Additionally,
NF-LBP achieves superior performance compared to CLBP
and CRDP, despite having the same histogram size (the his-
togram dimensionality for NF-LBP, CLBP, and CRDP at R =
1, 2, and 3 are 200, 648, and 1352, respectively). Compared
with CMPE, classification accuracy of NF-LBP is 1.64%,
2.16%, 2.93%, and 4.41% higher when R = 1. Hence, the
comparison results on XU−HR serve as further evidence of
the outstanding classification performance of the NF-LBP,
showcasing its state-of-the-art capabilities.

Table 13 shows the F1 scores of LBP and its variants on
XU−HR. The table presents the results for three sets of LBP
parameters, namely (R, P) = (1, 8), (2, 16), and (3, 24).
Comparing the results, we observe that NF-LBP achieves
the highest F1 scores among all LBP variants for all param-
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Table 12 Texture classification accuracy (%) on XU−HR

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

20 15 10 5 20 15 10 5 20 15 10 5

LBP 88.57 85.83 82.06 73.58 88.87 86.78 82.76 74.15 90.71 88.17 84.62 75.43

CLBP 96.62 96.05 94.43 90.63 97.38 96.69 95.32 91.73 97.43 96.76 95.28 91.47

LTP 88.80 86.70 83.12 75.03 92.27 90.21 87.05 79.57 93.58 91.80 88.75 81.03

CLBC 96.79 96.02 94.75 90.83 97.72 96.88 95.37 91.28 97.65 96.89 95.34 90.79

CRDP 97.02 96.21 94.56 91.08 97.79 96.85 95.29 91.08 97.86 96.73 95.35 90.22

BRINT 96.21 95.34 93.48 89.31 96.48 95.21 93.54 88.41 96.87 96.02 94.20 89.08

LNDP 90.60 88.59 84.97 77.98 89.78 87.78 84.11 75.66 90.91 88.71 84.72 75.55

CMPE 96.08 95.10 93.34 88.79 97.14 96.04 94.27 89.43 97.40 96.41 94.54 89.50

LNIRP 96.89 96.07 94.54 90.55 97.88 97.11 95.51 85.14 97.91 97.22 95.67 91.12

NF−LBP 97.72 97.26 96.27 93.20 97.82 97.12 95.93 92.37 97.82 97.13 95.86 91.77

Table 13 The F1 scores (%) on XU−HR

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

20 15 10 5 20 15 10 5 20 15 10 5

LBP 58.86 66.03 70.34 69.02 59.27 66.62 71.11 69.82 60.71 68.12 72.28 69.93

CLBP 64.43 73.73 81.11 84.78 64.90 74.41 81.64 85.58 64.96 74.32 81.63 85.10

LTP 59.07 66.61 70.86 70.21 61.30 69.31 74.48 74.37 62.19 70.53 75.65 75.51

CLBC 60.45 68.08 72.36 69.97 61.74 69.76 75.09 74.43 63.35 71.58 77.08 76.76

CRDP 64.65 74.02 81.18 85.09 65.28 74.63 81.70 84.83 65.11 74.43 81.56 84.49

BRINT 64.12 73.22 80.00 83.43 64.30 73.20 80.01 82.71 64.61 73.93 80.93 83.43

LNDP 60.51 68.04 73.13 72.97 59.93 67.49 72.22 70.93 60.69 68.16 72.79 70.98

CMPE 64.16 73.17 79.90 82.66 64.89 73.95 80.69 83.26 65.02 74.15 80.97 83.34

LNIRP 64.71 73.89 80.88 84.36 65.25 74.72 81.67 85.23 65.26 74.70 81.93 84.64

NF−LBP 65.02 74.73 82.41 86.82 65.10 74.75 82.23 86.31 65.11 74.73 82.15 86.01

eter settings. For example, for (R, P) = (3, 24), NF-LBP
achieves the highest F1 score of 86.01%, which is higher
than the best-performing alternative, CRDP with 85.09%,
by a margin of 0.92%. Furthermore, when R = 1, F1 scores
of NF-LBP are, respectively, 0.31%, 0.84%, 1.53%, and
2.46% higher than those of LNIRP. The results show that
NF-LBP outperforms all other LBP variants across different
parameter settings. Among the other LBP variants, CRDP
achieves the second-best performance, followed by CMPE,
BRINT, CLBP, CLBC, LTP, and LNDP, in decreasing order
of F1 scores. In summary, NF-LBP outperforms all other
LBP variants across different parameter settings, indicating
its effectiveness for texture classification tasks.

4.6 Experimental results and analyses on ALOT
database

Figure16 presents a small sampling of the ALOT database,
which comprises 250 classes of texture images. Each class
contains 100 texture imageswith variations in viewing angles

Fig. 16 The different texture classes on ALOT

and illumination. In our experiments, we convert all texture
images on ALOT database to greyscale. We select N images
of each class at random for training. The rest images (100
−N ) are then used for testing. We conduct experiments 100
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Table 14 Texture classification accuracy (%) on ALOT

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

50 25 12 6 50 25 12 6 50 25 12 6

LBP 82.28 71.85 58.12 43.77 86.23 75.60 62.41 47.47 85.95 76.53 63.46 48.98

CLBP 93.68 87.35 76.90 62.69 95.77 90.92 80.78 65.71 95.93 91.40 81.25 68.31

LTP 86.54 77.34 63.52 49.67 91.32 84.18 71.96 57.86 92.85 86.03 74.28 60.37

CLBC 80.87 70.15 57.36 44.76 83.78 74.44 61.84 49.22 83.53 74.41 61.83 49.47

CRDP 93.97 88.15 77.36 63.72 94.63 89.67 79.01 65.76 94.42 89.22 78.05 65.33

BRINT 90.89 83.03 71.19 57.27 90.59 83.68 72.46 58.84 91.46 84.49 73.45 60.45

LNDP 86.19 76.27 61.90 47.31 86.20 76.24 61.72 47.19 85.89 76.18 62.14 47.99

CMPE 88.28 80.55 69.09 55.94 90.53 83.73 73.38 60.63 91.09 84.44 74.24 61.80

LNIRP 93.90 87.59 76.57 63.25 94.70 89.06 78.95 66.39 94.57 88.88 79.03 66.73

NF−LBP 95.54 89.81 78.85 65.44 96.64 92.04 82.60 70.14 96.49 91.98 82.56 70.40

Table 15 The F1 scores (%) on ALOT

Method (R, P) = (1, 8) (R, P) = (2, 16) (R, P) = (3, 24)

50 25 12 6 50 25 12 6 50 25 12 6

LBP 54.70 61.64 54.22 42.79 57.25 65.24 57.94 46.22 57.31 65.77 59.09 47.68

CLBP 62.47 74.98 71.57 61.15 63.73 77.37 75.41 65.98 63.88 77.80 75.99 66.74

LTP 57.87 66.42 59.48 48.06 61.06 72.17 67.15 56.01 62.06 73.71 69.57 58.92

CLBC 53.88 60.30 53.85 43.51 55.97 63.73 58.08 47.83 55.83 63.77 58.06 48.13

CRDP 62.69 75.30 72.03 61.71 63.16 76.44 73.95 64.07 62.98 75.99 73.31 63.62

BRINT 60.67 71.28 66.49 55.78 60.57 71.46 67.53 57.63 60.96 72.28 68.46 59.12

LNDP 57.42 65.26 58.10 46.26 57.37 65.16 57.92 46.14 57.31 65.30 58.33 46.77

CMPE 58.83 68.93 64.47 54.37 60.41 71.63 68.47 59.08 60.74 72.28 69.42 60.39

LNIRP 62.62 75.03 71.65 61.44 63.24 76.17 73.77 64.45 63.14 76.05 73.93 64.87

NF−LBP 63.69 76.98 73.82 63.42 64.42 78.89 77.32 67.97 64.33 78.84 77.29 68.23

times to eliminate randomness in classification accuracy and
get the deciding result by calculating the mean accuracy of
these 100 experiments.

Table 14 shows the classification accuracy of all compared
methods on ALOT texture database. Based on the results
in Table 14, it can be observed that the conventional LBP
and most of its variants are outperformed by our proposed
NF-LBP method. For instance, when (R, P) = (1, 8), NF-
LBP attains higher classification accuracy of 4.65%, 6.78%,
7.66%, and 8.17% than the BRINT algorithm and of 1.57%,
1.65%, 1.49%, and 1.72% than the CRDP algorithm. Com-
pared with LNIRP, NF-LBP can achieve an average 2.08%
higher classification accuracy. The results on ALOT fur-
ther confirm the extraordinary performance of the NF-LBP
method.

Table 15 shows the F1 scores of compared LBP-based
algorithms on ALOT, evaluated at different values of R and
P . Among the LBP variants evaluated, the NF-LBP algo-
rithm consistently achieves the highest F1 score across all
parameter settings. Specifically, NF-LBP outperforms all

other algorithmswith respect to all values of R and P , achiev-
ing an F1 score of 63.69% at R = 1 and P = 8, and an F1
score of 68.23% at R = 3 and P = 6. It is worth noting, how-
ever, that some of these algorithms, such as CLBP, CRDP,
and LNIRP, still achieve relatively high F1 scores compared
to others, indicating their usefulness in certain texture recog-
nition applications.

4.7 Experimental results and analyses of noise
robustness to Gaussian noise

To test the noise robustness of the proposedNF-LBP toGaus-
sian noise, we conduct experiments on two texture databases:
Outex−TC10 and CUReT. Specifically, in our experiments,
46 images in each texture class are chosen at random for train-
ing with the rest 46 images for testing on CUReT database.
Additionally, the greyscale values of each image are normal-
ized in the range of [0, 1]. Next, we add Gaussian noise of
mean zero and variance ranging from 0.005 to 0.025 with the
interval of 0.005. As demonstrated in Fig. 17, the increasing
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Fig. 17 A Gaussian-noised sample image on CUReT database with
different Gaussian noise variance σ

Fig. 18 Classification accuracy when R = 1 with the different Gaussian
noise variance σ on CUReT

variance σ of Gaussian noise results in increasingly illegible
texture images, thereby making classification more difficult.

To evaluate the noise robustness of the proposed NF-LBP,
we compare its classification accuracy with the representa-
tive LBP-based algorithms, namely the conventional LBP,
CLBP, and BRINT against Gaussian noise. The accuracy
with different sampling radius R and under different vari-
ance σ of Gaussian noise is, respectively, presented in
Figs. 18, 19, 20, 21, 22, and 23.

Figures18, 19, 20, 21, 22, and 23 illustrate that compared
with LBP, CLBP, and BRINT, NF-LBP is less sensitive to
Gaussian noise for all parameter pairs of (R, P) on CUReT
and Outex−TC10. For instance, in Fig. 20, when R is 2,
the accuracy of the proposed NF-LBP decreases at a slower
rate than that of LBP, CLBP, and BRINT as the variance σ

increases. In Fig. 19, our proposed NF-LBP shows stronger
noise robustness than BRINT, especially when the variance
σ is larger. In Fig. 23, accuracy results reveal that the classi-
fication performance of NF-LBP and CLBP is very similar
without Gaussian noise on Outex−TC10 database when R =
3. However, with increasing Gaussian noise variance σ , the

Fig. 19 Classification accuracy when R = 1 with the different Gaussian
noise variance σ on Outex−TC10

Fig. 20 Classification accuracy when R = 2 with the different Gaussian
noise variance σ on CUReT

Fig. 21 Classification accuracy algorithms when R = 2 with the differ-
ent Gaussian noise variance σ on Outex−TC10
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Fig. 22 Classification accuracy algorithms when R = 3 with the differ-
ent Gaussian noise variance σ on CUReT

Fig. 23 Classification accuracy algorithms when R = 3 with the differ-
ent Gaussian noise variance σ on Outex−TC10

advantages of the proposed NF-LBP become more apparent,
resulting in better classification performance than LBP and
CLBP.

4.8 Experimental results and analyses of noise
robustness to salt-and-pepper noise

We conduct noise-robustness experiments on CUReT texture
database to demonstrate the effectiveness of the NF-LBP
against salt-and-pepper noise. Specifically, we choose 46
images of every texture class at random, which are consid-
ered as training images. Meanwhile, the rest texture images
are chosen as test images on CUReT. As shown in Fig. 24,
we add the salt-and-pepper noise into the texture images with
noise density ν ranging from 5% to 25% with the interval
of 5%. As ν increases, the identification of texture images
becomes more challenging, making the classification task
more difficult.

Fig. 24 A sample texture image on CUReT with salt-and-pepper noise
at varying noise density ν

Fig. 25 Classification accuracy when R = 1 with the different salt-and-
pepper noise density ν on CUReT

Fig. 26 Classification accuracy when R = 2 with the different salt-and-
pepper noise density ν on CUReT

We compare the classification accuracy obtained from the
proposed NF-LBP with that obtained from the conventional
LBP, CLBP, and BRINT. The accuracy on CUReT under
increasing noise density ν is presented in Figs. 25, 26, and 27.
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Fig. 27 Classification accuracy when R = 3 with the different salt-and-
pepper noise density ν on CUReT

The classification results of three different local binary
pattern (LBP) methods are evaluated on CUReT under
the presence of salt-and-pepper noise, namely LBP, CLBP,
BRINT, and the proposed NF-LBP, with different sam-
pling radius R. The results are, respectively, presented in
Figs. 25, 26, and 27. In Figs. 25, 26, and 26, we can observe
that NF-LBP presents better classification performance than
other LBP-based algorithms, especially with ν increasing.
As depicted in Fig. 27, the classification accuracy of NF-
LBP is not as high as that of CLBP at low salt-and-pepper
noise density ν when R = 3. However, as ν increases,
NF-LBP outperforms CLBP in terms of classification perfor-
mance, owing to its superior noise robustness. Furthermore,
Figs. 25, 26, and 27 reveal that NF-LBP exhibits a slower
decrease in classification accuracy as ν increases, highlight-
ing its robustness to salt-and-pepper noise.

5 Conclusion

We analyse several existing LBP-based texture descriptors,
including the conventional LBP, the CLBP, and the BRINT
in this paper. We highlight neighbourhood texture features
and introduce the neighbourhood feature (NF) pattern for
describing greyscale changes in neighbourhood intensity.
Consequently, we combine this pattern with the traditional
local sign component to create a remarkably discriminative
and robust descriptor for texture classification, called the
neighbourhood feature-based local binary pattern (NF-LBP).
The addition of the NF pattern provides stronger comple-
mentarity to LBP and can enhance the noise robustness of
the algorithm. Furthermore, we propose an adaptive local
thresholding to encode the NF pattern and the centre pixel
into the corresponding binary strings. Three binary codes can
be used to construct the resultingNF-LBPhistogram in a joint

3D manner, allowing for straightforward construction: the
sign part (NF-LBP−S), the neighbourhood feature part (NF-
LBP−NF), and the centre pixel (NF-LBP−C). The NF-LBP
method exhibits remarkable effectiveness and exceptional
classification capabilities when compared with the conven-
tional LBP and its representative LBP variants, including
LBP, CLBP, LTP, CLBC, CRDP, BRINT, LNDP, and CMPE,
supported by a comprehensive set of experiments con-
ducted on five well-known texture databases, namely UIUC,
CUReT, Outex, XU−HR, and ALOT. Extensive experimen-
tal results also demonstrate that NF-LBP maintains high
discriminative capability even under the complex external
conditions with noise.

While the NF-LBP method exhibits remarkable effective-
ness and exceptional classification capabilities compared to
other LBP variants, we acknowledge certain limitations and
limited scope of our current work: (1) The proposed NF-LBP
method, although effective, may have high computational
complexity and relatively high dimensionality of the result-
ing feature histograms due to its extraction of three separate
local features and the joint construction of three binary codes
(i.e. NF-LBP−S, NF-LBP−NF, and NF-LBP−C). (2) While
our research primarily focuses on texture extraction, analysis
and classification, the potential applications of the NF-LBP
method extend beyond this domain.

Considering the existing drawbacks of thework, our future
research will focus on the following aspects:

1. Reductions in both computational complexity and the
dimensionality of feature histograms will be imple-
mented tomake the proposedmethod yieldmore benefits.

2. We aim to extend the application of NF-LBP to other
fields, such as object detection and face recognition.
Additionally, with the increasing use of visual media
methods in 3D data, our future plans involve integrating
NF-LBP into 3D engineering data to enhance its practi-
cality and broaden its application scope.

3. Considering the CNN model’s robust texture extraction
and classification capabilities and the computational effi-
ciency of hand-crafted descriptors, our future research
will also focus on exploring the integration of the CNN
architecture with traditional LBP-based algorithms. This
integration will allow for the exploration of the benefits
of both techniques while minimizing the computational
cost and required training time.
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