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Abstract
Due to the high diversity and complexity of body shapes, it is challenging to directly estimate the human geometry from a
single image with the various clothing styles. Most of the model-based approaches are limited to predict the shape and pose of
a minimally clothed body with over-smoothing surface. While capturing the fine detailed geometries, the model-free methods
are lack of the fixed mesh topology. To address these issues, we propose a novel topology-preserved human reconstruction
approach by bridging the gap between model-based and model-free human reconstruction. We present an end-to-end neural
network that simultaneously predicts the pixel-aligned implicit surface and an explicitmeshmodel built by graph convolutional
neural network. Experiments on DeepHuman and our collected dataset showed that our approach is effective. The code will
be made publicly available at https://github.com/l1346792580123/sdfgcn.

Keywords Topology preserved · Human reconstruction

1 Introduction

Human reconstruction has been studied for decades, which is
essential to a large amount of real-world applications, includ-
ingmotion capture, digital entertainments, etc.Generally, it is
challenging to directly estimate the geometry of human from
a single RGB image due to the high diversity and complexity
of body shapes. Moreover, the sophisticated clothing styles
often lead to the extra difficulties in human reconstruction.

To address the critical problem of accurately modeling
the human body, statistical human models such as SCAPE
[1] and SMPL [2] have been proposed. These models use
principal component analysis (PCA) and blend skinning to
reduce the search space and generate parametric models.
Recently, deep neural network-based methods [3,4] have
attempted to estimate the model parameters directly from
images, avoiding the time-consuming nonlinear optimization
process. While these approaches have achieved promising
results, they are still limited in their ability to capture the
shape and pose of a fully clothed body with fine details, as
they tend to produce over-smooth surfaces. In spite of some
parametric clothing models [5–7], they may not generalize
well in the real-world scenario.
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Instead of relying on the parametric models, the model-
free approaches [10,11] directly reconstruct the human body
from a single image, which enjoy themerits of recovering the
fine detailed geometries. To this end, human body is either
estimated by the occupancy of small voxels [10,11] or implic-
itly represented by a function learned by deep neural network
[9,12]. The main showstopper for these methods is that there
is no commonly shared topology for the reconstructed body
geometries. Therefore, it is difficult to find the semantic cor-
respondences between the reconstructed mesh and human
body part in contrast to the model-based approaches. This
further prevents them from animating the reconstructed body
directly.

This paper proposes a new approach to address the lim-
itations of existing methods for human reconstruction. By
combining model-based and model-free techniques, we aim
to accurately reconstruct the body mesh with the same topol-
ogy as the SMPLX model. To achieve this, we present
an end-to-end neural network that predicts both the pixel-
aligned implicit surface and the explicit mesh model using a
graph convolutional neural network. The decoder branches
of the network all share the same feature encoder, which
significantly reduces computational costs during inference.
To refine the output of the neural network, we propose an
effective implicit registration stage, which is performed in
implicit spacewithout the need for the computationally inten-
sive Chamfer distance. Our approach preserves topology to
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ensure a more accurate and efficient reconstruction of human
bodies.

In summary, themain contributions of this paper are: (1) an
end-to-end neural network that reconstructs the fine detailed
body mesh while retaining the fixed topology from a sin-
gle image; (2) a graph convolutional autoencoder to recover
human mesh model with the fixed topology; (3) an efficient
implicit registrationmethod to refine the predictedmesh; and
(4) empirical evaluations on DeepHuman and our collected
dataset showing promising human reconstruction results.

2 Related work

Recovering3Dhumanbody shapes from2D images or videos
is the fundamental problem in computer vision, which has
already been extensively studied for decades. [13–15] sum-
marize recent methods for 3D human pose estimation. It is
not enough to represent human body using the articulated
3D joint locations. A full mesh is required to represent the
human body. Generally, most of the existing approaches can
be roughly divided into two categories. The first is dependent
on the parametric models, which formulates the human body
reconstruction as a regression problem. On the other hand,
the model-free methods try to reconstruct detailed human
geometry directly.

2.1 Model-based human reconstruction

Due to the high diversity and complexity of poses with var-
ious shapes, it is very challenging to build the human body
models with the desired generalization capability.

During past fifteen years, a surge of research efforts have
been devoted to building the statistical human body mod-
els from 3D laser scans [1,2,8,16]. Loper et al. [2] build a
skinned vertex-based model with the shape and pose param-
eters, in which the pose-dependent blend shapes are a linear
function of the elements of the pose rotation matrices. This
makes it easy to integrate the human body generation process
into the deep neural network pipeline for back propagation.
Recently, graph convolutional network has becamemore and
more important in dealing with non-rigid shape like face
[17], which requires fewer parameters and can achieve higher
accuracy compared with the parametric models. Choi et al.
[18] propose a graph convolutional network that recovers 3D
human mesh from 2D human pose.

With the parametric human models, human reconstruc-
tion is reduced to the parameter estimation problem, where
the coefficients and joints transformation are directly pre-
dicted from the still image. The conventional methods
[8,19,20] employ the nonlinear optimization solver to obtain
the reasonable solution, which are usually computation-
ally intensive. Kanazawa et al. [3] propose an end-to-end

framework to recover the human body shape and pose by
estimating SMPL parameters using only 2D joints annota-
tions with an adversarial loss. Kolotouros et al. [4] introduce
a self-improving system which combines optimization and
prediction methods. [21] propose an alternating successive
convex approximation to decouple the relationship between
joint positions and SMPL parameters into joint shape and
joint pose relationships separately. Most of these approaches
only produce a naked human body, where the surfaces of
clothing, hair and other accessories are ignored.

To tackle the above problem, clothing is represented as
an offset layer from the underlying body in [22–25], which
is able to change the pose and shape of the reconstruction
using SMPL. Yang et al. [7] train a neural network to regress
a PCA-based representation of clothing. Moreover, Lähner
et al. [6] learn a garment-specific pose deformation model
by regressing the low-frequency PCA components and high-
frequency normal maps. Adam model [16] is clothed while
the shape is very smooth and not pose-dependent. Recently,
Ma et al. [26] have presented a generative 3D mesh model
of clothed people, which is conditioned on both pose and
clothing type. This enables the capability of drawing clothing
samples to dress different body shapes in a variety of styles
and poses. Corona et al. [27] propose an implicit model to
represent different garment in a unified manner. In contrast
to these methods, our proposed approach does not require to
build an extra parametric model for the dressing, which is
able to handle the cases without clothing as well.

Bhatnagar et al. [28] recover humanmesh from the incom-
plete point cloud by an implicit neural network to jointly
predict the outer 3D surface of the dressed person, the inner
body surface and the semantic correspondences to the SMPL
model. Saito et al. [29] propose an end-to-end trainable
framework that takes raw 3D scans of a clothed human and
turns them into an animatable avatar.Ma et al. [30] predict the
articulated surface elements to dress the bodies with the real-
istic clothing that moves and deforms naturally even in the
presence of topological changes. Although the above meth-
ods get the detailed human mesh with the fixed topology,
they requires point cloud as the input comparing to the RGB
images used in this work (Fig. 1).

2.2 Model-free human reconstruction

Model-free approaches try to directly estimate human body
geometry like voxels or implicit surface from the still image
without resorting to a prior model, which have much larger
solution space to represent the fine details.

Varol et al. [10] suggest to learn a voxel representation
of human body through the deep neural network, where the
fine-scale details are often missing due to the high memory
requirements of voxel representations. Zheng et al. [11] intro-
duce a discretized volumetric representation to reconstruct

123



Topology-preserved human reconstruction with details 3611

(a) Image (b) Model based (c) Model free (d) Ours

Fig. 1 a is the input image.bModel-based approach [8] tries to estimate
SMPLX parameters, which mainly captures the shape and pose without
the details like clothing. c Model-free method [9] recovers the fine
detailed body geometry while the reconstructed mesh does not have the
predefined topology. d Our approach can directly estimate the accurate
body mesh with the fixed topology

the detailed human, which fuses the different scales of image
features in order to recover the accurate surface geometry. In
spite of impressive results, the cubic memory requirement
imposed by the discrete voxel representation prevents these
methods from obtaining the high-resolution reconstruction
results. Instead of using the voxels, some approaches [31,32]
try to predict the depth maps of human as output. Natsume
et al. [33] present a multi-view inference method by syn-
thesizing silhouette views from a single image. Although
multi-view silhouettes are more memory efficient, the con-
cave regions are difficult to infer as well as the consistently
generated views.

Saito et al. [12] propose a memory efficient approach that
represents the detailed human by a pixel-aligned implicit
function. Instead of explicitly discretizing the output space
into voxels, it learns a function that determines the occu-
pancy for any locations. With such implicit representation,
the occupancy for the sampled 3D point can be computed on
the fly, which greatly saves the memory. Later, Saito et al.

[9] introduce a multi-level architecture for high-resolution
3D human reconstruction, where the coarse level focuses on
the holistic reasoning and the fine level estimates the highly
detailed geometry.

3 Methods

In this section, we present our proposed approach for human
reconstruction from a single image. Firstly, we propose
the end-to-end neural framework that reconstructs the fine
detailed body mesh while retaining the fixed topology.
Secondly, we describe the model-free reconstruction using
implicit surface loss. Thirdly, we introduce the graph con-
volutional network approach to recover human mesh model.
Finally, we propose an effective implicit registration stage to
fill the gap between the pixel-aligned implicit surface and the
recovered mesh.

3.1 Overview

The model-based human reconstruction method [3] enjoys
the merit of the predefined mesh topology, which is able to
preserve the body shape through the statistical models. On
the other hand, the model-free method can recover the fine
detailed geometry like wrinkles on the clothing. The key idea
of our proposed approach is to take advantage of both repre-
sentations. To this end, we aim to reconstruct the triangulated
body mesh accurately while preserving the same topology as
SMPLX model. As illustrated in Fig. 2, we present an end-
to-end deep neural network with a typical encoder–decoder
structure.

Our overall framework consists of four parts. Firstly, we
train a Pix2PixHD network [34] with nine residual blocks

Fig. 2 Overview of our proposed human reconstruction approach. We
firstly concatenate the input image with the estimated normal map to
feed the hourglass encoder. Then, a pixel-aligned implicit function pre-

dicts the occupancy, and a GCN (graph convolutional network) decoder
estimates the mesh model. Finally, the mesh model is refined through
an effective implicit registration stage
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and four downsampling layers to obtain the frontal normal
map. Secondly, we concatenate the predicted normal map
with the original image as the input for the stacked hour-
glass network [35] with four stacks to extract deep features.
Hourglass network produces a feature map, where we per-
form average pooling to get a feature vector as the input of
our GCN (graph convolutional network) decoder. Thirdly, a
fully connected layer with the number of neurons of (1024,
1024, 1024, 128) is used to adapt the number of features.
Finally, a fully connected layer with the number of neurons
(257, 1024, 512, 256, 128, 1) and the skip connections at (3,
4, 5) layers are employed to predict the binary occupancy
value for any given positions. A pretrained GCN decoder is
used to get the human mesh with the fixed topology.

In [9], the frontal normal map is predicted as a proxy for
3Dgeometry. Features extracted from the frontal normalmap
can generate the sharper reconstructed results. Therefore, we
firstly employ a Pix2PixHD network to obtain the frontal
normal map, and then concatenate it with the original image
as the input for the feature encoder. The Pix2PixHD network
is trained with the following loss function:

LN = λN

∑

{i, j}⊂P

|ni, j − n∗
i, j |, (1)

where LN is the regular L1 loss. {i, j} ⊂ P represents the
valid set of pixels in image, and ni, j and n∗

i, j are the corre-
sponding ground-truth normal vector and predicted normal
vector, respectively. We try to predict the frontal normal map
of the person in the image. The weight is λN = 5. We use
Adam optimizer with the learning rate of 2 × 10−4 until the
convergence.

It is worth mentioning that we suggest to share the same
feature encoder for all the decoder branches. This greatly
reduces the computational cost during the inference. More-
over, a decoder branch is employed to predict the implicit
surface function for the model-free human reconstruction,
and another decoder branch is used to extract the explicit
mesh surface using graph convolutional neural network
trained on a large corpus. More importantly, we propose an
extra implicit registration stage to fill the gap between the
other two branches, which intends to reduce the registration
error between the triangulated mesh and implicit surface.

From the above all, the proposed deep neural network
minimizes the following loss function:

L = LI + LM + LΔ, (2)

whereLI is the loss for implicit surface function estimation,
LM is the loss to recover the human mesh through GCN
decoder and LΔ is the loss for the implicit registration stage,
which bridges the gap between themodel-free reconstruction
and parametric mesh model.

3.2 Implicit reconstruction loss

Motivated by the previous model-free human reconstruction
approach [12], we try to estimate the body surface through an
implicit function f (·) that approximates the signed distance
of zero level set. The implicit surface shares the same coor-
dinate space as SMPLX mesh model. Specifically, a fully
connected layer is employed to predict the binary occupancy
value for any given positions Xi = (xi , yi , zi ) ∈ R

3 in the
continuous 3D space:

f (Fxi , Zi ) =
{
1, if Xi is inside mesh
0, otherwise

, (3)

where Fxi denotes the deep features sampled at the loca-
tion xi = (ui , vi ) = π(Xi ) in image space Ω ⊂ R2. The
projection function π : R3 → Ω can be either orthogonal
projection or perspective projection. Zi = (MXi )

z is the
depth value in camera coordinate space, and M is the camera
extrinsic matrix.

Given the ground-truth occupancy y(Xi ) at point Xi , we
employ the extended binary cross-entropy (BCE) loss [11] to
supervise our proposed implicit surface representation layer.
Therefore, the implicit reconstruction loss LI can be derived
as follows:

LI =
∑

Xi∈S
ηy(Xi ) log f (Xi )

+ (1 − η)(1 − y(Xi )) log(1 − f (Xi )),

(4)

where S is the set of the sampled points. η represents the
ratio of points outside surface in S, which is computed from
the sampling results. A mixture sampling strategy is used to
select the points for the implicit reconstruction loss compu-
tation. In our experiment, the sampled points are composed
of the uniform sampling and importance sampling with the
standard deviations of 0.04 and the ratio of 8 : 1. For the
ground-truth points and their occupancy, we make use of the
DeepHuman dataset [11] and our collected high-resolution
human scans.

3.3 Mesh recovery loss

The model-based human reconstruction has the merit of the
watertight mesh representation with the data-driven priors,
where the generative SMPLXmodel [8] is recently proposed.
It has a mesh with 10,475 vertices and 54 body joints. More-
over, an extra joint is used to control the global rotation,
which is parameterized by the PCA shape coefficients and
poses. Although formulating the pose blend shapes as a lin-
ear function of the rotation matrices, the whole procedure
of mesh generation is still highly nonlinear. Therefore, it is
challenging to regress them from a single image directly.
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To deal with this problem, we suggest to make use of a
graph convolutional network-based autoencoder to capture
human body shapes, which shares the same mesh topology
as SMPLX model without the blend skinning. In this paper,
we employ the same loss function described in [18] to train
our proposed GCN autoencoder and regress the latent coef-
ficients from the extracted feature. For each vertex Vi in M
with the target V ∗

i , the mesh recovery loss LM is defined as
below:

LM = λv

∑

Vi∈M
||Vi − V ∗

i ||1 + λeLedge + λnLnormal , (5)

where the first term denotes the per vertices L1 fitting loss,
and the last two terms regularize the mesh deformations on
edges and normals, respectively. Let T represent a facet in
M, and (i, j) are the vertex indices in T . The edge length
loss is derived as follows:

Ledge =
∑

T ∈M

∑

{i, j}∈T
|||Vi − Vj ||2 − ||V ∗

i − V ∗
j ||2|. (6)

Given the target normal n∗
f for each facet T , the normal

consistency loss is defined as in [18]:

Lnormal =
∑

T ∈M

∑

{i, j}∈T

∣∣∣∣

〈
Vi − Vj

||Vi − Vj ||2 , n∗
f

〉∣∣∣∣ . (7)

The weights are λv = 10, λe = 40 and λn = 0.5, respec-
tively.

As in [26], our proposed autoencoder consists of an
encoder–decoder pair built by graph convolutional network.
To embed the input data into the latent space, the encoder
is made of eight Chebyshev residual blocks with Chebyshev
polynomial of order two, aChebyshev convolutionwith order
one and a fully connected layer. Each graph convolution
layer is followed by a Leaky ReLU [36]. The architecture
of decoder is similar to the encoder. For the detailed net-
work structure, please refer to the supplementary materials.
To effectively capture the various body shapes and poses, we
train this autoencoder on AMASS datasets [37]. In contrast
to COMA [17] reconstructing the smoothing facial meshes,
our proposed method has to tackle the critical challenges of
body articulations and blend skinning.

Once GCN autoencoder is trained, we freeze the model
parameters of decoder and integrate it into our proposed
human reconstruction framework to facilitate themeshmodel
generation. Moreover, we formulate the model-based recon-
struction as the GCN latent embedding estimation problem.
We employ LM to supervise the training process.

3.4 Implicit registration loss

In order to take advantage of both implicit function and topol-
ogy reserved human model, we propose a novel implicit
registration loss to capture the detailed clothing information
from implicit function. LΔ is defined as follows:

LΔ = λsd f Lsd f + Lreg, (8)

where λsd f = 10. Lsd f is defined as follows:

Lsd f =
∑

Vi∈M
|| f (Fπ(Vi+M−1Δi )

, (MVi )
z + Δi ) − σ ||1,

(9)

where f (·) is the pixel-aligned implicit function defined in
Eq. (3) and Δ = (0, 0,Δz) is an optimizable variable initial-
ized to 0. Since the learned implicit function is fed with the
depth along the ray defined by the 2D projection, we only
optimize it along z-axis. M is the camera extrinsic matrix,
and σ is set to 0.5.

The regularization term Lreg is proposed to enforce the
surface smoothing through minimizing the mesh Laplacian
differences and the L2 norm of offset Δ as below:

Lreg = λlap||L(V + M−1Δ) − L(V )||22 + λnorm ||Δ||22,
(10)

where L denotes the Laplacian matrix that retains the mesh
regularity. The L2 norm over mesh offset Δ prevents the
vertices fromshifting too large. The regularization coefficient
λlap is set to 104, and λnorm is 50.

Since the neural network prediction is close enough to
the implicit surface of model-free reconstruction, Lsd f is
able to guarantee the convergence. Our proposed implicit
registration method does not calculate the point-to-surface
Chamfer distance which is very computationally intensive.
Thus, the registration is performed very efficiently in implicit
space without extracting the explicit mesh by the marching
cube algorithm [38].

4 Experiments

In this section, we give the details of our experimental imple-
mentation and discuss the results on human reconstruction.
We examine the representation capability of our proposed
GCN autoencoder for human body. Moreover, we evaluate
our results on DeepHuman and our collected human dataset.
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4.1 Experimental setup

AMASS [37] is used to train our GCN autoencoder. AMASS
is a large database of human motion datasets with a com-
mon framework and parameterization. AMASS contains a
large variety of SMPL and SMPLX parameters for human
motion. Due to the flexibility of the face and hands, AMASS
dataset does not provide the ground-truth SMPLX param-
eters for face and hands. With the SMPLX topology, the
face and hands can be fitted with other algorithm [8]. Since
DeepHuman dataset only provides the ground-truth SMPL
parameters, we train a SMPL GCN autoencoder. To effec-
tively optimize the GCN parameters, we use Adam optimizer
with the learning rate of 10−4 and a weight decay of 10−4

for 10 epochs.
To facilitate the effective experimental evaluation,we con-

duct the experiments on DeepHuman dataset [11] and our
collected scans. DeepHuman dataset contains the total num-
ber of 6,795 items, including RGB image, SMPL parameters
and meshes reconstructed by a multi-view fusion algorithm.
We randomly split the samples to form training and test-
ing sets with a ratio of 9 : 1, and obtain 6,115 items for
training and 680 samples for testing. We crop the images
according to their height and place the human at the center.
Then, the cropped images are resized into the resolution of
512 × 512. Due to the privacy issue, the facial regions in
image are blurred. Being difficult to recover the thin struc-
tures likefingers, the handgeometry of themesh in the dataset
are presented in the form of fists.

We collected 260 high-resolution photogrammetry scans
from this website [39], which are collected and uploaded by
its users. The whole dataset is spitted into a training set of
234 subjects and a testing set of 26 subjects. We render these
meshes using the off-the-shelf software Blender. Each sub-
ject is rendered from every 18 degree in yaw axis with an
elevation fixed with 0◦. As in [9], we randomly augment the
background images using COCO dataset [40]. In our experi-
ment, we render the images in the resolution of 1024× 1024
and then scale it into 512× 512 as the input of our network.
After rendering, we employ the conventional optimization-
based method [8] to fit the SMPLX model with respect to
each scan.

We implemented the proposed approach by PyTorch. The
normal estimation network is trained using Adam optimizer
with the learning rate of 2×10−4 until convergence.We train
the pixel-aligned implicit function and deep feature for the
GCN latent space encoder with 60 epochs. We use RMSprop
optimizer with the learning rate 5× 10−4 that is decayed by
the factor of 0.1 at 40th epoch. We employ same sampling
strategy as PIFu [12] to sample 12000 points to train the
implicit function. In the implicit registration stage, Adam
optimizer with learning rate 0.002 is employed to optimize
the offset of mesh vertices with 500 iterations.

Table 1 Evaluation on autoencoder

Dataset MPVPE(mm)

AMASS(SMPLX) 4.628

Human3.6M(SMPL) 4.913

Table 2 Performance evaluation on DeepHuman dataset. * indicates
this output mesh has the same topology as parametric human model.
Units for point-to-surface and Chamfer distance are in cm

Methods Normal P2S Chamfer

PIFu [12] 0.020 2.718 2.327

Ours w/o normal 0.018 2.413 2.229

Ours 0.010 1.317 1.152

*Our SMPL results 0.030 1.434 1.278

*SMPL refined by Chamfer loss 0.020 1.324 1.170

*SMPL refined by implicit loss 0.026 1.335 1.175

The bold in tables means the best performance.

4.2 Evaluation on autoencoder

We evaluate the performance of our GCN autoencoder on
AMASS dataset and Human3.6M dataset [41]. Human3.6M
consists of 3.6 million 3D Human poses acquired by record-
ing the performance of 5 female and 6 male subjects.

The mean per vertex position error (MPVPE) is similar
to MPJPE [3] while we make use of all vertices to evaluate
the representation capability of our GCN autoencoder. As
shown in Table 1, our proposed GCN autoencoder achieves
almost the same reconstruction results as the conventional
parametric SMPLX and SMPL model with the fewer latent
parameters.

4.3 Evaluation on deep human

As in PIFu [12], we adopt three reconstruction performance
metrics including the mean point-to-surface Euclidean dis-
tance (P2S), Chamfer distance and normal projection error.
P2S and Chamfer distance measure the reconstruction accu-
racy comparing to the ground-truth mesh. Additionally, the
normal projection error is used to evaluate the fineness of
reconstructed local details as well as the projection consis-
tency.

Table 2 gives the experimental results on DeepHuman
dataset. It can be seen that our proposed approach performs
better than PIFu.Moreover, the normal map can significantly
improve the reconstruction accuracy and capture the cloth-
ing details, which makes it easier for the implicit function to
retain the rich local details.

In the implicit registration stage, we add the clothing
details obtained from our trained implicit function to the
SMPL mesh. The results show that our proposed implicit
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Fig. 3 Reconstruction results on DeepHuman dataset. We show the
results of SMPL b, our implicit function results c and implicit registra-
tion results d on input image a, respectively

Table 3 Performance evaluation on model-based reconstruction

Methods MPJPE Reconst. error

Linear model 50.058 42.367

GraphCMR GCN 43.227 39.247

GraphCMR linear 40.276 36.023

Ours GCN decoder 37.598 32.140

The bold in tables means the best performance.

registration method performs comparable with conventional
Chamfer distance-based method. Qualitative results of our
method are shown in Fig. 3, and GCN decoder predicts the
coarse mesh with the same topology as SMPL. After implicit
registration stage, the vertices offsets representing the cloth-
ing details are obtained from the implicit function. Due to
the flexibility and low reconstruction quality of hands, feet
and face, we do not optimize them in the SMPL model.

For model-based reconstruction results, we compare our
GCN results with HMR [3] andGraphCMR [42].We employ
the same input andbackbonenetwork for all themethods. The
mean per joint position error (MPJPE) and reconstruction
error are used as the performance metrics. Table 3 shows the
experimental results. It can be clearly seen that our proposed
GCN decoder obtains the lower estimation error comparing
to other methods, which demonstrates the effectiveness of
our GCN for body mesh representation. Figure4 shows the
visual results. As we perform graph convolution in spectral
domain and have the normal and edge regularization, the

Fig. 4 Comparisons on the model-based reconstruction. We show the
results of our GCN decoder a, linear model to predict the SMPL param-
eters b, GCN results of GraphCMR c and final results of GraphCMR d

Fig. 5 Comparison on the implicit registration results b, results with
subdivided SMPLX topology c and not d on input image a
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Table 4 Reconstruction Performance evaluation on our collected
dataset. Same settings and notations as in Table 2

Methods Normal P2S Chamfer

*SMPLicit [27] 0.029 2.245 2.055

*HMD [43] 0.035 2.495 2.532

PIFuHD(our implementation) 0.007 1.023 1.053

Ours 0.005 0.969 0.965

*Our SMPLX results 0.026 1.101 1.097

*SMPLX refined by Chamfer loss 0.013 0.977 0.975

*SMPLX refined by implicit loss 0.018 1.010 1.016

The bold in tables means the best performance.

mesh generated by our GCN is almost the same as the SMPL
mesh. GraphCMR [42] generates over-smoothing mesh and
needs another linear model to predict the SMPL parameters
from the vertices predicted by GCN.

4.4 Evaluation on our collected dataset

Since either SMPL or SMPLX model has too few vertices to
capture all clothing information during implicit registration
stage, we subdivide its topology to generate more vertices.
More specifically, for each face, we add the midpoint of each
edge to subdivide every triangle into four facets. The effect
of subdivision is shown in Fig. 5. It can be seen that we can
get more detailed registration results after subdivision.

We compare our proposed topology-preserved human
reconstruction approach against the conventional Chamfer
distance-based registrationmethod used in IPNet [28], HMD
[43], PIFuHD [9] and SMPLicit [27]. Note that PIFuHD
does not make their training code publicly available and
the coordinate space of PIFuHD in human reconstruction
is inconsistent with our collected scans, we re-implement
PIFuHD for evaluation. Due to the limited number of high-
resolution scans having collected, the latent feature for GCN
decoder cannot generalize well. Therefore, we further refine
our GCN output to get the correct pose.

We use the same performance metrics described above
to evaluate our approach. As shown in Table 4, our implicit
function network performs comparable with PIFuHD. The
mesh is predicted by GCN decoder with the same topology
as SMPLX model, which can be effectively refined by our
proposed implicit registration scheme. It can be seen that the
proposed approach performs comparable with conventional
Chamfer distance-based method. Figure6 shows the recon-
struction results. Due to the limited training data, SMPLicit
[27] cannot represent all kinds of clothing and lack of details.
HMD [43] refines the SMPL model according to per-pixel
shading information. The reconstruction results lack a lot of
details and is inconsistent with the input image. Since there
are no ground-truth SMPLX parameters for face and hand

in AMASS dataset, we employ the traditional optimization-
based approach [8] to capture the hand and face for better
visualization. By taking advantage of the fixed topology, we
can easily animate the recovered mesh with the arbitrary
poses, as shown in Fig. 7. The latent vector for arbitrary
poses can be generated by our pretrained GCN encoder.

As depicted in Table 5, the speed of our implicit registra-
tion process is about seven times faster than the conventional
Chamfer distance-based method. This is because the pro-
posed implicit loss is efficient to compute while the Chamfer
loss is computationally intensive requiring to find the near-
est neighbors in target mesh for each vertex in query mesh.
Moreover, our method does not require to extract the mesh
by marching cube [38], which saves the extra computational
time. Although the optimization time of HMD [43] is short,
the optimization results is not detailed and realistic.

5 Ablation studies

In this section,we conduct ablation studies on the lossweight.
There is only LN loss in normal net training. We choose a
suitable λN to match the learning rate. In our framework, λv

and λsd f are the weights for data term, while λe, λn , λlap
and λnorm are the weights for regularization term. We set the
appropriate weights so that the regularization term is about
a quarter of the data term. We change one of the weights to
different values and leave the remaining weights unchanged.
The experimental results are shown in Table 6. It can be seen
that different loss weights have less effect on the results.

6 Conclusions and limitations

We introduced a new method for human reconstruction that
aims to combine the strengths of both model-based and
model-free approaches. Our method preserves the topol-
ogy of the reconstructed human by utilizing an end-to-end
neural network that predicts both the pixel-aligned implicit
surface and the explicit mesh surface through graph convolu-
tional neural network. Additionally, we propose an efficient
implicit registration method to refine the network output in
the implicit space.We have conducted the evaluation onDee-
pHuman and our collected high-resolution human dataset.
The encouraging experimental results showed that our pro-
posed approach is able to effectively recover the accurate
mesh model while preserving its topology.

While our proposed approach has yielded promising
results, it is important to note that it may encounter chal-
lenges due to the complexity of the background and the
significant gap between the GCN mesh and implicit surface.
However, we can overcome these obstacles by making use
of the off-the-shelf human segmentation techniques to elim-
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Fig. 6 Results on our collected dataset. We show the results of SMPLicit [27] (b, f), hmd [43] (c, g) and our implicit registration results (d, h) on
the input image (a, e), respectively

Fig. 7 Visual results of reposing the recovered mesh

Table 5 Comparison on computational time

Methods Marching cube Optimization Total

Chamfer registration 58.2 s 140.3 s 198.5 s

HMD [43] – 14.0 s 14.0 s

Ours – 27.0 s 27.0 s

inate background. Additionally, we can align the results of
the GCN and implicit models using Chamfer distance-based
optimization to address the gap issue. It is worth mention-
ing that we optimize the latent vector of GCN rather than
the offset per vertex. Nevertheless, our method may not be

ideal for loose clothing items such as long skirts like other
SMPL-based techniques.

7 Changes

Compared to our conference version, we have carefully
revised the whole manuscript according to the reviewers’
comments. Firstly, we have included the additional recon-
struction results from the extra views to demonstrate the
generalization capability of our proposed approach. Sec-
ondly, we have conducted ablation studies on the parameter
weights to fully evaluate the impact on reconstruction results.
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Table 6 Ablation studies on the loss weights. Same settings and nota-
tions as in Table 4

Normal P2S Chamfer

*λv = 1 0.028 1.127 1.124

*λv = 100 0.027 1.117 1.115

*λe = 1 0.028 1.129 1.127

*λe = 100 0.027 1.121 1.119

*λn = 0.1 0.029 1.127 1.122

*λn = 1 0.028 1.123 1.120

λsd f = 1 0.005 1.034 1.021

λsd f = 100 0.005 0.983 0.978

*λlap = 102 0.019 1.027 1.029

*λlap = 106 0.020 1.025 1.022

*λnorm = 1 0.019 1.023 1.020

*λnorm = 100 0.019 1.025 1.023

In the revised manuscript, we also provided the further clari-
fication on ourmotivation and highlighted the key differences
between our proposed approach and the previous methods.
Furthermore, we have thoroughly discussed the advantages
and limitations of these methods. Finally, we have carefully
proofread the entire manuscript and corrected the written
errors, including typos and grammar mistakes.

Supplementary Information The online version contains supplement-
ary material available at https://doi.org/10.1007/s00371-023-02957-0.
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