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Abstract
Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing
methods are still poor in accuracy and efficiency in some extent, which greatly limits their application in computer vision
system. This paper investigates the restraint of feature structure that intrinsically deteriorates recognition performance. Fur-
thermore, we propose a fast shape recognition method based on a bi-level restraint reduction of contour coding (CC2RR),
which provides more effective theoretical support for the practical application of the visual algorithm. CC2RR reduces
restraint performed from contour feature extraction and expression, respectively. First, for shape contour, the restraint of
contour feature extraction is reduced by transforming the direction of contour points to contour segments; second, for the
encoded contour segment, the restraint of the contour feature expression is reduced; in other words, the current direction
is reduced to the previous and the next direction. Guided by these insights, Hamming code distance is used to match the
coding features after the twofold restraint reduction, and the results are obtained. Experimental results verify that the method
significantly improves the performance, which runs up to 500 times faster than the existing description methods based on
shape contours while increasing robustness. This makes the method useful in practical software system.

Keywords Restraint · Reduce restraint · Contour coding · Shape recognition

1 Introduction

With the continuous development of computer science and
software system, the research of object detection and recog-
nition makes remarkable progress, which attracts a growing
number of researchers [1–3]. As one of the important
branches of computer vision, shape recognition has yielded
fruitful achievements in object description and matching [4,
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5]. Shape feature is crucial for object recognition. Specifi-
cally, objects suffering from a lack of information such as
brightness, texture or color will have to rely on their shapes.
In addition, shape is robust to the variance of object color,
illumination and texture [6]. In such cases, it is imperative
to use shape to improve the accuracy of object representa-
tion and recognition. For instance, a large number of shape
descriptors have been proposed for remote sensing appli-
cations since the texture and color information acquired by
remote sensors is not clear. In particular, the target is tran-
sient in the battlefield environment, so the speed of the target
shape recognition directly determines the accuracy of the
strike. Figure1 shows the shape of a telemetry ship target.
Owing to the above-mentioned advantages, the research of
shape-based object description and recognition has been a
hot research area in the field of image processing.

1.1 Related work

As the key technique of shape features, shape coding plays a
significant role in the definition, representation and process-
ing of visual objects [7]. Generally, shape coding methods
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Fig. 1 Optical sensing ship target, the upper part is the measured ship
target optical sensing image, and the lower part is the binary processed
shape image of ship

can be divided into two categories: bitmap-based meth-
ods and contour-based methods. A bitmap-based method
represents the object shape as a binary image and then
adopts a binary image coding method, such as context-based
arithmetic coding (CAE) of JBIG, JBIG2 and MPEG-4 [8–
12]. Contour-based methods sequentially extract and code
the contour curve of a visual object, which are usually
based on chain code, polygon, spline and other curve-fitting
approaches [13–15]. Typically, a curve fitting method could
obtain higher coding efficiency, which is suitable for lossy
coding rather than lossless coding. A number of techniques
and algorithms for shape coding have been proposed. Liu
et al. [16] proposed a shape coding method based on H.264
standard. Wulan et al. [17] extended the traditional chain
code and proposed a shape codingmethod called vertex chain
code. Lai et al. [18] focused on the quality evaluation and dis-
tortion estimation in shape coding based on B-spline fitting
and then proposed a distortion measurement method com-
bined with visual perception characteristics. In [19], a binary
image shape coding method is proposed based on context
arithmetic coding, which utilizes the local linear edge feature
in the image contour and applies it to the context modeling
of arithmetic coding to improve the accuracy and precision
of context. The performance is proved to be better than sev-
eral traditional methods. A shape representation and coding
method based on image correlation is proposed in [20],which
associates the object shape coding and decoding with the
image data itself. Consequently, it could make full use of the
correlation between the image content and the object shape,
thus significantly improving the coding efficiency. Neverthe-
less, it also belongs to the lossy coding category which is not
suitable for lossless applications.

In addition, some classical shape recognition methods,
such as [16, 17, 21–27], all use dynamic programming for
shape matching, which will undoubtedly increase the com-
plexity of recognition and reduce the speed of recognition.
From the identification time in Sect. 5 (experimental part), it
is clear that the recognition time of these methods is too long
to the transient battlefield requirements.

Recently, deep learning-based methods exhibit outstand-
ing performance in object detection and recognition after
data training. However, the practicability is restricted by two
major factors, some image datasets are difficult to obtain,
and existing public datasets are generally small. Therefore,
feature-based shape description is particularly important. On
the other hand, rather than conventional methods, Bicego
and Lovato [16] proposed the biogenic informatics model
to achieve two-dimensional shape recognition. The key
idea is to code the shape contour into biological infor-
mation sequences according to its spatial distribution, i.e.,
DNA molecular sequences, and then adopt some chain
code matching calculation methods to analyze the similar-
ity between sequences, thus achieving shape recognition and
classification.

1.2 Essential problem of shape recognition

While the above shape coding algorithms improve the per-
formance of recognition in various aspects, there is still room
for further improving recognition accuracy and running effi-
ciency. That is to say, they do not take into account the
intrinsic problem affecting the performance of shape recog-
nition. Neither shape coding nor shape description methods
consider the impact of structural features in shape extraction
during the whole process of shape recognition. Every single
input in a system would play a vital role in the whole sys-
tem, especially features in shape recognition. Conventional
object recognition methods mainly focus on accuracy and
precisionwithout considering computational and executional
efficiencies. To this end, the essential problem is explored
and pinpointed as “structural restraints” within the existing
methods, and the restraint of feature structure is detailed in
this paper. Specifically, shape descriptors are usually poor
in stability if they are directly extracted from edge contour
point information from flat shapes. Consequently, it easily
leads to unsatisfactory accuracy in feature matching. In addi-
tion, conventional descriptors are usually complex in feature
structure, resulting in lower running efficiency.Therefore, the
cause of the restraint of feature structure can be summarized
as follows:

1. It is easy to produce unstable feature structures when the
image plane is variable;

2. Overly complex shape descriptors usually pose large
computational burden in the subsequent matching stage;
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3. A strong local deformation in the shape contour easily
evokes feature distortion. In this case, the distorted global
feature may be completely mismatched in the matching
stage;

4. For the vast majority of international general databases,
the shape degree of shape contour, that is, the orienta-
tion of contour, is different. Shape features with the same
restraints may produce different description abilities for
different databases, thus reducing the overall effective-
ness of shape descriptors.

1.3 Contributions

Mathematically, restraint is the condition that the solution
of an optimization problem needs to meet. When analyz-
ing some specific logic functions, we often encounter such
a situation that the value of input variables is not arbitrary.
Restrictions on the value of input variables become restraints.
Reducing restraints is to change the relevant factors affecting
the process in order to meet a specific result or require-
ment, that is, the input or output parameters of a process,
and reducing the influence of these factors will have a pos-
itive effect on the expected results. Similarly, there may be
a series of restraints in shape recognition analysis, including
restraints generated by extracting shape features, restraints
generated in the process of shape feature calculation and
restraints generated in the process of shape matching, etc.
Here, all factors that affect the accuracy and speed of shape
recognition results in the process of shape recognition are
collectively referred to as shape recognition restraints. There-
fore, in shape recognition, we consider the new concept of
reducing shape recognition restraints in order to improve the
speed and accuracy of shape recognition.

The contributions of this paper are as follows:

(1) The concept and method of structural restraint is first
proposed in shape recognition, including the restraint of
shape contour extraction and expression;

(2) 20-connected chain code based on twofold restraint
reduction is adopted in shape recognition and the Ham-
ming code distance is first used to measure shape
similarity;

(3) Experimental results verify that the method significantly
improves the performance, which runs up to 500 times
faster than the existing description methods.

The rest of the paper is organized as follows. In Sect. 2,
related new concepts and research work of contour coding
shape fast recognition with double reduction of restraints
are introduced. Section3 describes related research ideas
and work of the proposed method and explains in detail
the model of the shape recognition method proposed in this
paper. In Sect. 4, the proposed method is tested on three

public databases and compared with other existing shape
recognition methods. In addition, the results of the proposed
double reduced restraint method are compared with the same
descriptor without reduced restraint. Finally, the conclusion
and future outlook are given in Sect. 5.

2 Preliminaries

In this section, some essential problems affecting the speed
and accuracy of shape recognition are identified. At the same
time, the general form of chain code coding and the related
process of shape contour coding in the field of shape recog-
nition are introduced. Finally, we introduce representative
shape descriptors and the advantages and disadvantages of
shape features based on contour.

2.1 Constraint theoretic perspective

In this subsection, the concept of the proposed “structural
restraint” is elaborated, including structural restraints, fea-
ture structure restraints, contour feature extraction restraints
and contour feature expression restraints. The definition of
restraint reduction is also expressed.

Structural restraints The process of shape recognition
mainly contains three stages: shape feature description, shape
feature calculation and shape feature matching. Therefore,
a series of restraints that affect the performance (speed
and accuracy) of shape recognition in the three stages are
defined as structural restraints, which includes feature struc-
ture constraint, calculation structure constraint and matching
structure constraint.

Feature structure restraint The feature structure restraint
is the parent restraint in the feature description stage of
shape recognition, and its four sub-restraints are contour fea-
ture extraction restraint, contour feature calculation restraint,
contour feature expression restraint and contour feature
matching restraint, respectively.

Restraints in contour feature extraction When shape is
used as the shape feature in the process of shape recognition,
shape contour is used as the input variable of shape descriptor
in the process of feature extraction.

Restraints in contour feature expression After select-
ing a specific shape descriptor, a mathematical expression
result (usually vector) can be obtained by using the shape
description method. The buffering stage of obtaining shape
contour as shape recognition and matching stage is defined
as shape feature expression stage. Therefore, the contour fea-
ture expression restraint is defined as the sub-constraint of
the contour feature output which affects the shape recogni-
tion performance after taking the contour as the restraint and
selecting a specific contour feature description method.
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Restraints reduction Define the initial condition parame-
ters of all aspects that need to be reduced in order to achieve
the best performance or optimal model in shape recognition
and the limitation as reducing constraint.

Restraints reduction of contour feature In order to achieve
the best performance or the best model in shape recognition,
the feature initial conditions and restraints that need to reduce
the influence of the result are defined as reducing restraints
of contour feature.

2.2 8-Connected chain code

Chain code, also known as Freeman code, is utilized to
describe curves or boundaries through the coordinates of
starting points of curves and the direction codes of bound-
ary points. As a popular tool, it is widely used to represent
curves and region boundaries in image processing, computer
graphics, pattern recognition and other fields.

The commonly used chain codes are divided into 4-
connected chain codes and 8-connected chain codes accord-
ing to the number of adjacent directions of the central pixel.
4-connected chain codes have four adjacent points, i.e.,
above, below, left and right of the center point, respectively.
As shown in Fig. 2, compared with the 4-connected chain
code, the 8-connected chain code has another four oblique
directions. Since there are 8 adjacent points around (except
at the edges) every single pixel in an image plane, the 8-
connected chain code could exactly describe the information
of the central pixel and its adjacent points, which makes it
more popular than the 4-connected chain.

When representing a curve, the starting point of curves is
a prerequisite for chain codes. In 8-chain codes, the corre-
sponding line segment lengths of odd and even digits(shown

Fig. 2 Schematic diagram of connected direction of 8-connected chain
codes

in Fig. 2) are different. The unit length of even and odd digits
is set to 1 and

√
2, respectively.

Original chain code
Starting from a starting point of the boundary (curve or

line), observe the direction of each line segment clockwise,
and represent it with the corresponding pointer of 8-chain
codes.The result is a digital sequence representing thebound-
ary (curve or line), which is called the original chain code.
The original chain code has translation invariance (the index
is not changed during translation), but when the starting point
S is changed, a different chain code representation will be
obtained, that is, it is not unique.

Differential chain code
Differential coding is also known as incremental cod-

ing. Differential coding refers to the code of a digital data
stream in which every element, except the first element,
is represented as the difference between that element and
its predecessor. Differential chain codes and original chain
codes have the same properties, that is, translation invariance
and scale invariance. The computation of difference code is
shown in Eq. 1.

⎧
⎨

⎩

M ′
N = ∑N

i=1 a
′
i

a′
1 = (a1 − ai ) , MODN , i = 2, 3, . . . , N

a′
i = (ai − ai−1) , MODN

(1)

where the value of N is the number of difference codes, and
ai is the value of each sequence in the difference chain code.
It can start from any code value in the difference code and
recurse step by step in one direction.

2.3 Contour-based shape descriptors

Belongie et al. [28] proposed a description method of shape
context (SC) according to the spatial position relationship
of contour points. In this method, each point in the contour
sequence is represented by a vector and the shape object
is described by constructing a set of feature vectors. The
method focuses on the spatial distribution of one point in
the contour sequence and all the other sampling points in the
contour sequence, and has the characteristics of large amount
of information, strong description ability and robustness.

Based on the idea of Shape Context, Ling and Jacobs [29]
proposed to use inner-distance shape context (IDSC)between
contour points to replace Belongie et al. [28] in calculating
the Euclidean distance adopted in shape context. The short-
est path length of two sampling points in contour sequence
through the shape is defined as the internal distance. This
method is suitable for the identification of the target with
flexible change, and good results are achieved in the experi-
ment.

Biswass et al. [30] proposed a new shape index and
retrieval framework based on the shape context description
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method of internal distance. The similarity between the shape
to be retrieved and the shape in the database can be calcu-
lated efficiently by index, which improves the efficiency of
the traditional shape matching algorithm based on dynamic
programming.

In general, methods based on contour shape description
have the following three advantages.

1. The overall and local two-dimensional shape information
can be organically combined to describe the shape and
the feature of structure more accurately.

2. It can be usedwith a variety of shapematching algorithms
to flexibly adopt shape matching based on dynamic
programming or shape index and matching based on dic-
tionary.

3. It can simplify the shape feature structure and greatly
reduce the complexity of the calculation process.

On the other hand, there are several shortcomings in these
methods.

1. Shape contour feature extraction is not flexible enough,
it merely considers the contour boundary information of
the object that easily suffers from shape deformation. As
a result, the extracted feature sometimes fails to reflect
the object information accurately.

2. Once the extraction method of shape contour is fixed,
only one feature expression result will appear in the fea-
ture expression stage due to the limitation of extracted
contour features. In other words, the contour feature is
limited by the extraction.

3. In general, there is local deformation within shapes. Nev-
ertheless, all of the above contour descriptors are based
on global features. In the matching stage, the accuracy of
the global feature description will be affected by the local
feature difference, thus greatly deteriorating the match-
ing process.

3 The proposedmethod

As mentioned above, almost all contour coding-based shape
recognition methods ignore the essence of “feature structure
restraint.” Accordingly, it is difficult to optimize the per-

formance by merely improving the coding method, while
it may be highly efficient and accurate. Intrinsically, if the
restraints that affect the performance of shape recognition
in the shape description stage are reduced, even a simple
shape contour coding method could benefit from it. In this
section, the restraint problems in contour feature extraction
and expression are analyzed in a constraint theoretic perspec-
tive, which produces a simple shape contour coding method
based on a bi-level restraint reduction. As shown in Fig. 3,
the proposed method can be divided into six parts, from the
input shape contour to the output shape recognition result,
which represents the complete step of shape recognition.

Assume a shape contour sampling point set P ={
P1, P2, . . . , PNi

}
, where Ni is the number of sampling

points. In this paper, the number of sampling points to 100.
Then, the relative direction between the two sampling points
on the contour is expressed as Eq.2.

dirNi =
{−−→
P1P2,

−−→
P2P3, . . . ,

−−−→
PNi P1

}
(2)

Algorithm 1 CC2RR
Input: Shape contour sampling point,

{
P1, P2, P3, . . . , PNi

}
;

Output: Shape recognition similarity of reduced restraint, simRcc;
1: Create a set Cm ← ∅ ;
2: for each m ∈ [1, Ni ] do
3: Reduce the restraint of contour feature extraction;
4: Cm = (

P1P4, P4P7, . . . , PNi−3, PNi

)
;

5: end for
6: 20-Chain coding for shape contours;
7: Create a set Coden ← Cm ;
8: for each ∈ [1,m] do
9: Reduce the restraint of contour feature expression;
10: Coden = RR {Coden};
11: end for
12: Then
13: shape matching and shape recognition, get similarity values.
14: return

3.1 The first reduction of restraint for contour
feature extraction

Figure 4 demonstrates a method of drawing still life in art
teaching. First, the rough contour of the object is outlined by

Fig. 3 Framework of the proposed fast shape recognition method via a bi-level restraint reduction of contour coding

123



2604 Z. Li et al.

Fig. 4 Object sketch, a is the semi-finished rough contour of object
sketch, b is the finished fine contour sketch

some line segments. Then, the length of each line segment
is gradually reduced. The process is iterated until the length
of the line segment approaches zero. In this way, the contour
of the object varies from line segments to a series of points,
which is termed as the approximate contour of the actual
object.

As shown in Fig. 4a, a semi-finished product is outlined
with line segments. After being repeated outlined, the sketch
acquires vivid details in Fig. 4b. It is still easy to distinguish
the object like a teapot in the early stages (Fig. 4a). From
another perspective, all the curves in Fig. 4b are replaced by
straight lines in Fig. 4a. Consequently, nomatter how a rough
contour is iterated to fine (i.e., no matter what the curvature
or smoothness of the actual arc segment represented by the
straight-line segment is), it is still obvious that the result
of the next drawing work is indeed a teapot according to
the rough contour in Fig. 4a. If the fine outline in Fig. 4b is
adopted as a baseline, the depiction of the object might be
completely limited from the beginning. Since the parameters
such as curvature and smoothness of the arc segment of the
object are fixed, it is impossible to use the course contourwith
fewer restraints to draw instead. This limitation undoubtedly
reduces the plasticity of the object.

Inspired by the rough contour in sketch drawing, the pro-
posed work adopts the idea of extracting rough contour
as input in the feature description stage, thus reducing the
restraint of contour feature extraction, which can be termed
as restraint reduction of contour feature extraction.

In actual shapes, a set of shape contour points can be
obtained by uniform sampling of a shape, while the con-
tour coding is to code the extracted shape contour. Therefore,
the extraction of shape contour features (evenly sampling a
set of points) is earlier than coding the contour. To reduce
the deformation of different local contours corresponding to
the same shape, the idea of extracting shape rough contour
is adopted. Meanwhile, the direction code value of the last
contour point relative to the previous one is no longer calcu-
lated in the coding process. It is the rough contour segments
formed by the fourth contour point and the current contour
point, that is, the code value of the line segments is the rela-
tive direction between the current contour line segment and
the next contour line segment. In other words, the direction

Fig. 5 Contour features of bone were extracted after first reducing
restraint

of
−−→
P1P2 convert to

−−→
P1P4, the direction of the whole contour

dirNi convert to dir
R
Ni
, It can be expressed as Eq.3.

dirRNi
=

{−−→
P1P4,

−−→
P4P7, . . . ,

−−−−−−→
PNi−3PNi

}
(3)

In this way, the influence of local deformation of the orig-
inal contour arc corresponding to the line segment on the
shape features will be greatly reduced. In this case, local
rough contour features could be obtained while keeping the
overall shape features unchanged. In other words, the selec-
tion of contour points to form the rough contour segment
would be based on the recognition of the shape rough contour.
The reason why four points are selected as one contour seg-
ment in thismethod is obtained from the experimental results.
Corresponding comparative experiments were conducted,
respectively. For the three main datasets, the recognition
accuracy would be reduced if less than four points and more
than four pointswere selected. In addition, choosing less than
four points will slow down the recognition speed. The spe-
cific experimental result and analysis are shown in Sect. 5.6.1
in this paper, the idea of selecting the rough contour segment
of the current contour point and the fourth contour point is
derived from experimental restraints, which is undoubtedly
optimal for the current experiment. Moreover, the restraint
of the previous fine contour will also be greatly reduced,
and the problem of insufficient stability in the case of local
deformation of the contour could be alleviated to a certain
extent.

Figure 5 shows the contour obtained after the extrac-
tion of contour features with restraint reduction. Obviously,
although Fig. 5 shows the contour extracted after the reduc-
tion of constraint, it is still explicit that the object represented
by the shape is bone, as the two teapots shown in Fig. 4.
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Fig. 6 Diagram of
20-connected chain code and
corresponding feature coding of
part of bone rough contours, the
rightmost column is the coding
value of the local contour

3.2 20-Connected chain code for shape contours

The conventional 4-chain code and 8-chain code are both
suitable for simple two-dimensional shapes, while complex
shape contoursmust describe themselveswithmore direction
codes. Therefore, 20-direction chain code is selected in this
paper to code shape contour. In the experiment, we select 16-
chain code, 20-chain code and-24 chain code, respectively,
for shape and contour coding. According to the experimental
results, it is found that the selection of 20-direction coding
is the best choice for the international general datasets used
in the experiment, and the best performance results can be
obtained. The specific experimental results and analysis are
shown in Sect. 5.6.2

The chain code can be divided into primary chain code,
differential chain code and normalized chain code. The
requirements of shape recognition in all aspects, that is, the
shape representation method should meet the requirements
of translation invariance, scale transformation invariance and
rotation invariance. It is found that the normalized difference
chain code can meet the requirement of shape descriptor for
shape recognition, and it has invariance of translation, scale
and rotation. Therefore, it can be used as feature variables to
describe shape feature and form corresponding shape coding
descriptors.

The connected direction of the 20-direction chain code
proposed is shown in Fig. 6a. The 20-connected directions
corresponding to the current rough contour lines are divided
into 20 regions, respectively. The position area of each possi-
ble next rough contour segment is represented by letters from
A to T . During the calculation, the letters in the 20 directions
correspond to natural numbers from0 to 19, respectively. The
starting direction is set as the right direction of the image, that
is, the coding of the rough contour segment is represented by
the relative position between the next rough contour segment

and the current rough contour segment. By coding the rough
contour segment, a shape’s feature coding can be obtained
(Fig. 6b). The coding direction is counterclockwise and the
starting point of coding is the rough contour segment clos-
est to the upper left of the contour part. All rough contour
segments on the shape are coded in the clockwise direction
according to the above rules, and finally return to the initial
line segment.

According to the contour feature, the restraint reduction
is extracted, and the 20-connected chain code value between
contour points is called CodeR ≈ dirRNi

, expressed as Eq.4.
Where Mi represents the number of directions for the cur-
rent shape contour. Due to the variability of the encoding
directions in shape contours, it is highly likely that they may
not precisely match the given set of 20 encoding directions.
Therefore, we draw inspiration from the description of direc-
tional encoding in reference [31] and provide more accurate
encoding rules based on mathematical theory. The rules are
as follows: For the 20 directional code values, we define an
angle θ to represent the directional range of a specific code
value dir. If the local shape contour encoding direction Code
falls within this range, specifically−θ/2 ≤ θCode < θ/2, we
consider the encoding direction of that local shape contour to
be dir. In Eq. (4), we use the approximate equality symbol to
denote the relationship between the local contour direction
and the 20 directional code values.

CodeRMi
=

{
CP1P4

,CP4P7
, . . .CPNi−3PNi

}

≈ {
Code1,Code2, . . . ,CodeMi

}
(4)

According to the coding direction in the left figure in
Fig. 6, the direction coding of partial rough contour features
of bone in the right figure is:CEBSOQSSSSSSST T QNLN ,
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Fig. 7 Differential chain code of the bone’s local shape rough contour

the code is the 20-connected feature chain code of the
rough contour of the local area. From the original chain
code, the difference code can be calculated according to
Eq. (1). It only needs to set N = 20 in the formula. The
specific calculation process is shown in Fig. 7. The differ-
ence code of the local rough contour can be obtained as
CRRQCCAAAAAABAPRSCG.

In general, the difference chain codes need normalization.
For the proposed 20-direction chain codes, it is not possible
to use letters to form natural numbers and find theirminimum
value. Therefore, this paper converts the letters correspond-
ing to the direction into binary, and thenuses the binary values
corresponding to the letters in the base 32-bit system tomake
the binary values form natural numbers and minimize them.
Therefore, the binary values corresponding to the above dif-
ference chain codes are 00010, 10011, 10011, . . . , 01000.
Finally, similar to the normalized difference code calcula-
tionFormula (2) of the 8-direction chain code, the normalized
difference chain code corresponding to the local contour is
AAAAAABAPRSCGCRRQCC .

3.3 The second reduction of restraint for contour
feature expression

After obtaining the differential chain code of the shape con-
tour, the feature of the shape can be obtained as well. The
extracted rough shape contour can reduce the influence of
small deformation on the recognition result to a certain
extent. Nevertheless, the shapes and deformations in the pop-
ular datasets are changeable in size. After the normalized
difference coding of 20-direction chain code, there might
be mismatching of local feature directions, that is, restraint
of contour feature expression. As a result, it would greatly
reduce the matching rate due to the mismatching of these
local feature directions in the calculation process. In fact,
these local feature mismatches do not affect the judgment of
the overall shape of the object in the actual situation. In addi-
tion, the shape feature will be fixed after feature expression,
which would then be input into the matching stage to obtain
the unique matching result. Therefore, in the shape feature
expression stage, the coding direction can be used to approx-
imate fit the direction value of the local contour (code value).
The rule of the direction fitting is that the current rough con-
tour direction has the same descending restraint direction as
the former rough contour direction and the latter rough con-
tour direction, respectively, so as to reduce the influence of

the obtained contour coding feature on the matching result
when it enters the final matching stage and improve the result
performance of shape recognition. This process is called con-
tour feature expression reduction restraint.

Inwhat follows the contour feature expression is described
in more details. Figure8 shows the process of the rough con-
tour obtained from two images in the public datasets after
reducing the restraint of contour feature extraction. They rep-
resent a bone as the same object. However, there are still
similar but mismatched local directional features in the cal-
culated differential chain codes. The reduction of restraint
for contour feature expression (direction fitting) is used to
deal with this case. As shown in Fig. 8, according to the 20-
direction difference chain code, there is only one direction
value difference between the rough contour directions of the
two pictures at the local corresponding contours ①, ②,and
③, respectively. Specifically, they are F to E , F to G and
R to S. Therefore, in the feature expression stage before the
matching of Figure a and Figure b in Fig. 8, local contours
(①, ②, ③) are first, respectively, fitted into the same feature
direction code as the current query graph, which is used as
the final shape feature for matching recognition. Finally, the
recognition result can be obtained after reducing the restraint
of feature expression.

The restraint reduction is expressed according to contour
features. The restraint reduction of the directional code value
between the current contour points is reduced to the former
directional code value and the later one. It is expressed as
Eq. 5.

CodeRRMi
=

⎧
⎨

⎩

CodeMi−1

CodeMi

CodeMi+1

, when Code = CodeMi (5)

The rules for reducing restraint of contour expression are
shown in Table 1. The first row is the code value of the cur-
rent direction, and the second row is the code values that can
be reduced to the current, which is termed as the reducible
restraint code. In this paper, the step of the reduction of
restraint is set as 1 unit direction. The reason for setting the
constraint code with step of 1 comes from the experiment (
Sect. 5.6.3, Table 9). We choose step size of 0, 1, 2 and 3 to
carry out experiments, respectively, and find that the recog-
nition accuracy will be significantly reduced. Therefore, for
the datasets tested, the step of 1 can obtain the optimal result.
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Fig. 8 Two bone shapes
correspond to fine contour and
three local similarity directions
based on the reduction of
restraint for contour feature
expression

Table 1 Rule of reducible
restraint code corresponding to
the current code in chain code

Current code A B C D E F G H I J

Reduced restraint code T B A C B D C E D F E G F H G I H J I K

Current code K L M N O P Q R S T

Reduced restraint code J L K M L N M O N P O Q P R Q S R T S A

The specific experimental methods and results are shown in
Table 8.

3.4 Shapematching

Shape matching is the process of similarity correspondence
after obtaining the final shape features. Conventional studies
usually calculate the Euclidean distance between two shapes
to judge whether two shapes are similar or not. Neverthe-
less, shape features based on contour coding described in
this paper are relatively simple. If Euclidean distance is still
used for similarity measurement, the effectiveness of coding
cannot be reflected.What’smore, the low identification accu-
racy of Euclidean distance calculation method in this paper
is verified by experiments (see Sect. 5.6.4). Hamming code
is a linear block code, which divides the information coding
sequence into sequence segments of length K, whose struc-
ture is similar to the feature sequence code proposed in this
paper. The Hamming code distance refers to the number of
bits with different code values between any two code words
in a code set. That is, the smaller the Hamming code distance
between two code groups, the greater the similarity between
two code groups, which could indicate the shape similarity
of the corresponding contour coding features in this paper.
Therefore, this section refers to the calculation method of
Hamming code distance and uses Hamming code distance as
the shape similarity measurement. In the calculation process,

the binary sequence corresponding to the contour direction
code word is still used. For example, the letter B corresponds
to the binary sequence 00010, which simplifies the calcula-
tion process of Hamming code distance between sequences.
The Hamming code calculation formula of contour coding
feature sequence based on double reduction of restraint is
shown in Eq.6.

disCC2RR (x, y) =
∑

x [i]
⊕

y [i] (6)

Here, i = 0, 1, . . . , n − 1 are n-bit sequence codes, and ⊕
stands for XOR operator.

4 Computation complexity

Computational complexity in shape recognition refers to
the complexity of shape description method in feature cal-
culation. The proposed shape contour coding method is a
mathematical expression method with low computational
complexity. Coupled with the processing of the first reduc-
tion of restraint, the amount of input computational data has
greatly reduced; thereby, it has low computational complex-
ity. When the input data are a certain shape contour point Ni ,
the reduction of restraint method proposed also reduces the
amount of calculated data to a certain extent. Compared with
other shape descriptorswith the same calculationmethod, the
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Table 2 Some representative shape description methods feature com-
putational complexity

Method Computational complexity

Co-transduction [21] O (T Ni )

LP [23] O (T Ni )

LCDP [24] O
(
T N 2

i

)

IDSC [29] O
(
N 2
i

)

SC [28] O
(
N 2
i

)

CC2RR (ours) O (Ni/n)

proposed approach has the lowest computational complexity,
which also becomes an important prerequisite for fast recog-
nition. Table 2 lists the computational complexity of some
representative shape description methods. T represents the
number of iterations of the method. In LCDP, T is less than
50. In Co-transduction and LP, T is 5000. N represents the
number of contour points that make up the rough contour. In
CC2RR, n is 3.

5 Experiment and result analysis

To evaluate the performance of the proposed shape recogni-
tion method, the corresponding shape descriptors are tested
on three popular datasets for shape recognition, the MPEG-7
Part B dataset, leaf dataset and Kimia99 dataset. There are
different types of 2D shape maps in each dataset, which can
be used for validating the running efficiency and recognition
accuracy. In this section, all methods used for comparison
are implemented in MATLAB and executed on a laptop with
an Intel Core i7-4850 CPU (2.30 GHz) and 8GB RAM.

5.1 Performance onMPEG-7 Part B

The MPEG-7 Part B dataset is widely used in shape recog-
nition and retrieval classification [17, 18, 32, 33] which
contains a total of 1400 shape templates (70 classes, each
containing 20 shapes). It is very helpful for the study of shape
features and is popular inmany classical descriptors. Figure9
shows some of the shapes.

In the evaluation of retrieval accuracy, the Bullseye test
method was used to test the retrieval rate of the descriptors
proposed. Specifically, for each query shape, it calculates the
percentage of shapes belonging to the same class in the top
40 results sorted by similarity. Table 3 lists the experimental
results of the proposedmethod aswell as some representative
shape descriptors.

It can be seen from Table 3 that the proposed shape
descriptor outperforms the other seven state-of-the-art meth-
ods under the same test environment. Compared with IDSC,

Fig. 9 Partial shapes in the MPEG-7 Part B dataset

Table 3 Comparison of classification accuracy on MPEG-7 Part B
dataset

Descriptor Bulls-eye-test score (%) Matching time (s)

CC2RR (ours) 86.55 0.016

SC [28] 68.59 4.198

IDSC+DP [29] 85.34 5.135

IDSC+LP [29] 86.52 6.607

CBW [34, 35] 85.20 5.000

DIR [36] 77.69 3.430

FD-CCD [37] 67.94 15.650

BioClass [38] 89.20 13.569

which shows a better overall performance of retrieval rate
and matching speed, the accuracy of the proposed descriptor
improves by 1.4%. The reason lies in the bi-level restraint
reduction on the feature description stage. In addition, since
the proposed feature description method of contour coding
is more concise in feature structure, it is more than 300 times
faster than IDSC in terms of matching speed. It is also worth
noting that while BioClass [38] shows a higher retrieval rate,
its speed is extremely slow. Overall, the method proposed in
this paper is more robust.

5.2 Performance on Swedish leaf

The Swedish leaf dataset is a collection of plant leaf images,
containing 15 classes with 75 kinds of shapes (1125 shapes
in total). Since the contour in the Swedish leaf dataset is rel-
atively diverse, while the overall contour similarity is strong,
it is proper to verify the robustness of the proposed shape
recognition method on this dataset. Figure10 shows several
shapes in this dataset.

In the evaluation of recognition accuracy, the leave-one-
out method based on K nearest neighbors is adopted. K
shapes with the highest similarity to each shape(excluding
itself) are found, and the category of this shape is recorded
as the category with the highest frequency of occurrence
among the K shapes. Finally, the number of successful shape
recognition (classification) is counted to obtain the overall
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Fig. 10 Several shapes in Swedish leaf dataset

Table 4 Comparison of classification accuracy on Swedish leaf dataset

Descriptor Accuracy rate (%) Matching time (s)

CC2RR (ours) 94.60 0.015

SC+DP [28] 88.12 5.000

IDSC+DP [29] 94.13 4.680

CBW [34, 35] 94.72 4.650

TCD [39] 91.85 20.400

DIR [36] 67.60 2.388

FD-CCD [37] 60.85 13.067

recognition accuracy. The experimental results of some rep-
resentative shape descriptors tested in this dataset are shown
in Table 4, including our method.

Table 4 lists the experimental results. It can be seen that the
classification accuracy rate on this dataset is higher than that
of the MPEG-7 dataset. It is mainly because the dataset has
relatively few shapes and the overall contour of the shape
is more apparent. As a result, the proposed method per-
forms better than other shape descriptionmethods, excluding
CBW [34] which is outstanding in leaf shape classification.
AlthoughCBWhas a little bit better performance in accuracy
rate, the proposed method shows a marked improvement in
running efficiency, which is more than 500 times faster than
CBW.

5.3 Performances on Kimia99

Apart from the above twodatasets,Kimia99 [17] is also popu-
lar for shape recognition.A large number of shape descriptors
in the literature useKimia 99 as the test database. It contains 9
classeswith 11 shapes (99 shapes in total). Since the dataset is
small in size, it is not suitable for shape recognition methods
requiring multiple learning in the early stage. On the other
hand, it has comprehensive shape contours that are very suit-
able for validating contour-based shape descriptionmethods.
All shapes in the dataset are shown in Fig. 11.

Fig. 11 All shapes in the Kimia99 dataset

Table 5 Average hit rate of the 10 most similar shapes on the Kimia99
dataset

Descriptor Correct hit rate (%) Matching time (s)

CC2RR (ours) 89.78 0.015

CBW [34, 35] 94.72 4.850

TCD [39] 81.25 20.240

DIR [36] 83.62 2.500

MDM [40] 82.72 11.100

FASD [37] 66.78 3.325

During the evaluation, each shape in the database is set as
a query in turn, and similar shapes are then identified among
the remaining shapes.As for the results, the number of correct
hits from the first most similar shape to the tenth most similar
shape for each query is counted. The final statistical results
are used to evaluate the performance of the descriptors.

The experimental results of some representative shape
descriptors tested in this database are shown in Table 5. It
can be seen that the contour coding reduction method pro-
posed in this paper still has relatively higher accuracy and
matching efficiency on the Kimia99 dataset. It is also worth
noting that the reason for the higher accuracy than theMpeg-
7 dataset lies in its fewer shapes and comprehensive contour
distribution. In addition, the overlapping of shape features
is cut by the bi-level restraint reduction, which makes them
easier to identify.

5.4 Performance on the occluded shape dataset

Since the datasets tested are deformed to some extent in con-
tour, the proposed method in this paper is tested in the noise
datasets itself. The above experiments show that its anti-noise
ability is stronger than some other classical methods. There-
fore, this section only analyzes the occluded performance.
Since there is no public dataset of occlusion shape, we con-
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Fig. 12 Leftmost column is a schematic diagram of the target shapes
artificially occluded (to verify the effectiveness of occlusion resistance),
and the remaining part is 100 single remote sensing target shapes col-
lected from the Internet and remote sensing image databases

Table 6 Performance on FEW100 dataset

Descriptor Accuracy (%) Matching time (s)

CC2RR (ours) 84.13 0.014

SC [28] 64.50 4.210

IDSC+DP [29] 79.20 5.035

IDSC+LP [29] 82.33 6.000

CBW [34, 35] 82.44 5.110

DIR [36] 74.69 3.030

FD-CCD [37] 61.04 15.478

structs an occluded shape dataset ourself, which is named
FEW100 [41]. The shapes in this dataset come from the
open remote sensing shape dataset, and we occluded them
artificially. In the shape matching stage, we also employ the
Hamming code distance to measure the similarity between
occluded shapes [see Eq. (6)]. There are five classes of shapes
(aircraft, ship, storeroom, helicopter, oil tank), twenty shapes
in each class. All the shapes are shown in Fig. 12.

The test results are shown in Table 6. Its performance on
this dataset is better than that of someother classicalmethods.
It can also be seen from the experimental results that the
method in this paper has stronger anti-occlusion ability.

5.5 Influences of different restraints

To clarify the effectiveness of the proposed method in con-
tour coding shape recognition, a comparative experiment is
conducted on the recognition accuracy between the normal
restraint and the reduction restraint. The experiment con-
tains four parts: normal restraints, only the first reduction of

Fig. 13 Experimental results of different times reduction constraints
are compared in three databases, the abscissa represents three different
international general shape recognition datasets, and the ordinate rep-
resents the recognition accuracy after reducing different times restraint

restraint, only the second reduction of restraint and bi-level
restraint reduction. All experiments are carried out in the
above three shape datasets. The experimental results are com-
pared in Fig. 13. It can be clearly seen from the experimental
results that the recognition accuracy is low under normal con-
straints, and the results with only one reduction of restraint
are improved but not satisfactory, while the results of bi-level
restraint reduction are greatly improved. Consequently, the
effectiveness of the proposed contour coding method based
on double reduction of restraint is validly proved.

5.6 Supplementary experiments

In order to better illustrate the effectiveness of the pro-
posed method, supplementary experiments are conducted.
The details are as follows.

5.6.1 Fourth point as the restraint reduction of contour
extraction

The degree of restraint reduction here depends on the cate-
gory difference of shapes in the dataset and the deformation
degree of shape contours. As we all know, the greater the
degree of deformation, the stronger the difference between
the two same shapes, the worse the recognition accuracy.
Therefore, the reduction constraint is to reduce the influence
brought by deformation, but it must ensure that the shape
features will not become very similar due to a high degree
of reduction constraint, because this will greatly reduce the
recognition accuracy of the algorithm.

To prove the correctness of selecting 4 in Sect. 3.1 as the
step of reducing restraint for contour extraction, the authors
conducted an ablation experiment in this section. Step of 3,
4 and 5 was selected, respectively, to conduct experiments
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Table 7 Recognition accuracy (%)/matching time (s) of different step
in reducing restraint for contour extraction

Datasets Step
3 4 5

MPEG-7 81.05/0.066 86.55/0.016 80.20/0.014

Part B

Swedish 88.72/0.070 94.60/0.015 86.34/0.014

leaf

Kimia99 89.91/0.072 89.78/0.015 87.15/0.014

in the three datasets with other conditions and parameters
unchanged. The experimental results are shown in Table 6.
It is obvious from the experimental results that selecting 4
is the optimal choice in the datasets. It is worth mentioning
that experiments on step 1, 2 and 6 were also conducted, and
the performance was not as good as 4.

5.6.2 20-Connected chain as the number of coding
direction

Generally speaking, the existing coding directions are 8
direction and 16 directions, but the shape contour of the
dataset in this paper is some complex, and the recognition
accuracy will be greatly reduced if the feature quantity of
the contour is greatly reduced. Therefore, according to the
experimental results, we choose amore complex 20-direction
chain code.

To prove the correctness of selecting 20-connected chain
code in Sect. 3.2 for contour coding, ablation experiments
were conducted. With other conditions and parameters
unchanged, 8-connected chain code, 16-connected chain
code, 20-connected chain code, and 24-connected chain code
were selected, respectively, to conduct experiments in the
three datasets. The experimental results are shown in Table 7.
It is obvious from the experimental results that selecting 20-
connected chain code in the datasets is the optimal choice.

5.6.3 Former and latter directions as the restraint reduction
of feature expression

Like the first layer of reducing restraint, the degree of
reduction restraint directly affects the difference of contour
features, while the shape contour in the dataset are complex
to some extent. Therefore, restraint cannot be reduced too
much, which will greatly reduce the shape discriminability
and ultimately affect the recognition accuracy.

To prove the correctness of selecting 1 in Sect. 3.3 as
the step of reducing restraint for feature extraction, abla-

Table 8 Recognition accuracy of different number of direction in
reducing restraint for contour coding

Datasets Direction
8 16 20 24

MPEG-7 Part B 42.10 72.15 86.55 84.23

Swedish leaf 47.50 70.69 94.60 93.10

Kimia99 40.77 67.23 89.78 77.21

Table 9 Recognition accuracy of different step in reducing restraint for
feature expression (matching time does not change)

Datasets Step
0 1 2 3

MPEG-7 Part B 81.02 86.55 67.24 49.80

Swedish leaf 83.74 94.60 69.20 40.11

Kimia99 80.42 89.78 64.32 39.89

Table 10 Hamming code distance compared with Euclidean distance
on the MPEG -7 Part B dataset

Descriptor Accuracy (%) Matching time (s)

Hamming code distance 86.55 0.016

Euclidean distance 61.37 0.016

tion experiments were conducted. With other conditions and
parameters unchanged, step of 1, 2 and 3 was selected,
respectively, to conduct experiments in the three datasets.
The experimental results are shown in Table 8. It is obvi-
ous from the experimental results that selecting 1 as the step
of reducing restraint in the datasets is the optimal choice
(Table 9).

5.6.4 Hamming code distance compared with Euclidean
distance

The reason why Hamming code distance is selected in the
feature matching stage is that the shape features of the pro-
posed method are represented by coding. The shape feature
that is not represented by code cannot measure its hamming
code distance. To verify the superiority of using Hamming
code distance compared with Euclidean distance, they are
used, respectively, to measure the similarity of the encoded
features. The experimental results in Table 10 clearly sup-
port this view. The reason for the analysis is that the shape
features usedHamming code distance for similaritymeasure-
ment before the code is transformed to binary code value,
which has a higher resolution than converting it to decimal
code for Euclidean distance measurement.
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5.6.5 Relationships between reduction degree of restraint
and corresponding accuracy and efficiency

Two reduction restraints were carried out in this paper. The
first was contour extraction stage (Sect. 3.1), and the second
was feature expression stage (Sect. 3.3).

It can be seen from Table 6 that the first reduction restraint
will not only affect the recognition accuracy but also the
matching time. With the increase in the degree of reduction
restraint, the time will undoubtedly decrease. Because the
reduced restraint degree in this stage directly affects the vol-
ume of shape features, the less the structure of the feature,
the faster the matching time. The reduction constraint in this
stage will also affect the recognition accuracy. It can be seen
from the recognition results of steps 1 to 6 that the compre-
hensive recognition performance of the datasets all is the best
when the step is 4. So this is the optimal degree of the first
reduction constraint.

However, the second restraint reduction only affects the
recognition accuracy.With the increase in the restraint degree
(from 0 to 3), the best performance is achieved when the step
is 1. And increasing the degree of reducing restraint will
significantly reduce the recognition accuracy. So this is also
the optimal degree of the second reduction restraint. It is
worth mentioning that when the step is 0 (without reducing
restraint), the result is lower than that after reducing restraint,
which further explains the effectiveness of reducing restraint
at this stage.

6 Conclusion

This paper first points out that the essential problem affecting
the accuracy and speed of shape recognition is “structural
restraint,” which is represented by the characteristic struc-
tural restraint. Accordingly, a fast contour coding shape
recognition method via a bi-level restraint reduction of con-
tour coding is proposed to reduce two major restraints of
extraction and expression of contour features. In terms of
shape contour coding feature, which possesses the advantage
of structural simplicity, the main downside is the problem
of feature structure restraint. Therefore, the efficiency and
robustness could be improved significantly after reducing the
restraint. Experimental results prove that thismethodnot only
improves the accuracy of shape recognition but also greatly
improves the matching speed in the matching stage. In addi-
tion, it is more than 500 times faster than some representative
shape description methods, which provides greater possibil-
ities for practical applications. Future work will focus on the
essential problem of “structural restraints.” The influence of
computational structural restraints and matching structural
restraints will be intensively studied, thus improving the per-
formance of shape recognition, aswell as solving the intrinsic

problems with the relevant concepts of restraints in this field.
Besides, this paper provides a theoretical basis for computer
vision engineering.
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