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Abstract

Infrared image has lower resolution, lower contrast, and less detail than visible image, which causes its super-resolution (SR)
more difficult than visible image. This paper presents an approach based on a deep neural network that comprises an image
SR branch and a gradient SR branch to reconstruct high-quality SR image from single-frame infrared image. The image
SR branch reconstructs the SR image from the initial low-resolution infrared image using a basic structure similar to the
enhanced SR generative adversarial network (ESRGAN). The gradient SR branch removes haze, extracts the gradient map,
and reconstructs the SR gradient map. To obtain more natural SR image, a fusion block based on attention mechanism is
adopted between these branches. To preserve the geometric structure, gradient L1 loss and gradient GAN loss are defined and
added. Experimental results on a public infrared image dataset demonstrate that, compared with the current SR methods, the
proposed method is more natural and realistic, and can better preserve the structures.
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1 Introduction

Infrared imaging systems, which are widely utilized in the
military, medical, and public security areas, can record envi-
ronmental information under challenging weather such as
darkness, rain, and fog. Compared with the million pixel
resolution of visible light sensors, the resolution of infrared
imaging systems is usually far lower than the resolution
required for practical applications. However, increasing the
resolution of infrared imaging systems by hardware, such
as reducing pixel size or expanding the detector matrix,
increases the production cost significantly. More importantly,
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in some scenarios, such as the military, where volume and
weight are typically limiting factors, increasing the reso-
lution through hardware is not practical. Therefore, using
software to improve the resolution of infrared images is the
most promising technical approach.

Currently, visible image super-resolution (SR) method
progressed markedly due to the rapid development of deep
learning technology [1]. The single-image SR methods based
on deep learning may be grouped into four categories accord-
ing to the input image characteristics, the network structure,
the method of feature extraction, and the way of processing
information. (1) The first methods are based on interpolat-
ing, in which initial image is first scaled to the output image
size by interpolation and then refines the details using a
deep network. SRCNN [2] used a deep neural network first
time for SR reconstruction. It only employed a three-layer
network, but the effect is far better than the traditional meth-
ods. VDSR [3] adopted a residual net to build a 20-layer
model with enlarged receptive field, resulting in multiple SR
images. Based on this idea, some excellent models emerged,
such as IRCNN [4], Memnet [5], DRCN [6], DRRN [7], and
SDSR [8]. (2) The second methods employ a low-resolution
(LR) image directly, avoiding the loss of detail caused by
interpolation and drastically reducing the calculation time.
The FSRCNN [9] constructed a fast SR network with a
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deconvolution layer, small convolution kernels and shared
deep layers. RED [10] employed a symmetrical convolution-
al-deconvolution layer. ESPCN [11] extracted features in LR
space and enlarged the image to the target size by a sub-pixel
convolutional layer. SRResNet [12] and EDSR [13] extracted
features in the LR space with residual learning and enlarged
LR features by a sub-pixel convolutional layer. Luying Li
[14] proposed an unsupervised face super-resolution via gra-
dient enhancement and semantic guidance. (3) The third
methods adopt dense net technique which overcomes the
sparseness of effective features layer-by-layer. SRDenseNet
[15] used a dense net to obtain SR images with a better visual
effect. The paper [16] proposed a joint restoration convolu-
tional neural network for low-quality image super-resolution.
The paper [17] proposed a single-image SR method based on
local biquadratic spline with edge constraints and adaptive
optimization in transform domain. Zhang et al. [18] extracted
local features by a residual dense network. DenseNet [19]
used high-frequency information to augment the dense net-
work (SRDN), which pays more attention to high-frequency
regions such as edges and textures. (4) The fourth methods
employ the GAN net. SRGAN [20] raised the quality of SR to
anew level based on a GAN model. ESRGAN [21] increased
the speed of model training and improved the quality of SR.

However, there are several problems when using the above
methods directly for infrared image SR. That because these
visible image SR methods do not take into account the unique
characteristics of infrared image, such as: Infrared image
often has low resolution, weak contrast, and few details [22,
23]; the fine geometric structure in the infrared image is easy
to be destroyed in the process of super-division resulting in
distortion [24, 25]; and water vapor absorption and atmo-
spheric scattering causes blur, showing the characteristics of
haze in infrared image.

Considering the above problems, this paper presents a new
method for infrared image SR. The main contributions of this
paper are as follows:

(1) To obtain high-quality SR image from single-frame
infrared image, we propose a dual-branch deep neu-
ral network. The image SR branch reconstructs the SR
image from the initial infrared image using a basic struc-
ture similar to the ESRGAN. The gradient SR branch
removes haze, extracts the gradient map, and recon-
structs the high-resolution gradient map. To reduce the
complexity and calculation, the gradient SR branch
directly uses the intermediate-level features extracted
in the image SR branch.

(2) Since infrared image has lower contrast and less detail
than visible image, enhancing the detail information in
the original image is important for infrared image SR. To
emphasize contrast of initial IR image, a haze removal
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method based on a dark-channel prior model [26] is
adopted before gradient extraction block.

(3) To fuse the gradient SR map into the image SR map
more naturally, this paper adopts a fusion block based
on attention mechanism.

(4) To preserving fine geometric structure, we designed a
gradient L1 loss and gradient GAN loss, which super-
vises the generator training as a second-order constraint.

2 Methods
2.1 Overall process

The method includes two branches, the image SR branch and
gradient SR branch, as shown in Fig. 1. The image SR branch
reconstructs a SR image from an initial infrared image using
abasic structure similar to ESRGAN; the gradient SR branch
removes the haze first, then extracts the gradient map, and
reconstructs the SR gradient map. To obtain more naturally
SR image, a fusion block based on attention mechanism is
adopted. To reduce calculations during the gradient SR pro-
cess, several intermediate-level features from the image SR
branch are used directly.

The image SR branch uses a network similar to ESRGAN
[21] constructed with the basic residual-in-residual dense
block (RRDB) module to reconstruct an SR image from the
initial infrared image. The gradient extraction block extracts
the gradient map using the Sobel or Laplacian operator. The
following sections will introduce the haze removal module,
the gradient SR branch, and the fusion block in detail. To
better preserve the structure, we add gradient L1 loss and
gradient GAN loss.

2.2 Haze removal of infrared image

Since infrared images have lower contrast and less detail
than visible images [27], enhancing the detail information
in the original image is important for infrared image SR.
However, infrared images are usually blurred and show haze
characteristics in visually because of water vapor absorption
and atmospheric scattering [28]. So, a haze removal based on
dark-channel prior model is adopted to emphasize contrast
of initial IR image before gradient extraction block.

The dark-channel prior model [26] is a haze removal
method of visible image which has RGB three channels. Its
basic hypothesis is that the haze patch has very low intensity
at least one color channels in most non-sky patches. In other
words, the minimum intensity in such a patch should be very
low. It expressed by a mathematical model as follows:

J4x)= mi in J¢ 0 1
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Fig. 1 Overall framework of our
method

Haze Removed Image

where J€ is the color channel of the image J, Q(x) is a
local patch centered at (x,y), and ce(r,g,b) is a pixel in the
patch Q(x). The dark-channel prior model says that if J is a
haze-free outdoor image, then, except for the sky region, the
intensity of J¢ is low and tends to zero. Since the infrared
image only has one channel, Eq. (1) can be simplified as
follows:

J4x)= min J(y) = 0 2
()= min J() @

According to the above dark-channel prior model (1), we
can model the transmission and simplify its estimation as
follows:

B . 1(y)
tx)=(1—-w) i 3)

where I(y) is the original image with haze, which is known,
A is the global atmospheric light value, which is unknown,
andw is the rate of haze removal in the interval [0,1], whose
default value is 0.95.

In practice, a simple method can be used to estimate the
atmospheric light A with the following steps:

(1) Picking the top 0.1% brightest pixels from the dark chan-
nel. These pixels are most haze opaque.

(2) Among these pixels, the pixels with highest intensity in
the input image are selected as the atmospheric light A.

After A and ¢(x) are estimated, the haze-free image can be
recovered from the haze removal model using the following
formula:

I —A
" max(¢(x), to)

J(x) “

L——— Grad Extract ——>Grad SR Branch-

Tmage SR Branch—> Fusion Block —>

intermediate

level features

Gradient SR Image
Gradient Image

where I (x) is the input image, A is the estimated global atmo-
spheric light, and 7(x) is the estimated transmission within
the window using Eq. (3). 7o is the lowest transmission, which
means that a small amount of haze is preserved in very dense
haze regions. A typical value of 7y is 0.1.

2.3 Gradient SR branch

The gradient SR branch recovers SR gradient map from the
LR gradient map with several intermediate-level features
from the image SR branch. The recovered SR gradient map
will be sent into the fusion block to the final SR image.
The network structure of the gradient SR branch is shown
in Fig. 2.

Consistent with the image SR branch has 23 RRDBs, the
gradient SR branch consists of 22 Grad—Conv block, three
independent 3 x 3 Conv blocks, and one 4 times upsam-
pling block. Each Grad—Conv block integrates the output of
the previous Grad—Conv block and the output of the current
RRDB block to produce next level gradient feature. The moti-
vation of such a scheme is that the well-designed ESRGAN
can carry rich structural information, which is important for
the recovery of gradient maps.

The Grad—Conv block locates between two RRDBs to
extract high-level features from the gradient map. The Grad
block can be a residual block or a bottleneck block. The two
structures have no obvious advantages or disadvantages, and
both can be utilized as practical examples. The two network
structures of the Grad block are shown in Fig. 3.

2.4 Fusion block
To fuse the gradient SR map into the image SR map more
naturally, this paper adopts a fusion block based on atten-

tion mechanism, which is shown in Fig. 4. First, the gradient
SR map and the image SR map are put into attention block,
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Fig. 2 The structure of gradient SR branch
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Fig.4 Fusion block

respectively, to obtain the corresponding weights; then, the
map enhancement is performed with their weights, respec-
tively, to obtain the fused maps based on each attention;
finally, the maps are fused with averaging rule to obtain the
final fused image.

The calculation equation is as follows:

I = wir X IsRGAN + Wer X ISRa ®)

Igradient = @ir ¥ IggRGAN + Qgr X Ics}gld (©)
SR __ .

I8 = (i + Igradient)/2 N

where wj; and wy, denote the weights of ISERG AN and I(S}Fad,
respectively, in the IR image attention block, and similarly,
@ir and @, denote the weights of I]%RG AN and Iéfad, respec-
tively, in the gradient image attention block. /;. and Igradient
denote, respectively, the maps enhancement in the IR image
attention block and the gradient image attention block. Iﬁslllil
is the final fused SR image.

The detail of the attention block is shown in Fig. 5. It is not-

ing that the larger size convolution kernels are decomposed
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Fig.5 Attention block

into depth-wise convolution (DWC), depth-wise dilation
convolution (DWDC), and 1*1 convolution, which reduces
the number of parameters while maintaining a larger recep-
tive field and improves efficiency. To calculate weights,
soft-max and average pooling are adopted in the attention
block.

2.5 Loss function

To preserve geometric structure, we add gradient loss includ-
ing gradient L1 loss and gradient GAN loss. So, the loss
function includes image branch loss and gradient branch loss.
The composition structure is as follows (Fig. 6):

(1) L1 loss

The L?lx loss represents the absolute error between the SR
image and real high-resolution image.

LY = Ef|GU™) — 1Ry, ®)

where IR is the initial LR image, /1R is the high-resolution
(HR) image, G(-) is the generator whose output is the SR
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image, ||-||; is the L1 norm, and E;(-) is the sum of pixels in P
the image [ rer
gel. Image Loss IDis
I
(2) Perceptual loss Adv
Loss L
cr . Lg;\?
The perceptual loss Ll; characterizes the error between the . Dis
. . . Gradient Loss= Lan
i-th layer feature ¢; of the SR image and the corresponding I Adr
layer feature of the real high-resolution image: oM
per LR HR Fig. 6 Composition structure of the loss function
Ly = Efllgi(GU™7) — i1 )11 )
where ¢;(-) denotes the i-th layer output of the image SR as follows:
model.
Lg\ = —Eamllog D(GM (1M (14)

(3) Image GAN loss

The image SR branch is an adversarial network (GAN). The
image SR branch discriminator D and generator G are opti-
mized using a two-player game as follows:

LY® = —E;[log(1 — DUR)] — Eqllog(DU™)]  (10)

L3 = —Eq[log D(GU™)] (11)
where ISR is the SR infrared image.
(4) Gradient L1 loss

Since gradient map can reflect structural information, we use
it as a second-order constraint to supervise the generator
training. With the supervision in both image and gradient
domains, the generator can not only learn fine appearance,
butalso avoid fine geometric constructure distortion. The gra-
dient L1 loss LE‘:KA characterizes the absolute error between
the generated SR gradient feature map and the HR gradient
feature map.

Ly = EamlIM(GI™R) — MM (12)
where M (-) is the gradient extraction.
(5) Gradient GAN loss

To discriminate whether a gradient branch is from the HR
gradient map, the gradient discriminator is defined as follows:

LY = —Egmllog(1 — D(M(I5R)))]
— Egmllog(D(M(I™R)))] (13)

To supervise the generation of SR results by adversarial
learning, the adversarial loss of the gradient branch is defined

(6) Overall loss

Combining the above various types of losses, the overall loss
function is obtained as follows:

L=aLly +bLY" +cLPS +dLpY

+eLPn + FLBY + g LAY (15)

wherea, b, c, d, e, f, g are the weighting parameters which
meet the condition:

a+b+c+d+e+f+g=1 (16)

3 Dataset and experiment analysis
3.1 Dataset and experimental settings

In our experiments, we use the public infrared image
dataset titled “A dataset for infrared detection and tracking
of dim-small aircraft targets underground/air background,”
downloaded from http://www.csdata.org/p/387/. The dataset
contains 22 sequence images from 22 independent videos,
totaling 16,177 frames. Each frame is in the 3-5 pm mid-
infrared band, having 256 x 256 resolution, 8-bit depth,
193 KB size, and bmp format.

Before training, we extracted 3235 frames at five frame
intervals from the 16,177 frames. The samples are down-
sampled by % to a resolution of 64 x 64, constituting the
LR images, while the original images with 256 x 256 res-
olution are the corresponding HR images. So far, we have
built a dataset containing 3235 LR-HR image pairs. In the
experiment, we randomly selected 70% of the image pairs in
the dataset are used for model training, while the remaining
30% are used for model testing.
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Fig.7 Experiment results of haze removal

3.2 Infrared image haze removal experiment

The window radius 2 for haze removal is 5, the rate of haze
removal w is 0.95, and the lowest transmission fg is 0.1. The
first and third columns of Fig. 7 show the images before
and after the haze removal, respectively. Seem from the
results, the contrast of image after haze removal is improved
obviously compared with the original. More crucially, some
blurred details become clearer.

Gradient maps are also extracted using the Sobel opera-
tor. The second and fourth columns of Fig. 7 show gradient
maps before and after the haze removal. The fourth column
evidently has more gradient information. This suggests that
more details are recovered by removing haze.

3.3 Qualitative comparison

We compare our method to other single-frame SR methods,
such as bicubic, SRResNet [12], SRGAN [20], and ESR-
GAN [21]. Figure 8 shows the 484th frame of datal5, which
contains a tower. The tower in the result of the bicubic SR
is still blurry. Although the tower in the results of SRRes-
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Net, SRGAN, and ESRGAN gradually becomes clear, they
have different degrees of geometric distortion. The geometric
structure of the tower in our method preserving better com-
pared with above methods. In terms of visual effects, our
results are more natural and realistic than other methods.

Figure 9 shows the 35th of data20 containing a house.
The SR result of the bicubic is still blurry. Though the house
edges in the results of SRGAN and ESRGAN become sharp,
there are still noticeable geometric distortions, as indicated
by red ellipses. The house edge in the SRResNet and our
method is clear and with no distortion. But on finer objects,
such as distant buildings marked with red boxes, our method
is cleaner and more natural.

More comparisons are shown in Figs. 10, 11, and 12.
Our method’s better performance is primarily attributable
to the following three aspects: (1) More details are recovered
by haze removal; (2) gradient map is extracted and used to
guide image SR; and (3) the gradient losses are added, which
imposes secondary constraints on the image SR for preserv-
ing structural information. As a result, our outcome is more
natural and realistic, and preserves geometric structure better.
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Fig.8 A steel tower in 484th
frame of datal5 [4 x
super-resolution]

Initial image

Fig.9 A house in 35th frame of
data20 [4 x super-resolution]

Initial image

3.4 Quantitative comparison

We use PSNR (peak signal-to-noise ratio), SSIM (structure
similarity [29]), and PI (perceptual index [30]) to quantita-
tively evaluate the SR performance. The value range of SSIM
is [— 1 1]. The higher the PSNR and SSIM indicators are,
the better, while the lower the PI is, the better.

A traditional method cubic interpolation, a filter-based
method SelfExSR [31], and three deep learning methods
(SRResNet [12], SRGAN [20], and ESRGAN [21]) are cho-
sen for comparison. The results are summarized in Table 1.
The best results for each indicator are shown in bolditalic,

Original LR Bicubic SRResNet

Bicubic

and the next best are in italic bold. Our technique is best for
PSNR and SSIM, as indicated in the table, whereas ESRGAN
is best for PI. In case of PI, our method is somewhat inferior
to ESRGAN; however, the difference is not discernible. Our
method outperforms other methods on the SSIM, about 0.03
higher than the second SRResNet.

3.5 Ablation experiments
To verify the effectiveness of each part of the model, ablation

experiments are also conducted on the dataset introduced in
Sect. 3.1. We also use three indicators (PSNR, SSIM, and
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Fig. 10 An aircraft in 348th
frame of datal6 [4 x
super-resolution]

Original LR Bicubic

Initial image

ESRGA Ours

Fig. 11 A road in 26th frame of
data6 [4 x super-resolution]

Initial image Bicubic

@ Springer
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Fig. 12 A steel tower and a road
in 35th frame of datal9 [4 x
super-resolution]

Initial image Bicubic

SRResNet

ESRGAN Ours

Table 1 Quantitative comparison T
performed on the public infrared Bicubic SelfExSR SRResNet SRGAN ESRGAN Ours

image dataset

avgPSNR 24.38 27.40 27.87 26.57 27.66 28.46
avgSSIM 0.6815 0.7518 0.8734 0.8269 0.8653 0.9012
avgPl 4.849 - 2.736 2.815 2.643 2.708
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Table 2 Results of the ablation

experiment Only image SR Without haze Without gradient Without fusion Complete
branch removal SR branch block
PSNR 27.66 28.15 25.13 28.30 28.46
SSIM 0.8653 0.8927 0.7348 0.8846 0.9012
PI 2.643 2.723 2.901 2.832 2.708

PI) to quantitatively evaluate the SR performance. The best
results for each indicator are shown in bolditalic, and the next
best are in italic bold.

In the first experiment, we cut off the gradient branch and
remove the fusion block. It is essentially a single-branch net-
work that is ESRGAN. In the second experiment, we only
remove the haze removal block. In the third experiment, we
only remove the gradient SR branch. In the fourth experi-
ment, we simply replace the fusion block with concat block,
that is, the SR results of the two branches are directly added
together. The last is the complete version of our method. The
results of the ablation experiments are shown in Table 2.

When removing the haze removal module, the PSNR
declined 0.31, the SSIM only slight declined 0.0085, and the
PI raised 0.15. It proved that haze removal is beneficial for
infrared image SR. When removing the gradient SR branch,
the three indicators all became worse obviously. This may be
because the gradient map is still LR while the image is HR.
There will be a wrong correspondence between the LR gradi-
ent map and the HR image. When replacing the fusion block
with concat block, the PSNR declined 0.16, the SSIM only
slight declined 0.0166, and the PI raised 0.124. The fusion
block is also beneficial for infrared image SR.

3.6 Computational cost analysis

Our experiment was carried out in the following environ-
ment: GPU 2080Ti, Intel(R) Xeon(R) CPU E5-2660 v2
2.20 GHz, RAM 32.0G; 64-bit Windows OS. When SR
reconstructing an image from 256 x 256 pixels to 1024
x 1024 pixels, the average time required by ESRGAN is
0.233 s, while ours is 0.257 s. Though the computational cost
of our method is slightly more expensive than the ESRGAN,
it is still within the acceptable range.

4 Conclusions

The visible image SR methods do not perform well when
directly used for infrared image SR. It is because that infrared
image has weaker contrast and fewer details than visible
image. To get high-quality SR from single-frame infrared
images, this paper proposes a dual-branch deep neural net-
work. The image SR branch reconstructs the SR image from
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the initial infrared image using a basic structure similar to
the enhanced SR generative adversarial network (ESRGAN).
The gradient SR branch removes haze, extracts the gradient
map, and reconstructs the SR gradient map. To obtain more
natural SR image, a fusion block based on attention mech-
anism is adopted between these branches. To preserve the
geometric structure, gradient L1 loss and gradient GAN loss
are defined and added.

Experimental results on a public infrared image dataset
demonstrate that, compared with the current SR methods,
the proposed method is more natural and realistic, and can
better preserve the structures.

In the future, we will study how to generate SR gradient
images with only a single branch using gradient map as the
guided filter.
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