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Abstract
Automatic image annotation (AIA) is a mechanism for describing the visual content of an image with a list of semantic
labels. Typically, there is a massive imbalance between positive and negative tags in a picture—in other words, an image
includes much fewer positive labels than negative ones. This imbalance can negatively affect the optimization process and
diminish the emphasis on gradients from positive labels during training. Although traditional annotation models mainly focus
on model structure design, we propose a novel unsymmetrical loss function for a deep convolutional neural network (CNN)
that performs differently on positives and negatives, which leads to a reduction in the loss contribution from negative labels
and also highlights the contribution of positive ones. During the annotation process, we specify a threshold for each label
separately based on the Matthews correlation coefficient (MCC). Extensive experiments on high-vocabulary datasets like
Corel 5k, IAPR TC-12, and Esp Game reveal that despite ignoring the semantic relationships between labels, our suggested
approach achieves remarkable results compared to the state-of-the-art automatic image annotation models.

Keywords Image annotation · Deep learning · Unsymmetrical loss function · Threshold estimation

1 Introduction

Nowadays, as social networks gain popularity, a massive
amount of image data is available on the internet, making
it necessary to analyze and annotate them. Traditional image
annotation methods that manually label image contents are
no longer applicable as they have two main weaknesses [1].
First, manual annotation of this enormous amount of image
data is impractical, and second, human annotators may have
completely different interpretations of a single image. Con-
sequently, automatically extracting a list of relative semantic
labels becomes necessary, which means every automatic
image annotation (AIA)methodhas to generate a list of labels
describing a given image content.

Due to the wide variety of deep learning methods that
have been used in this field over the past few years, AIA
techniques canbe classified into twoprimary categories: deep
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learning-based methods and non-deep methods. According
to [1], non-deep methods are classified into four categories:
Generativemodels,Nearest neighbormodels,Discriminative
models, and Tag completions.

AIA techniques based on generative models are aimed to
maximize the generative likelihood of image features and
labels. These models have made significant contributions to
the development of AIA. Nevertheless, estimating the gen-
erative likelihood between image features and annotations
is insufficient to guarantee optimal label prediction. Further-
more, the complex relationship between labels and image
features may not be captured accurately by these models.

AIA methods based on nearest neighbor models suppose
that images with similar visual appearances tend to have
identical labels. When a test image is presented, a group
of resembling images are retrieved by these models from the
training dataset; then, tags of the test image are derived using
the vocabularies of these training images. However, the size
of training datasets and retrieval performance may affect the
performance of nearest neighbor model-based AIAmethods.

Discriminative models treat image annotation as a clas-
sification problem with multiple labels [2, 3] and learn
an independent binary classifier for each tag. Next, these
binary classifiers are utilized to predict labels for test
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Fig. 1 As shown in the
illustration above, positive labels
in images are much less than
negative ones, resulting in a high
imbalance between them

images. Nonetheless, these models have some drawbacks.
For instance, it is often overlooked how image labels relate
to visual features. Moreover, as discriminative models often
rely on label correlations, the quality of training data is crit-
ical to their performance.

AIA techniques based on tag completion are distinctive
in comparison to other annotation methods. These meth-
ods can be analyzed from two aspects. The first is adding
missing labels for given images automatically, and the sec-
ond is, removing noisy labels for stated images, which
is called tag refinement [4]. However, optimizing the tag
completion method can be computationally complex and
time-consuming, and cannot ensure global optimization.

Recent developments in deep learning methods have
helped AIA tasks to be solved using deep learning-based
feature representations. It is possible to summarize these
methods in two categories. The first category focuses on
modeling semantic label relationships for an image. Encoder-
decoder models such as CNN-RNN [5] and more recent
models like graph convolutional networks (GCN) [6] are in
this category. Inspired by current advances in image cap-
tioning [7], the CNN-RNN model encodes image content
using a convolutional neural network (CNN) and feeds it
into a recurrent neural network (RNN) to generate a label
sequence. Nevertheless, one fundamental limitation of this
approach is that the original training labels are orderless,
while the RNN requires an ordered sequential list of labels as
the input. But capturing label correlations using a GCN com-
bined with a CNN has solved the previous limitation and has
led to promising results in recent papers [8, 9]. In summary,
GCN uses a predefined adjacency matrix as an explicit rela-
tionship between labels to improve the correlation of similar
embedded words. Even though these approaches are prac-
tical, their architectures are complex and require external
information such as natural language processing.

The second category asks whether such complicated solu-
tions are essential for achieving high performance in AIA.
Since CNNs have had remarkable achievements in single-
label multi-class classification problems [10–12], there is a
growing interest in using them to generate robust visual fea-
tures for AIA. Specifically, it has been shown that carefully
designed loss functions can significantly improve annotation
accuracy while keeping standard architectures. For example,

some techniques, including the CNN + WARP (weighted
approximate ranking pairwise)model [13] andCNN+LSEP
(log-sum-exp pairwise) model [14], use ranking loss func-
tions instead of traditional binary cross-entropy (BCE) loss
[15, 16] to train deep CNNs in multi-label classification
problems. However, a fundamental issue that has received
little attention is the imbalance between positive and nega-
tive labels, meaning that the contribution of positive labels is
much lower than the negative ones in images (see Fig. 1).

Traditionally, AIA techniques used a fixed threshold (e.g.,
select labels with p greater than a single threshold θ ) or top-
k values (e.g., pick top k results out of a ranked list) for
label assignment, resulting in either over-labeling or under-
labeling in images. Some recent methods, such as [15] and
[17], have attempted to handle this issue differently, which
obtained promising results.

In this research, we propose a novel unsymmetrical loss
function for deep learning techniques to deal with the imbal-
ance between positive and negative tags in high-vocabulary
annotation datasets (datasets including a large number of
words). Our loss function is based on two properties: first,
we design a piecewise loss function to highlight the loss con-
tribution from hard positives (low probability, less than 0.25)
and semi-hard positives (medium probability, e.g., between
0.25 and 0.5) as well as easy ones (higher probability than
0.5) by a simple change on the positive part of the focal
loss [18] and BCE loss. Second, owing to the abundance
of negative tags, our approach down-weights their overall
contribution from the loss function by increasing the expo-
nential decay factor of the negative component of the focal
loss. Finally, each label is given a different threshold accord-
ing to theMatthews correlation coefficient (MCC) in order to
improve the amount of the F1-score. Our main contributions
are summarized as follows:

• Proposing a new loss function for deep convolutional net-
works that employs probability shifting, logit shifting, and
variable exponential parameters to boost the contribution
of positives to the loss function while decreasing the con-
tribution of negatives.

• Proposing a threshold estimation method that uses a dif-
ferent threshold for each label rather than a single fixed
threshold for all.
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• Evaluation of the proposed method with commonly used
annotation datasets.

There are twomain criteria used to evaluate AIAmethods:
F1-score andN+. F1-score is the harmonicmean of precision
(PR) and recall (RC). N+ shows the number of labels with
non-zero recalls. We use both to compare our approach with
other AIA methods in the literature.

Following is an outline of the rest of this paper: In Sect. 2,
we talk about the related works. Details and analysis of the
proposed approach are presented in Sect. 3. The experimen-
tal results and evaluations are given in Sect. 4. Finally, we
conclude our method in Sect. 5.

2 Related works

In this section, we first clarify how automatic image anno-
tation (AIA) differs from image classification, then briefly
explain the four non-deep annotation methods in the liter-
ature, and finally describe deep learning-based methods in
greater detail since our proposed loss function is related to
these techniques.

2.1 Comparison of image annotation
and classification

Despite the resemblances between image classification and
AIA, the two fields are fundamentally separate. Image clas-
sification consists of assigning a label or class to an entire
image. Nonetheless, AIA produces a list of semantic tags
to describe the visual content of each image. Consequently,
AIA does not distinguish between the foregrounds and back-
grounds of an image.

There are some differences between datasets of image
annotation and image classification, which makes image
annotation a challenging task. One of these challenges is the
ambiguity in the contents of images. In classification tasks,
each image is defined by a single label, which typically corre-
sponds to the most prominent object in the image. However,
it is impossible to annotate all concepts in an image due to the
various perspectives of human annotators. Therefore, anno-
tation datasets often include fewer labels than the original
content of the image. Moreover, datasets of image annota-
tion are highly unbalanced in terms of the number of images
per label (see Fig. 2). As a result, labels with low frequencies
are very tough to learn. Another challenge that has received
less attention is the high imbalance between positive and
negative labels in images of annotation datasets. The supe-
riority of negative labels in number causes positive labels to
contribute less to the learning process.

2.2 Non-deepmethods

The cross-media relevance model (CMRM) [19] annotates
an image based on a probability formula derived from a
joint distribution of semantic tags and visual features of the
entire image. Following the CMRM, Wang et al. [20] use
a kernel-based estimation technique and multiple Bernoulli
distributions to calculate the probability distribution of visual
features and model semantic labels. In [21], the joint equal
contribution (JEC) model is proposed, which determines the
nearest neighbors of a picture using low-level image fea-
tures such as shape, color, and texture information and some
primary distance measures. The more recent 2PKNN model
[22] combines the advantages of both image-to-image and
image-to-label resemblance to solve the problem of image
annotation. With its generative and discriminative methods,
the SVM-DMBRM [23] is a powerful model for AIA. Weak
labeling and unbalanced class issues are addressed by SVM
and DMBRM, respectively. A graph structure is used in [24],
in which nodes represent semantic labels and edges show co-
occurrence links.

As mentioned earlier, one of the challenges in image
annotation is that manual labels are often incomplete and
unreliable. In order to solve this problem, a newmodel called
multi-label learning with missing labels (MLML) is pre-
sented by [25, 26].

2.3 Deep learning-basedmethods

Recent advances in deep learning methods have led to break-
throughs in computer vision and image classification areas.
They have also made considerable progress in the field of
multi-label image annotation. The CNN-RNN model [5],
CNN-GCN model [8], and CCA-KNN model [27] (which
is based on the canonical correlation analysis (CCA) frame-
work) use CNN and word embedding vectors for visual and
textual feature extraction, respectively. Using word embed-
ding vectors allows the semantic relationship between labels
to play a vital role in image annotation. In order to model
label correlations, Xue et al. [28] suggested a brand-new
channel correlation network that is entirely based on CNNs.
Visual features are convoluted by a new attention module
to match the label and channel-wise feature map. Then, to
properly examine the label correlation, they apply squeeze
and excitation (SE) and convolution processes sequentially to
get rid of unnecessary information. Niu et al. [15] extracted
textual features from noisy tags through a multilayer per-
ception subnetwork to enhance visual features extracted by
a multi-scale CNN subnetwork. Eventually, these integrated
features were used to annotate images in a fully connected
layer. The diverse and distinct image annotation (D2 I A)
model [29] creates a subset of related and unrelated labels
using sequential sampling fromadeterminantal point process
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Fig. 2 Number of images per label in image annotation datasets (training data). a Corel 5k, b IAPR TC-12, and c ESP Game. The horizontal axis
shows labels, and the vertical axis indicates the number of images per label

(DPP) model and employs a generative adversarial network
(GAN) for the training process. In order to train annota-
tion models using side information (e.g., semantic relations
between labels) extracted by deep networks, more data is
required. Ke et al. [16] designed an end-to-end AIA model
consisting of a deep CNN (E2E-DCNN) and multi-label
data augmentation that utilizes Wasserstein GAN for data
augmentation. Although the multi-label data augmentation
presented in [16] provides the amount of data required by
the model and increases the number of tags with low fre-
quency, it preserves the ratio between them, meaning that
the number of all tags increases almost equally. As a result,
the problem of imbalance between the number of images per
label remains.

As an alternative to complex models, some methods
modified the loss function used in CNNs to extract more
appropriate visual features. For instance, Gong et al. [13]
applied pairwise ranking to train deep CNNs for image anno-
tation problems. The loss function is based on a multi-label
form of the weighted approximate ranking pairwise (WARP)
loss function. Li et al. [14] proposed an innovative loss func-
tion for pairwise ranking on the basis of a log-sum-exp
pairwise (LSEP) function that is smooth everywhere and
makes the optimization process more straightforward. To
address the high imbalance between positive and negative
labels in pictures, Ridnik et al. [30] suggested an asymmet-
ric loss function, which has separate functionality for them.

3 The proposedmethodology

Our proposed loss function is described in detail in this
section. Section 3.1 reviews binary cross-entropy (BCE) and
focal loss. Positive and negative parts of our loss function
are introduced in Sects. 3.2 and 3.3, respectively. We present
our asymmetric loss function in Sect. 3.4, which handles the
positive–negative imbalance in annotation datasets. Finally,
the threshold estimation algorithm is discussed in Sect. 3.5.

3.1 Preliminary

Deep learning-based approaches often treat image annota-
tion as a multi-label classification task. Classification with
multiple labels is typically converted into a series of binary
classification problems. Given M labels, the network pre-
dicts the logit oi of the i-th label independently, then the
probability of each label is obtained by activating the logit
with the sigmoid function as pi = σ(oi ). Assuming yi is the
ground-truth for the i-th label, the binary classification loss
is computed as follows:

L = −
M∑

i=1

(
yi L

+
i + (1 − yi )L

−
i

)
(1)

The positive and negative losses for i-th label are rep-
resented by L+

i and L−
i , respectively. For briefness, the

subscript i has been omitted from the following equations.
One of the most used loss functions in multi-label image

annotation is the BCE loss function, which is calculated by:

⎧
⎨

⎩
L+
BCE = log(p)

L−
BCE = log(1 − p)

(2)

Another loss function that has been used primarily for
object detection tasks and can handle the problem of class
imbalance is focal loss [18]:

⎧
⎨

⎩
L+

f ocal = α+(1 − p)γ log(p)

L−
f ocal = α− pγ log(1 − p)

, (3)

where γ is a focus parameter, and raising its amount increases
the attention paid to the hard positives and hard negatives
(higher probability than 0.75). The weight parameters α+
and α− are utilized to tackle the class imbalance issue.
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Fig. 3 GradientAnalysis of the proposed loss in comparisonwith binary
cross-entropy (BCE) and focal loss. a shows that by choosing a proper
margin (m1), the proposed loss endows greater weight on hard and
semi-hard positives than the focal loss with the same γ+ parameter and

also highlights the weight of easy positives. b indicates that probability
shifting eliminates negatives with very low probabilities, assigns lower
weight to semi-hard and hard negatives over the focal loss, and discards
mislabeled negatives and declines the gradient values for missing labels

3.2 Positive part of the loss function

What we are seeking is emphasizing gradients from posi-
tive labels during training. The fundamental explanation for
this is the low contribution of positives to the entire labels
in the high-vocabulary annotation dataset. Unlike BCE loss
(Eq. 2), focal loss (Eq. 3) puts more attention on the hard
positives. But, it neglects a large proportion of semi-hard pos-
itives and eliminates the gradients from easy ones.Moreover,
since the formulation of focal loss is symmetrical, increasing
the value of γ to decrease the contribution of easy nega-
tives to the loss function aggravates the mentioned problem.
As a result, learning features from positive labels might be
under-emphasized in the network. We propose a piecewise
loss function to highlight all positive labels rather than just
focusing on the hard positives.

In the first instance, we subtract a margin from the logits,
which reduces their amounts and gives them larger gradients.
The formula is defined as:

pm1 = σ(o − m1) (4)

where m1 is a margin parameter. (The concept of margin is
widely used in the loss function design, but [31] was the first
work that combines margin and sigmoid activation). Next,
we consider two sub-functions, one for hard and semi-hard
positives and the other for easy positives. The first sub-
function uses pm1 instead of p in the positive part of the focal
loss, resulting in more emphasizing gradients from hard and
especially semi-hard positive labels. Similarly, the second
sub-function uses pm1 in place of p, but in the positive part
of the BCE loss, which not only has no problems of focal
loss for easy positives but accentuates their gradients. The

positive part of our loss function is defined as:

L+ =
{(

1 − pm1

)γ+log
(
pm1

)
, pm1 < th

log
(
pm1

)
, pm1 ≥ th

. (5)

When pm1 is less than th, we select the focal loss, and
in case pm1 is greater than th, we choose the BCE loss. th
is determined in such a way that makes the loss gradients
continuous.

We compare the gradients of our proposed loss function
with the gradients of BCE and focal loss, which is helpful to
understand how our loss function behaves. The loss gradients
from positive labels are as follows:

dL+

do
= ∂L+

∂ pm1

∂ pm1

∂o

=
⎧
⎨

⎩

(
1 − pm1

)γ+
[

1
pm1

− γ+log
(
pm1

)

1−pm1

]
, pm1 < th

1 − pm1 , pm1 ≥ th
.

(6)

The gradients of different losses for positive labels are
shown in Fig. 3a. Our suggested loss gives larger weight to
semi-hard and easy positives compared to focal loss andBCE
loss, respectively.

3.3 Negative part of the loss function

Due to the high number of negative labels in AIA tasks,
we aim to reduce their contribution to the loss. Although
this attenuation can be significantly satisfied by the neg-
ative part of focal loss for easy and semi-hard negatives,
this is not always adequate because of the high imbalance
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in image annotation tasks. According to [30], we eliminate
very easy negatives after shifting their probabilities, which
down-weights the contribution of all negative labels from the
loss function. The shifted probability, pm2 , is given by:

pm2 = max(p − m2, 0), (7)

wherem2 is a probability margin parameter. It is worth men-
tioning that the concept of logit shifting in Eq. (4) differs
from probability shifting because it uses a non-linear sig-
moid function. The negative part of our loss function uses
pm2 instead of p in the negative part of the focal loss:

L− = (
pm2

)γ− log
(
1 − pm2

)
. (8)

Similarly, we investigate the behavior of loss gradients for
negatives compared with those for BCE and focal loss:

dL−

do
= ∂L−

∂ p

∂ p

∂o

= (
pm2

)γ−
[

−1

1 − pm2

+ γ−log
(
1 − pm2

)

pm2

]
p(1 − p).

(9)

In Fig. 3b, we show gradients of the loss function for neg-
ative labels and compare them to other losses. Overall, the
suggested loss gives less weight to negatives and completely
removes easy ones. This portion of the loss function can also
deal with missing labels, tags that are highly probable in an
image but labeled negatively. In contrast to the negative por-
tions of BCE and Focal Loss, which penalize the model if
it predicts very hard negatives, the mentioned loss function
minimizes their gradient magnitudes. Thus, the model is not
penalized too much if it annotates missing labels. In other
words, if the model predicts an incorrect label with a high
probability (around or greater than 0.9), this label is accepted
as amissing label. (Recall that recent studies [16] have shown
that manual annotation maymiss some tags in images, which
means different people may annotate the same image differ-
ently.)

3.4 Asymmetric loss function

The following is a definition of the proposed loss function:

⎧
⎪⎨

⎪⎩
L+ =

{(
1 − pm1

)γ+log
(
pm1

)
, pm1 < th

log
(
pm1

)
, pm1 ≥ th,

L− = (
pm2

)γ− log
(
1 − pm2

)
(10)

where pm1 and pm2 are defined in Eqs. (4) and (7), respec-
tively. Since the proposed loss function is asymmetric, it does
not have the drawbacks of symmetric losses, such as focal
loss, sowe can set γ− > γ+. To address the positive–negative
imbalance in image annotation datasets, the mentioned loss
function behaves differently on negative and positive labels.
This results in decreasing the contribution of negatives and
an increase in the contribution of positives from the loss.

3.5 Threshold estimation algorithm

As convolutional network training is completed, we use a
simple but effective method based on the Matthews corre-
lation coefficient (MCC) to estimate a threshold for each
label. Matthews operation calculates the correlation coeffi-
cient for each label separately, considering the actual and
predicted values of that label, resulting in a number between
-1 and 1. According to [32], MCC is more informative than
F1-score and accuracy when evaluating binary classifica-
tion problems since its formula considers the proportion of
each component in the confusion matrix (true positive (T P),
true negative (T N ), false positive (FP), and false negative
(FN )). It only receives a good score if the classifier performs
well on both the negative and positive examples. Although
accuracy and F1-score are frequently employed in statistics,
both can be deceiving. When the dataset is unbalanced, for
instance, accuracy is no longer an appropriate metric since it
provides an overoptimistic estimate of the classifier’s ability
for themajority class. TheF1-score also has somedrawbacks.
For example, it varies for class switching (if the positive class
is renamed negative and vice versa) and is independent of the
number of samples correctly identified as negative, whereas
MCC is not susceptible to these issues. The correlation’s for-
mula is:

MCC = (T P × T N ) − (FP × FN )√
(T P + FP)(T P + FN )(T N + FP) + (T N + FN )

.

(11)

First, we define a set of thresholds in the range [0.05,
0.7] with a step of 0.05. Then we compare the model’s pre-
dicted values for each label in all training images or validation
images (If any) with each of the mentioned thresholds sep-
arately. In case these values are greater than the thresholds,
they are changed to 1 and otherwise to 0.

Next, we perform the Matthews operation using the
obtained values on different thresholds and the grand-truth
values for each label. Finally, the threshold with the best
MCC will be chosen for each label. Algorithm 1 illustrates
the pseudocode of the proposed method.
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Algorithm 1 Pseudocode for threshold estimation method. 

INPUT: Two ×  dimensional matrices {0,1} ×  

(actual value for labels) and {0,1} ×  (predicted value for 

labels).  and  represent the total number of training images 

and labels, respectively; 

OUTPUT: Best thresholds 

1) Define a set of thresholds: thresholds = [0.05, 0.1, 0.15, 

0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7]; 

2) Take the -th column (  begins at 1) of , which 

indicates the -th label of every training image ( ); 

3) Select the -th value of the threshold set (  begins at 1) 

and compare it to the items in . It will be one if it is greater 

or equal to ; otherwise, it will be zero; 

4) Apply the Matthews operation to  and  to get the 

result; 

5) Continue following steps 3 and 4 for every other ; 

6) Identify the threshold value with the highest MCC and 

use it as the best threshold for the -th label; 

7) Steps 2–6 should be repeated in order to find the best 

threshold for each label. 

4 Experiments

This section presents the results of experiments using the pro-
posed loss function. In Sect. 4.1, the most commonly used
evaluation metrics in image annotation are stated. A sum-
mary of benchmark datasets is provided in Sect. 4.2. The
details of the implementation and methods for determining
the parameters are discussed in Sect. 4.3. In Sect. 4.4we com-
pare our approachwith existing loss functions to demonstrate
its superiority. Then, we evaluate the results of the threshold
estimation algorithm in Sect. 4.5. Eventually, comparisons
with existing models will be demonstrated in Sect. 4.6.

4.1 Evaluationmetrics

In order to determine the performance of AIA methods, sev-
eral metrics are available; among them, the most commonly
used are precision (PR) and recall (RC), F1-score, and N+.

Let N p
i represent the number of images annotatedwith the

i-th label, Nc
i represent howmany images havebeen correctly

annotated with the i-th label, and Ng
i denote the number of

images annotated with the label i , using the ground-truth

data. Then the average PR and average RC are formulated
as:

PR = 1

M

M∑

i=1

Nc
i

N p
i

, (12)

RC = 1

M

M∑

i=1

Nc
i

Ng
i

. (13)

It is problematic to assess AIAmodels only by comparing
PR and RC as these metrics conflict. Using the F1-score (the
average harmonic of PR and RC) is proven to be more accu-
rate for evaluating models. Another important metric that
shows the number of labels with non-zero recalls (i.e., labels
that were correctly annotated at least once by the model) is
N+. F1-score and N+ are calculated as follows:

F1 − score = 2 × PR × RC

PR + RC
, (14)

N+ =
M∑

i=1

Sgn(RCi ).

Sgn(x) =
{
1, x > 0
0, x = 0

(15)

4.2 Datasets

There are three well-known datasets that are mostly used in
AIA tasks. The first is Corel 5k [33], which has 5000 images
(a training set of 4500 images and a test set of 500 images)
with 260 labels. IAPR TC-12 [34] is the second dataset,
which consists of 19,627 images (17,665 for training, 1962
for testing) that represent various scenes from everyday life,
such as landscape images, action pictures, cities, buildings,
sports, plants, and animals. A total of 291 labels are presented
in this dataset. The more challenging dataset is ESP Game
[35], which contains logos, drawings, scenery, and personal
photos. In total, there are 20,770 images (18,689 for train-
ing and 2081 for testing) labeled with 268 keywords. The
wide diversity of objects and the extensive number of words
included in these datasets set them apart from the other data
and made them more challenging. Table 1 provides details
about these datasets.

In order to clarify the imbalance between positive and
negative labels, we use an average positive–negative ratio,
which is expressed as follows:

positive − negative ratio = LpI

NoV − LpI
. (16)
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Table 1 An overview of three benchmark annotation datasets

Dataset Number of
images

Number of
training
images

Number of
testing images

Number of
vocabularies
(NoV)

Labels per
image (LpI)

Image per
label

Positive–negative
ratio

Corel 5k 5,000 4,500 500 260 3.4 58.6 0.013

IAPR
TC-12

19,627 17,665 1962 291 5.7 347.7 0.019

ESP Game 20,770 18,689 2081 268 4.7 326.7 0.017

Fig. 4 Gradient analysis of the positive part of the proposed loss with
different margins and γ+ = 3 in comparison with BCE. Choosing an
appropriate margin (m1 ∈ (0.5, 2)) enables our loss to accentuate hard
and semi-hard positives along with easy ones

4.3 Implementation

In the experiments, we use the convolutional architecture
TResNet-M [36] as the backbone network for feature extrac-
tion. It is a new version of the ResNet [11] that enhances
accuracy by utilizing several design tricks, including aSpace-
ToDepth stem,Anti-Alias downsampling, In-PlaceActivated
BatchNorm, blocks selection, and squeeze-and-excitation
layers. Input images in all datasets are uniformly resized to
448 × 448. To optimize the network, we use Adam with a
cycle learning rate schedule [37] with a maximum learning
rate of 0.0001.1

We set the γ+ = 3 and the γ− = 4, regarding that our
goal is to pay more attention to hard and semi-hard positive
cases and reduce the loss contribution from negative labels.
According to Fig. 4, choosing a right margin (m1) is cru-
cial since it directly affects the weights assigned to different
types of positive labels. On the one hand, a margin with low
values allocates lower weight to semi-hard positives, but on
the other hand, by setting high values for the margin, easy
positives receive more weight than they should. As a result
of experiments, selecting a proper probability margin (m2)

1 You can find our implementation at: https://github.com/parham1998/
Improving-Loss-Function-for-Deep-CNN-based-AIA.

Fig. 5 Gradient analysis of the negative part of the proposed loss with
different probability margins and γ− = 4 in comparison with BCE.
As the margin increases, semi-hard and hard negatives are given lower
weights

can also be essential. A higher probability margin greatly
down-weights the loss contribution from semi-hard and hard
negatives, so annotating incorrect labels will not have much
impact on learning and will lead to over-labeling. The nega-
tive gradients of our loss with different probability margins
can be seen in Fig. 5.

4.4 Comparisons with existing loss functions

Since the suggested loss function is composed of two parts,
and the negative part is quite similar to the recent state-of-the-
art method ASL, we conduct an experiment based on ASL
to confirm the piecewise positive part effectiveness.

First, we compare BCE loss with focal loss to explain that
hard mining methods (γ+ > 0), which down-weight the gra-
dient magnitudes for semi-hard positives and eliminate them
for easy positives, lead to a reduction in N+. Next, we apply
AF + PS (asymmetric focusing and probability shifting),
suggested in [30], to the negative part of the loss function to
demonstrate that down-weighting incorrect labels (reducing
the magnitude of their gradients) during the training pro-
cess can significantly improve the final results. To make a
fair comparison, we apply the positive component of both
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Table 2 Comparison between our approach and prior loss functions on the Corel 5k dataset

Methods γ+ γ− m1 m2 th Corel 5k

PR RC F1 N +

BCE loss 0 0 0 0 – 0.453 0.385 0.416 147

Focal loss 3 3 0 0 – 0.452 0.366 0.405 139

BCE+ and AF + PS [30] 0 4 0 0.05 – 0.480 0.522 0.500 179

Focal+ and AF + PS 3 4 0 0.05 – 0.460 0.463 0.461 164

Proposed loss 3 4 1.1 0.05 0.25 0.466 0.554 0.506 189

BCE+ (the positive part of binary cross-entropy loss), Focal+ (the positive part of the focal loss), AF (asymmetric focusing), PS (probability
shifting). γ+ and γ− are the focus parameters for the positive and negative parts of the loss function, respectively. m1 and m2 denote the logit and
probability margins, respectively, whereas th stands for the threshold. The best performances are formatted in bold

BCE loss and focal loss to the positive part of the loss func-
tion. It can be deduced that setting the positive component
of the focal loss as the positive part of the loss function will
cause the same problem stated in the previous paragraph.
In contrast, the network focuses more on semi-hard and easy
positives when the positive half of the BCE loss is used as the
positive part of the loss function and generates more labels.
In circumstances with a large number of easy positive tags,
strategies such as focal loss may be helpful.

Finally, we indicate that using a piecewise positive part,
which has both focal loss features for hard positives and BCE
loss features for easy and semi-hard positives, can consider-
ably enhance results. Furthermore, we subtracted a margin
from the logits of correct labels to emphasize gradients from
these labels and increased their loss function contribution.

It is important to note that the suggested asymmetric loss
begins the training processwith a higher recall value (a higher
number of incorrect labels) due to the reduction and incre-
ment in gradient magnitudes for negative and positive labels,
respectively. Consequently, themodel is not penalized exces-
sively if it mistakenly tags incorrect labels, but it is penalized
significantly in the case of not predicting correct labels. How-
ever, over the course of the training process, the recall values
gradually become fixed and the precision value keeps rising
(the model learns to remove incorrect labels). This is exactly
the reverse of what occurs in BCE and focal loss. Table 2
summarizes the results of the experiments.

4.5 Evaluation of threshold estimationmethod

In deep learning-based AIA, labels are often allocated based
on a fixed threshold (e.g., 0.5). Since the sigmoid activation
function is typically applied to multi-label classification by
deep networks, it is not far-fetched to use a threshold value of

Table 3 Evaluation of threshold estimation algorithm

Datasets Methods F1 N +

Corel 5k Proposed loss 0.506 189

Proposed loss + MCC 0.520 191

IAPR TC-12 Proposed loss 0.531 285

Proposed loss + MCC 0.537 277

ESP Game Proposed loss 0.452 261

Proposed loss + MCC 0.461 255

The best performances are formatted in bold

0.5. Over-labeling or under-labeling are themajor drawbacks
of this method. In contrast, we introduced a novel threshold
estimation method based on the Matthews correlation coef-
ficient (MCC), which assigns different thresholds to each
label.

On the one hand, the properties of the proposed loss func-
tion make the model capable of detecting missing labels,
which exist in the image content but are not annotated by
human annotators. Our threshold estimation solution, on
the other hand, is highly dependent on the actual (ground
truth) value of each label, which means human annotations
play a significant role in its calculation. This contradiction
causes some of the missing labels predicted by the model
to be removed after calculating the new thresholds. In con-
sequence, precision increases while recall decreases since a
portion of correct labels may also have been omitted. In other
words, it is a trade-off between predicting labels more con-
servatively (with a lower error rate) and more freely (with a
higher error rate).

The results in Table 3 indicate that the algorithm increases
F1-score in all three datasets and decreases N+ in IAPR TC-
12 and ESP Game.
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4.6 Comparisons with existingmodels

This section compares our approach with several classical
and state-of-the-art models proposed in recent years. As
shown in Table 4, traditional annotation models with poor
performances have fallen into three categories: Generative
models (e.g., MBRM [38]), Nearest neighbor models (e.g.,
2PKNN [22]), andDiscriminativemodels (e.g.,MLDL [39]).
The advanced deep-learning models proposed over the last
few years, like CCA-KNN [27], RIA [5], VSE + 2PKNN-
ML [40], PRM Deep [41], SEM [42], E2E-DCNN [16],
SAIA [17], andSSL-AWF[43], are also expressed after them.
(In each column, the best result is formatted in italic, and the
second-best result is formatted in bold).

According to Table 4, our solution has higher recall values
compared to other methods, demonstrating its superiority in
detecting missing labels (correct labels that are not included
in the ground-truth). Nevertheless, it adversely affects the
F1-score, one of the main criteria in AIA, and precision. The
threshold estimationmethod has been introduced to decrease
missing labels predicted by the network and increase the
F1-score. It is worth noting that we do not require archi-
tecture modifications, and our solution does not increase
training times. This is different from previous solutions,
which involvedmodifying the architecture (RNNs [5], GCNs
[8]) and incorporating external information like label embed-
ding.

Table 5 illustrates pictures annotated by the proposed tech-
nique on three benchmark annotation datasets. (There are
pictures of Corel 5k, IAPRTC-12, and ESPGame in the first,
second, and third rows, respectively.) The manual annotation
is shown on the left column, and the automatic annotation is
shown on the right one. Although the blue labels have not
been manually annotated, they can convey the content of
images well.

5 Conclusions

This paper comesupwith anovel loss function for deepCNN-
based image annotation. The introduced loss function can be
classified as an unsymmetrical loss function, which performs
differently on positive and negative labels. Since the number
of negative labels is always much higher than positive ones
in images, we reduce their contribution from the loss and
increase the contribution of positive labels during network
training. Analyzing our loss derivatives provided a deeper
understanding of the loss properties. Additionally, a different
threshold is used for each tag rather than a fixed threshold,
which boosts the F1-score for all datasets. The results of
a comprehensive analysis of three benchmark datasets with
four evaluation metrics reveal that, in spite of its simplicity, Ta
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Table 5 Annotation examples of the proposed approach

Images Manual annotation Automatic annotation

Light, shore Sky, water, boats,
sunset

Water, river, deer,
white-tailed

Water, tree, rocks,
deer, white-tailed,
horns, elk

Birds, booby Grass, birds, booby,
nest

Bike, hand, hill, man,
mountain, road,
woman

Bike, forest, helmet,
hill, man, mountain,
road, sky, woman

Cloud, desert, dune,
man, sky, woman

Cloud, desert, dune,
man, sand, sky,
woman

Boy, brick, front,
room, shirt, wall

Boy, classroom, kid,
man, pullover, shirt,
table, wall

Man, photo, red, tie Black, man, people,
red, tie, suit

Cartoon, glasses, smile Brown, cartoon,
glasses,
man, orange,
yellow

Circle, eat, food, plate,
red

Blue, circle, food,
plate, white

Labels that were correctly classified while not presented in the manual
annotation are formatted in bold, and labels that werewrongly classified
are formatted in italics

our loss performs better than old-fashioned loss functions
and can compete with state-of-the-art methods.
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