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Abstract
Underwater object detection is a prerequisite for underwater robots to achieve autonomous operation and ocean exploration.
However, poor imaging quality, harsh underwater environments, and concealed underwater targets greatly aggravate the
difficulty of underwater object detection. In order to reduce underwater background interference and improve underwater
object perception, we propose a multiple information perception-based attention module (MIPAM), which is mainly com-
posed of five processes. In information preprocessing, spatial downsampling and channel splitting control parameters and
computations of attention module by reducing dimension sizes. In information collection, channel-level information collec-
tion and spatial-level information collection enhance the semantic information expression by perceiving multi-dimensional
dependency information, multi-dimensional structure information and multi-dimensional global information. In information
interaction, channel-driven information interaction and spatial-driven information interaction stimulate the intrinsic interac-
tion potential by further perceiving multi-dimensional diversity information. Adaptive feature fusion further improves the
information interaction quality by allocating learnable parameters. In attention activation, the multi-branch structure enhances
the attention calibration efficiency by generating multiple attention. In information postprocessing, channel concatenation
and spatial upsampling realize the plug-and-play of attention module by restoring original feature states. In order to meet the
high-precision and real-time requirements for underwater object detection, we integrate MIPAM into YOLO detectors. The
experimental results indicate that our work brings significant performance gains for underwater detection tasks. Our work
also provides some performance improvements for other detection tasks, which shows the ideal generalization ability.

Keywords Underwater object detection · Information perception · Attention mechanism · YOLO detector

1 Introduction

With the development of computer vision, object detection
has achieved exciting results in many environments. How-
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ever, facing with underwater environments, detection perfor-
mance suffers from severe degradation. There are multiple
irresistible factors that make underwater object detection
become an extremely challenging task. First, underwater
imaging quality is poor. During underwater propagation,
light is often affected by suspended particles in the water.
The absorption and scattering of light cause low contrast
and colour cast in underwater images. The underwater robot
is easily affected by ocean current during its movement.
The irregular dithering causes texture distortion and detail
blurring in underwater images. Second, underwater environ-
ments have strong randomness. A large number of sands,
reefs, waterweeds and other interferences seriously block
the underwater targets. The moving and grasping operations
of underwater robot lead to the underwater dynamic turbid-
ity. Third, underwater targets have high concealment. The
underwater targets tend to have protective color and small
size after long-term evolution. These underwater creatures
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always blend in with their surroundings to avoid attack.
The poor imaging quality, harsh underwater environments,
and concealed underwater targets lead to strong underwater
background interference andweak underwater object percep-
tion, which greatly aggravates the difficulty of underwater
detection tasks. It is worth noting that attention mecha-
nism has been widely used in computer vision [1–5], which
can extract important information from massive information
by recalibrating features. In order to reduce the underwa-
ter background interference and improve the underwater
object perception, we focus on the selective attention in this
paper.

For attention modules, information collection and infor-
mation interaction are two crucial components. Information
collection is responsible for capturing intrinsic information
from input features. Information interaction is responsible
for stimulating the potential of intrinsic information. In infor-
mation collection, the channel-wise global average pooling
[6–13], channel-wise L2-norm [14] and channel-wise dis-
crete cosine transform [15] process features from (C, H ,W )

to (C, 1, 1), which capture spatial global information and
channel structure information. The spatial-wise global aver-
age pooling [8, 16] processes features from (C, H ,W ) to
(1, H ,W ), which captures channel global information and
spatial structure information. The spatial-wise 1 × 1 con-
volution [7, 17–19] processes features from (C, H ,W ) to(
C ′, H ,W

)
, which also captures channel global informa-

tion and spatial structure information. The cross-channel
global covariance pooling [18] and cross-spatial global
covariance pooling [18] process features from (C, H ,W )

to (C,C, 1) and (1, HW , HW ), which capture channel
dependency information and spatial dependency informa-
tion, respectively. In information interaction, almost all
attention modules follow the traditional convolution idea. By
assigning different parameters in channel dimensions and
sharing same parameters in spatial dimensions, the feature
information realizes active channel interaction and passive
spatial interaction.

Although various attention modules have made great con-
tributions, there are still two problems. First, the deficiency
of information collection leads to the weakening of feature
expression ability. Second, the passive interaction of spatial
features reduces the quality of intrinsic information inter-
action. The negative effects brought by these problems are
exacerbated in harsh underwater environments. In order to
design an attention module more suitable for underwater
detection tasks, we enhance the semantic information expres-
sion through richer information perception and stimulate the
intrinsic interaction potential through more comprehensive
active interaction.

In this paper,wepropose amultiple informationperception-
based attention module (MIPAM). For information col-
lection, channel-level information collection and spatial-

level information collection are designed to perceive multi-
dimensional dependency information,multi-dimensional struc-
ture information and multi-dimensional global information.
In channel-level information collection, the cross-channel
global covariance pooling perceives channel dependency
information. The channel-wise global average pooling per-
ceives channel structure information and spatial global infor-
mation. In spatial-level information collection, the spatial-
wise global average pooling perceives spatial structure infor-
mation and channel global information. The cross-spatial
global covariance pooling perceives spatial dependency
information. For information interaction, channel-driven
information interaction and spatial-driven information inter-
action are designed to further perceive multi-dimensional
diversity information. In channel-driven information inter-
action, channel diversity information was perceived by
allocating different parameters in channel dimension and
sharing same parameters in spatial dimension. In spatial-
driven information interaction, spatial diversity information
was perceived by allocating different parameters in spatial
dimension and sharing same parameters in channel dimen-
sion. Our MIPAM is integrated into the YOLO detector
to achieve efficient object detection in harsh underwater
environments. The main contributions of our work are sum-
marized as follows:

• We propose a multiple information perception-based
attention module(MIPAM), which reduces underwater
background interference and improves underwater object
perception.

• We design channel-level information collection and
spatial-level information collection to perceive multi-
dimensional dependency information,multi-dimensional
structure information andmulti-dimensional global infor-
mation. This richer information perception enhances the
semantic information expression.

• We design channel-driven information interaction and
spatial-driven information interaction to further per-
ceivemulti-dimensional diversity information. Thismore
comprehensive active interaction stimulates the intrinsic
interaction potential.

• We integrate MIPAM into YOLO detector, which meets
the high-precision and real-time requirements for under-
water object detection.

The remainder of this paper is organized as follows. InSect. 2,
we review the related works on underwater object detec-
tion, attentionmechanism andYOLOdetection algorithm. In
Sect. 3, we introduce the proposed method in detail. Exper-
iments and results are provided in Sect. 4. The conclusion
about our work is summarized in Sect. 5.
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2 Related works

In this section,we analyze underwater object detection, atten-
tion mechanism and YOLO detection algorithm from three
different perspectives, and discuss the differences and con-
nections between our work and other works.

2.1 Underwater object detection

According to the different underwater imaging systems,
underwater object detection algorithms can be divided into
acoustic image-based underwater object detection algorithm
[20, 21] and optical image-based underwater object detec-
tion algorithm [22, 23]. Acoustic underwater detection has
great advantages in underwater remote detection tasks, and
has a good detection effect on large underwater objects. How-
ever, in themarine ranching application, we need to complete
accurate underwater detection tasks in a close range, so as to
facilitate autonomous capture and dynamic statistics of small
marine treasures by underwater robots. Optical underwater
images have close-range imaging properties. Therefore, our
research focuses on the optical underwater detection.

According to different underwater application technolo-
gies, underwater object detection algorithms can be further
divided into traditional features-based underwater object
detection algorithm [24, 25] and deep learning-based under-
water object detection algorithm [26–29]. Traditional under-
water detection uses manual feature design to extract low-
level feature descriptors from underwater images. This
method cannot describe complex target information effec-
tively, and it cannot adapt to the strong randomness of
underwater environments. Traditional underwater detection
has problems such as weak feature extraction ability, poor
robustness and low generalization, which cannot put into the
actual underwater application.

It is worth noting that deep learning has driven the rapid
development of the computer vision field. However, the
development of underwater object detection has been rel-
atively slow [30–32]. Although popular object detection
algorithms using deep learning have achieved encouraging
results, it is not ideal to apply these algorithms directly
to the underwater environment. Obviously, common meth-
ods to improve the performance of neural networks, such
as directly increasing the depth, width, and cardinality in
the network, cannot effectively solve the severe problems
faced by underwater object detection, which mainly refers
to the poor imaging quality, harsh underwater environments,
and concealed underwater targets. At present, underwater
detection algorithms tend to improve the underwater detec-
tion performance from two different perspectives: 1. Data
enhancement techniques [33], such as splicing and overlap-
ping, are adopted to improve the dataset quality. 2. Network
construction techniques [34, 35], such as residual connec-

tion and feature pyramid, are used to improve the network
performance. This simple performance gain is mainly due
to the improvement of dataset quality and network perfor-
mance. The core problems of strong underwater background
interference and weak underwater object perception have not
been solved effectively. In practical underwater applications,
underwater detection algorithms still have some problems,
such as poor robustness and weak generalization.

Based on the above considerations, our work focuses on
exploring the application potential of attention mechanisms
in complex underwater environments and exploring the opti-
mal attention design suitable for underwater detection tasks.
With the core goal of reducing underwater background inter-
ference and improving underwater object perception, this
paper is committed to addressing the underwater detection
challenges from the essence of the problem, which plays a
positive role in the research and development of underwater
object detection.

2.2 Attentionmechanism

According to different design needs, researchers have pro-
posed various attentionmodules in computer vision. Channel
attention focuses on adjusting the importance of chan-
nel dimensions. Spatial attention focuses on regulating
the importance of spatial dimensions. Hybrid attention is
responsible for simultaneously calibrating the importance of
channel and spatial dimensions.

Channel attentionThe squeeze-and-excitationmodule (SEM)
[6] learned the importance of each channel, and used bottle-
neck structure to reduce parameters and computations. The
style-based recalibrationmodule (SRM) [9] used global aver-
age pooling and global standard deviation pooling to collect
channel-wise style information, and used channel-wise fully
connected layer to achieve style integration. The efficient
channel attention module (ECAM) [11] adaptively selected
the kernel size of 1D convolution to better determine the
coverage of local cross-channel interaction. The gated chan-
nel transformation module (GCTM) [14] used L2-norm with
learnable parameters to replace GAP and FC in traditional
attentionmodules, which captured the competition and coop-
eration between channel features. The frequency channel
attention module (FCAM) [15] grouped the input features
and used two-dimensional discrete cosine transform priors
to capture the feature information of these groupings.

Spatial attention The double attention module (A2M) [17]
used softmax to adaptively adjust the attention weight, and
used bilinear pooling to collect the entire spatial information.
The information was adaptively distributed to each spatial
location. A2M generated two different attentions simulta-
neously. The spatial group-wise enhance module (SGEM)
[10] grouped the channel dimensions and used global aver-

123



1418 X. Shen et al.

age pooling to gather spatial information for sub-features.
The informationwas passed to all spatial locations for feature
enhancement. SGEM learned rich information by generating
spatial attention maps in each group, which was lightweight.

Hybrid attention The bottleneck attention module (BAM)
[7] combined channel and spatial attentions in parallel, and
used multiple dilated convolutions to expand the spatial
receptive field. The convolutional block attention mod-
ule (CBAM) [8] combined channel and spatial attentions
in series, and used max pooling and average pooling to
enrich receptive fields in different dimensions. The global
second-order pooling module (GSoPM) [18] captured the
second-order statistics by calculating the covariance matri-
ces on channel and spatial dimensions. GSoPM considered
long-range correlations through high-order modeling. The
relation-aware global attention module (RGAM) [19] used
two embedding functions to generate bi-directional corre-
lations between feature points. For each feature position,
the correlations between each feature and all features were
stacked, and the features themselves were concatenated to
activate attention at the current location.

Although the above attention modules have achieved
exciting results in different applications, they still perform
suboptimally in underwater environments. In order to design
attention more suitable for underwater applications, here
we focus on analyzing various attention modules from the
perspective of information collection and information inter-
action. Table 1 reports the differences of these attention
modules in detail, where checkmarked and unmarked posi-
tions indicate the factors considered and ignored in the
module design, respectively

2.3 YOLO detection algorithm

In this paper, we focus on choosing the YOLO (You Only
Look Once) series as the baseline methods. The main reason
is that the one-stageYOLOdetector can better balance detec-
tion accuracy and detection speed. Only detection algorithms
with both high-accuracy and real-timeperformance can adapt
to the complex and variable underwater detection tasks. In
addition, the YOLO detectors can flexibly adjust the network
size, where the parameters, computations and memory con-
sumption can be controlled within the desired range. This
will facilitate us to directly carry the algorithm to the under-
water robot for practical underwater applications. Although
the two-stage object detectors [36, 37] or transformer series
[38, 39] can achieve high detection accuracy, itsmemory con-
sumption and detection speed are not friendly for underwater
detection tasks.

Redmonet al. proposedYOLOV1 [40],YOLOV2 [41] and
YOLOV3 [42]. YOLOV1 used GoogleLeNet as the back-
bone, which had ideal inference speed and generalization Ta
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Fig. 1 The design architecture of multiple information perception-based attention module (MIPAM)

ability. YOLOV2 usedDarkNet19 as the backbone and intro-
duced the idea of anchor boxes. The multi-scale training
method improved the robustness of YOLOV2 on images
with different sizes. The backbone used by YOLOV3 was
DarkNet53. YOLOV3 applied the residual structure to bet-
ter extract features, and applied feature pyramid networks
(FPN) for feature fusion. The multi-scale prediction strategy
was used to better detect objects with different scales. Com-
pared with YOLOV1 and YOLOV2, YOLOV3 can achieve
a better balance of speed and accuracy.

Bochkovskiy et al. [43] proposed YOLOV4, which com-
bined various tricks in deep learning. YOLOV4 introduced
mosaic data augmentation and cross mini-batch normaliza-
tion at the input. CSPDarkNet53, Mish activation function
and DropBlock regularization were used in the backbone.
The spatial pyramid pooling (SPP) module and path aggre-
gation network (PAN) structurewere borrowed in the neck. In
the head, the loss computation and non-maximum suppres-
sion were performed based on complete-intersection over
union (CIOU) and distance-intersection over union (DIOU),
respectively.Comparedwith the previous versions,YOLOV4
has stronger performance. YOLOV5 was proposed in [44],
which had the similar network structure to YOLOV4. In the
backbone, YOLOV5 added Focus and SPP structures, and
tweaked the implementation details, which can be called
modified CSPDarkNet. The cross stage partial (CSP) struc-
ture is further used in the neck to strengthen the feature fusion
ability of the network. Adaptive anchor box calculating and
adaptive image scaling were applied at the input. YOLOV5
has stronger flexibility, which can achieve rapid deployment.

YOLOV6 [45] designed the EfficientRep backbone and
the Rep-PAN neck based on RepVGG style. The decoupled

head is further optimized by reducing overhead. YOLOV6
adopted the anchor-free training strategy and the SimOTA
label assignment strategy to further improve the detection
accuracy. For YOLOV7 [46], the extended efficient long-
range attention network (Extended-ELAN) improved model
learning ability without destroying the original gradient path.
The concatenation-based model scaling method maintained
the optimal structure of the model design. The planned
re-parameterized convolution effectively increased model
inference speed. The dynamic label assignment strategy with
coarse-to-fine guidance provided better dynamic targets for
different branches. Ge et al. [47] proposed YOLOX based on
YOLOV3. YOLOX used an anchor-free strategy to reduce
the complexity of the detection head, and used the decoupled
head to improve the model convergence speed. The SimOTA
strategy was applied to the loss computation, which is able to
dynamically match positive samples for objects with differ-
ent sizes. In general, YOLOXhasmore superior performance
in terms of speed and accuracy.

3 Proposedmethod

In this section, we first introduce the design architecture
of multiple information perception-based attention module
(MIPAM). Then, we elaborate the information collection in
MIPAM, which includes channel-level information collec-
tion and spatial-level information collection. Subsequently,
we elaborate the information interaction in MIPAM, which
includes channel-driven information interaction and spatial-
driven information interaction. Finally, we provide the appli-
cation of MIPAM in the YOLO detector.
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3.1 Multiple information perception-based
attentionmodule (MIPAM)

Figure1 highlights the design architecture of multiple infor-
mationperception-based attentionmodule (MIPAM).MIPAM
is mainly composed of five processes: information pre-
processing, information collection, information interaction,
attention activation and information postprocessing.

Information preprocessing. Input feature X ∈ R
C×H×W is

first downsampled to feature x ∈ R
C×H ′×W ′

by using group
convolution, batch normalization and ReLU function, where
group is set to C . x ∈ R

C×H ′×W ′
is further split into input

subfeature xi ∈ R
C ′×H ′×W ′

along the channel dimension,
where non-overlapping split is set to g and i ∈ [1, ..., g].
The information preprocessing of MIPAM is formulated as:

xi = Split (Down (X)) (1)

where Down and Split represent downsampling and split
operations, respectively. These two operations can reduce
spatial and channel dimensions respectively, which are ben-
eficial to control the subsequent parameter amount and
computational cost.

Information collection Input subfeature xi ∈ R
C ′×H ′×W ′

is first processed into feature xci ∈ R
C ′×H ′×W ′

and feature

xsi ∈ R
C ′×H ′×W ′

by using channel-level information col-
lection and spatial-level information collection, respectively.
xci ∈ R

C ′×H ′×W ′
and xsi ∈ R

C ′×H ′×W ′
are further cross-

concatenated into feature xcsi ∈ R
2C ′×H ′×W ′

in the channel
dimension. The information collection of MIPAM is formu-
lated as:

xcsi = CConcat ( fclic (xi ) , fslic (xi )) (2)

where fclic, fslic andCConcat represent channel-level infor-
mation collection, spatial-level information collection and
cross concatenation, respectively. Channel-level information
collection can perceive channel dependency information,
channel structure information and spatial global informa-
tion by using cross-channel global covariance pooling and
channel-wise global average pooling. Spatial-level informa-
tion collection can perceive spatial dependency information,
spatial structure information and channel global informa-
tion by using cross-spatial global covariance pooling and
spatial-wise global average pooling. Cross concatenation can
organize the perceived multiple information to facilitate sub-
sequent information interaction.

Information interaction Feature xcsi ∈ R
2C ′×H ′×W ′

is first

processed into feature xc
′s
i ∈ R

C ′×H ′×W ′
and feature xcs

′
i ∈

R
C ′×H ′×W ′

by using channel-driven information interac-
tion and spatial-driven information interaction, respectively.

xc
′s
i ∈ R

C ′×H ′×W ′
and xcs

′
i ∈ R

C ′×H ′×W ′
are further adap-

tively fused into feature xc
′s′
i ∈ R

C ′×H ′×W ′
by assigning

learnable parameters αi ∈ R
C ′×1×1 and βi ∈ R

C ′×1×1. The
information interaction of MIPAM is formulated as:

xc
′s′
i = αi fcdii

(
xcsi

) + βi fsdii
(
xcsi

)
(3)

where fcdii and fsdii represent channel-driven informa-
tion interaction and spatial-driven information interaction,
respectively. Channel-driven information interaction can per-
ceive channel diversity information by assigning different
parameters in the channel dimension and sharing same
parameters in the spatial dimension. Spatial-driven informa-
tion interaction can perceive spatial diversity information by
assigning different parameters in the spatial dimension and
sharing same parameters in the channel dimension.

Attention activation Feature xc
′s′
i ∈ R

C ′×H ′×W ′
is first acti-

vated into the attention map by using sigmoid function. The
attention map is further applied to input subfeature xi ∈
R
C ′×H ′×W ′

to obtain output subfeature x′
i ∈ R

C ′×H ′×W ′
.

The attention activation of MIPAM is formulated as:

x′
i = xi Sigmoid

(
xc

′s′
i

)
(4)

where Sigmoid represents the sigmoid function. The sigmoid
function can achieve importance distinction by activating
feature values between 0 and 1. It is worth noting that
input subfeatures are processed as output subfeatures on all
branches. This multi-branch structure is beneficial to acti-
vate diverse attention, which can perceive valuable feature
information on different branches in a targeted manner.

Information postprocessing Output subfeature x′
i ∈

R
C ′×H ′×W ′

on each branch is first concatenated into feature
y ∈ R

C×H ′×W ′
along the channel dimension. y ∈ R

C×H ′×W ′

is further upsampled to output feature Y ∈ R
C×H×W by

using bilinear interpolation along the spatial dimension. The
information postprocessing of MIPAM is formulated as:

Y = Up
(
Concat

(
x′

i
))

(5)

where Concat and Up represent concatenation and upsam-
pling operations, respectively. These two operations can
restore channel and spatial dimensions to the original state
respectively,which are beneficial to realize the plug-and-play
of attention module.

3.2 Information collection in MIPAM

In this subsection, we highlight more details about the infor-
mation collection of MIPAM. For MIPAM, the information
collection is mainly composed of two crucial processes:
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channel-level information collection and spatial-level infor-
mation collection.

Channel-level information collection Input subfeature xi ∈
R
C ′×H ′×W ′

is processed into feature x1i ∈ R
C ′×C ′×1 by

using cross-channel global covariance pooling, which com-
putes the covariance statistic among all channel dimensions.
More specifically, we perform the covariance computation
on all channel features xi ċ ∈ R

1×H ′×W ′
to capture chan-

nel dependency information, where ċ = [
1, ...,C ′]. In

cross-channel global covariance pooling, the covariance cal-
culation is defined as:

Cov (xi ċ, xi ċ) =
∑H ′W ′

a=1

(
xai ċ − x̄i ċ

) (
xai ċ − x̄i ċ

)

H ′W ′ − 1
(6)

where x̄i ċ is the mean of xi ċ. Here, feature x1i is represented
as:

x1i =
⎡

⎢
⎣

Cov (xi1, xi1) · · · Cov (xi1, xiC ′)
...

. . .
...

Cov (xiC ′ , xi1) · · · Cov (xiC ′ , xiC ′)

⎤

⎥
⎦ (7)

Input subfeature xi ∈ R
C ′×H ′×W ′

is processed into feature
x2i ∈ R

C ′×1×1 by using channel-wise global average pooling,
which computes the average statistic for each channel dimen-
sion. More specifically, we perform the average computation
on each channel feature xi ċ ∈ R

1×H ′×W ′
to capture spatial

global information and preserve channel structure informa-
tion. In channel-wise global average pooling, the average
calculation is defined as:

Ave (xi ċ) =
∑H ′W ′

a=1 xai ċ
H ′W ′ (8)

where a = [
1, ..., H ′W ′]. Here, feature x2i is represented as:

x2i = [Ave (xi1) , ..., Ave (xiC ′)] (9)

These two pooling operations are executed in parallel. We
then fuse x1i ∈ R

C ′×C ′×1 and x2i ∈ R
C ′×1×1 into feature

xci ∈ R
C ′×H ′×W ′

using matrix multiplication and upsam-
pling operations. The channel-level information collection is
formulated as follows:

fclic (xi ) = Up (MM (CcGCP (xi ) ,CwGAP (xi ))) (10)

where CcGCP , CwGAP , MM and Up represent cross-
channel global covariance pooling, channel-wise global
average pooling, matrix multiplication and upsampling oper-
ations, respectively.Cross-channel global covariance pooling
is responsible for perceiving channel dependency informa-
tion. Channel-wise global average pooling is responsible for

perceiving channel structure information and spatial global
information. Matrix multiplication and upsampling opera-
tions are responsible for fusing the perceived information
and adjusting the feature shape.

Spatial-level information collection Input subfeature xi ∈
R
C ′×H ′×W ′

is processed into feature x3i ∈ R
1×H ′×W ′

by
using spatial-wise global average pooling, which computes
the average statistic for each spatial dimension. More specif-
ically, we perform the average computation on each spatial
feature xi ṡ ∈ R

C ′×1×1 to capture channel global infor-
mation and preserve spatial structure information, where
ṡ = [

1, ..., H ′W ′]. In spatial-wise global average pooling,
the average calculation is defined as:

Ave (xi ṡ) =
∑C ′

b=1 x
b
i ṡ

C ′ (11)

where b = [
1, ...,C ′]. Here, feature x3i is represented as:

x3i = [
Ave

(
xi(1)

)
, ..., Ave

(
xi(H ′W ′)

)]
(12)

Input subfeature xi ∈ R
C ′×H ′×W ′

is processed into feature
x4i ∈ R

1×H ′W ′×H ′W ′
byusing cross-spatial global covariance

pooling, which computes the covariance statistic among all
spatial dimensions.More specifically, we perform the covari-
ance computation on all spatial features xi ṡ ∈ R

C ′×1×1

to capture spatial dependency information. In cross-spatial
global covariance pooling, the covariance calculation is
defined as:

Cov (xi ṡ, xi ṡ) =
∑C ′

b=1

(
xbi ṡ − x̄i ṡ

) (
xbi ṡ − x̄i ṡ

)

C ′ − 1
(13)

where x̄i ṡ is the mean of xi ṡ . Here, feature x4i is represented
as:

x4i =
⎡

⎢
⎣

Cov
(
xi(1), xi(1)

) · · · Cov
(
xi(1), xi(H ′W ′)

)

...
. . .

...

Cov
(
xi(H ′ �W ′), xi(1)

) · · · Cov
(
xi(H ′W ′), xi(H ′W ′)

)

⎤

⎥
⎦

(14)

These two pooling operations are also performed in par-
allel. We then fuse x3i ∈ R

1×H ′×W ′
and x4i ∈ R

1×H ′W ′×H ′W ′

into feature xsi ∈ R
C ′×H ′×W ′

using matrix multiplication,
reshape and upsampling operations. The spatial-level infor-
mation collection is formulated as follows:

fslic (xi ) = Up
(
MM

(
SwGAP(xi )�,CsGCP (xi )

)�
)

(15)

where SwGAP , CsGCP and � represent spatial-wise
global average pooling, cross-spatial global covariance pool-
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Fig. 2 The channel-level information collection and spatial-level information collection in MIPAM

ing and reshape operations, respectively. Spatial-wise global
average pooling is responsible for perceiving spatial structure
information and channel global information. Cross-spatial
global covariance pooling is responsible for perceiving spa-
tial dependency information. The reshape operation is also
responsible for adjusting the feature to the desired shape for
subsequent processing.

Figure2 shows the channel-level information collec-
tion and spatial-level information collection in MIPAM.
Our attention module simultaneously realizes the percep-
tion of multi-dimensional dependency information, multi-
dimensional global information, andmulti-dimensional struc-
ture information in information collection. We enhance the
feature expression abilities with richer information collec-
tion.

3.3 Information interaction in MIPAM

In this subsection, we highlight more details about the infor-
mation interaction of MIPAM. For MIPAM, the information
interaction is mainly composed of two crucial processes:
channel-driven information interaction and spatial-driven
information interaction.

Channel-driven information interaction At this stage,
feature xcsi ∈ R

2C ′×H ′×W ′
is directly processed into fea-

ture xc
′s
i ∈ R

C ′×H ′×W ′
by using group convolution, batch

normalization and ReLU function. It is worth noting that
xcsi ∈ R

2C ′×H ′×W ′
is formed by cross-concatenating xci ∈

R
C ′×H ′×W ′

and xsi ∈ R
C ′×H ′×W ′

along the channel dimen-

sion, where xci ∈ R
C ′×H ′×W ′

and xsi ∈ R
C ′×H ′×W ′

are

the features generated after channel-level information col-
lection and spatial-level information collection, respectively.
The channel-driven information interaction is formulated as
follows:

fcdii
(
xcsi

) = GConv++
(
xcsi

)
(16)

where GConv++ represents the combination of group con-
volution, batch normalization and ReLU function. Here, the
input channels, output channels, kernel size, stride, padding
and grouping in 2D group convolution are set as 2C ′, C ′,
3, 1, 1 and C ′ respectively. There is no interference in the
information interaction of each group. By allocating differ-
ent parameters in the channel dimension and sharing same
parameters in the spatial dimension, the channel-driven infor-
mation interaction not only realizes the interactive fusion
of multiple information from the channel-level information
collection and spatial-level information collection, but also
further perceives the channel diversity information.

Spatial-driven information interaction At this stage, fea-
ture xcsi ∈ R

2C ′×H ′×W ′
is processed into feature xcs

′
i ∈

R
C ′×H ′×W ′

through three steps. First, xcsi ∈ R
2C ′×H ′×W ′

is reshaped and split into feature xcsi j ∈ R
1×H ′W ′×2, where

j ∈ [
1, ...,C ′]. Next, we process xcsi j ∈ R

1×H ′W ′×2 into

xcsi j ∈ R
1×H ′×W ′

using group convolution, batch normaliza-
tion, ReLU function, row-wise sum and reshape operations
in sequence. Finally, xcsi j ∈ R

1×H ′×W ′
is concatenated into

xcs
′

i ∈ R
C ′×H ′×W ′

along the channel dimension. The spatial-
driven information interaction is formulated as follows:

123



Multiple information perception-based attention... 1423

Fig. 3 The channel-driven information interaction and spatial-driven information interaction in MIPAM

fsdii
(
xcsi

) = Concat
(
Sum

(
GConv++

(
Split

(
xcs�i

)))�
)

(17)

where Sum represents the row-wise summation. Reshaping
and splitting operations are used to adjust the feature shape
for subsequent specific information interactions. Here, the
input channels, output channels, kernel size, stride, padding
and grouping in 1D group convolution are set as H ′W ′,
H ′W ′, 1, 1, 0 and H ′W ′ respectively. By allocating different
parameters in the spatial dimension and sharing same param-
eters in the channel dimension, the spatial-driven information
interaction not only realizes the interactive fusion of multiple
information from the channel-level information collection
and spatial-level information collection, but also further per-
ceives the spatial diversity information.

Figure3 shows the channel-driven information interac-
tion and spatial-driven information interaction in MIPAM.
Our attention module simultaneously realizes the perception
of multi-dimensional diversity information in information
interaction. We stimulate the intrinsic information potentials
through more comprehensive active interaction.

3.4 Attention application in YOLO

In order to sort out the proposed attention module more
comprehensively, here we further show the implementation
details of MIPAM in Fig. 4, including parameter configu-
ration, feature change, and specific process. Our MIPAM
perceivesmulti-dimensional dependency information,multi-
dimensional structure information and multi-dimensional
global information in channel-level information collec-

tion and spatial-level information collection, and perceives
multi-dimensional diversity information in channel-driven
information interaction and spatial-driven information inter-
action. In this paper, the proposed MIPAM is integrated
into YOLO algorithms to achieve a better trade-off between
detection speed and detection accuracy in complex underwa-
ter environments.

Themain reasonwe focus on theYOLOseries [40–44, 47]
is that YOLO detectors are one-stage detectors. Compared
with two-stage detectors, they have great advantages in infer-
ence speed. This is crucial for the real-time requirement of
underwater detection tasks. It is worth noting that YOLO
detectors [42–44, 47] have a similar design architecture,
which mainly consists of three modular processes. The back-
bone is responsible for extracting image features, which can
obtain high-level semantic information. The neck is respon-
sible for fusing features at different scales, which can further
enhance semantic information. The head is responsible for
classifying and regressing the enhanced features at different
scales, which can obtain the object category and bounding
box position. We add plug-and-play attention modules to ten
important positions in YOLO detector, as shown in Fig. 5.
The six attention modules located at the front and back of
YOLO neck are responsible for recalibrating the features at
three different scales, which can further enhance the per-
ception of underwater objects with different sizes. The four
attention modules located at the inside of YOLO neck are
responsible for recalibrating the features between two adja-
cent scales, which can achieve more effective multi-scale
feature fusion and further reduce the underwater background
interference.
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Fig. 4 The implementation
details about multiple
information perception-based
attention module (MIPAM),
including parameter
configuration, feature change,
and specific process
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Fig. 5 Combining attention with YOLO for underwater object detection

4 Experiments and results

In order to verify the effectiveness of our work, we conduct
extensive detection experiments on the underwater image
dataset [48] and the PASCAL VOC dataset [49, 50], and
analyze the experimental results in detail. In this section, we
first provide training details about the network model. We
then conduct ablation experiments on the proposed attention
from three design perspectives, and decide the most suit-
able attention design for the underwater detection task. We
further perform comparative experiments on state-of-the-art
attention modules and provide attention visualization results
on the underwater image dataset. Finally, some experiments
are implemented on the PASCAL VOC dataset to demon-
strate the generalization ability of our attention module on
other detection tasks.

In this paper, the mean average precision (mAP) under
specified intersection over union (IoU) is used to measure
detection accuracy.mAP0.5 refers tomAP at IoU=0.5, which
is the general metric. mAP0.75 refers to mAP at IoU=0.75,
which is the strict metric. mAP0.5:0.95 refers to mAP at
IoU=0.5:0.05:0.95, which is the primary challenge met-
ric. The parameters (Params) and floating point operations
(FLOPs) are used to measure network size and model com-
putational complexity.

4.1 Training details

The underwater image dataset (URPC 2017–2020) con-
sists of URPC 2017(17655), URPC 2018(2901), URPC

2019(4757) and URPC 2020(6575), which has a total of
25747 images and 4 categories after removing duplicate
images. The underwater image dataset (URPC 2021) has a
total of 8200 images and 4 categories. The PASCAL VOC
dataset consists of VOC 2007 test(4952), VOC 2007 train-
val(5011), and VOC 2012 trainval(11540), which has a total
of 21503 images and 20 categories. In this paper, we first
divide the dataset into test set and trainval set in a 5:5 ratio.
The trainval set is further divided into training set and vali-
dation set in a 5:5 ratio. For URPC 2017-2020, the test set,
training set and validation set have 12875, 6436 and 6436
images respectively. For URPC 2021, the test set, training set
and validation set have 4100, 2050 and 2050 images respec-
tively. For PASCAL VOC dataset, the test set, training set
and validation set have 10753, 5375 and 5375 images respec-
tively.

During training, the input image is set to 640 × 640 size
and further processed using mosaic data enhancement. We
use the stochastic gradient descent (SGD) optimizer with
weight decay of 5e-4 and momentum of 0.937. The network
model is trained for a total of 500 epochs based on pretrained
weights, where mosaic data enhancement is turned off at the
last 30 percent. We first perform frozen training with a batch
size of 32 for 50 epochs. We then perform unfrozen training
with a batch size of 16 for 450 epochs. The cosine annealing
algorithm is used to control the learning rate decay, where the
initial learning rate is set to 0.01 and the minimum learning
rate is set to 0.0001. All experiments are run on a personal
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Fig. 6 Compare our underwater image dataset with the PASCAL VOC dataset. The first line represents PASCAL VOC images in some traditional
environments. The last three lines represent our underwater images in real marine environments

computer with NVIDIA GeForce RTX 3090/PCle/SSE2 and
Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz×36.

4.2 Experiments on underwater image dataset

The harsh underwater environments bring great difficulties
to the collection and annotation of underwater datasets. At
present, the underwater robot picking contest (URPC) [48]
is a public underwater detection dataset, where underwater
images are captured by underwater robots and divers in the
near-shallow sea. URPC mainly includes four detection cat-
egories: Holothurian, Echinus, Scallop, and Starfish. Many
underwaterwork studies are basedon this underwater dataset.
Underwater images in real marine environments and VOC
images in other traditional environments are shown in Fig. 6.
Comparedwith the images in other environments, the images
in underwater environments obviously show low contrast,
color cast, texture distortion and so on. It is worth noting
that underwater objects have strong concealment capabilities
and evolve natural protective colors. The above phenomena
make the underwater detection task face severe problems
about strong underwater background interference and weak
underwater object perception. In this paper, our work is ded-
icated to reducing underwater background interference and
improving underwater object perception for efficient under-
water object detection.

4.3 Ablation experiments

In order to explore the optimal attention design for under-
water object detection, we focus on designing ablation
experiments from three different perspectives, including
information collection and information interaction, group-
ing and fusion, and attention location. The detectors used in
ablation experiments are uniformly specified as the medium
(M) model.

Information collection and information interaction It can
be seen from Sect. 3.2 that the information collection of
our MIPAM is mainly composed of channel-level informa-
tion collection and spatial-level information collection. The
cross-channel GCP and channel-wise GAP are two impor-
tant components in channel-level information collection. The
spatial-wise GAP and cross-spatial GCP are two important
components in spatial-level information collection. It can be
seen from Sect. 3.3 that the information interaction of our
MIPAM is mainly composed of channel-driven information
interaction and spatial-driven information interaction.

Tables 2 and 3 report the ablation experiments on
information collection and information interaction, where
various attention modules are integrated onto state-of-
the-art YOLO detectors for underwater object detection.
MIPAM(c) considers spatial global information, channel
structure information and channel diversity information by
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selecting channel-wise GAP and channel-driven informa-
tion interaction. MIPAM(s) considers channel global infor-
mation, spatial structure information and spatial diversity
information by selecting spatial-wise GAP and spatial-
driven information interaction. MIPAM(cs) considers multi-
dimensional global information, multi-dimensional struc-
ture information and multi-dimensional diversity informa-
tion by combining MIPAM(c) and MIPAM(s). MIPAM(C)
considers channel dependency information, channel struc-
ture information and spatial global information and chan-
nel diversity information by selecting cross-channel GCP,
channel-wise GAP and channel-driven information inter-
action. MIPAM(S) considers spatial dependency informa-
tion, spatial structure information, channel global informa-
tion and spatial diversity information by selecting spatial-
wise GAP, cross-spatial GCP and spatial-driven informa-
tion interaction. MIPAM(CS) considers multi-dimensional
dependency information, multi-dimensional structure infor-
mation, multi-dimensional global information and multi-
dimensional diversity information by combiningMIPAM(C)
and MIPAM(S).

As can be seen from both Tables 2 and 3, this design
strategy of MIPAM(CS) achieves the best detection results.
This indicates that multiple information perception-based
attention is more suitable for underwater object detection.
Through further analysis, we draw three conclusions about
MIPAM in underwater detection tasks. First, the spatial
branch is stronger than the channel branch in terms of
detection accuracy, and the dimensional branch can achieve
better performance improvements by perceiving richer infor-
mation. Second, joint design strategies outperform single
design strategies in harsh underwater environments. Third,
MIPAM(CS) not only brings significant performance gains,
but also the parameters, computations and memory are con-
trolled within a reasonable range.

Grouping and fusion It can be seen from Sect. 3.1 that
grouping and fusion operations are designed in information
preprocessing and information interaction, respectively. The
grouping operation is responsible for splitting the input fea-
ture into input subfeatures without overlapping along the
channel dimension. Thismulti-branch structure not only con-
trols the parameters and computations by reducing channels,
but also generates multiple targeted attentions by divid-
ing information. The fusion operation is responsible for
integrating features derived from channel-driven informa-
tion interaction and spatial-driven information interaction by
assigning learnable parameters. This adaptive fusion strategy
effectively integrates different features and selectively deliv-
ers more valuable information to subsequent processes.

The ablation experiments on grouping and fusion are
reported in Tables 4 and 5, where attention modules under
different configurations are integrated on YOLOV5 detec-

tor and YOLOX detector. For information preprocessing, we
here set the number of groups to 2, 4, 8, 16 and 32, which
can generate 2, 4, 8, 16 and 32 different subfeatures, respec-
tively. This multi-branch structure of our attention module
can correspondingly activate 2, 4, 8, 16 and 32 diverse atten-
tions. For information interaction, we further configure the
learnable parameters on each branch. When choosing not to
assign learnable parameters, we directly fuse the features by
location-wise addition. When choosing to assign learnable
parameters, we first perform importance calibration on the
features, and then perform information fusion.

As can be seen from both Tables 4 and 5, attention per-
formance can be effectively improved by setting a moderate
number of groups and assigning learnable parameters. The
attention module with 16 groups and learnable parameters
is more beneficial to the underwater detection task. Com-
pared with other design methods, this design method not
only achieves optimal detection accuracy, but also reduces
the amount of parameters and memory consumption.

Attention location It can be seen from Sect. 3.4 that our
attention is embedded in ten locations of YOLO detector to
enhance the underwater detection performance. Six atten-
tion modules located at the front and back of YOLO neck are
responsible for recalibrating the features at three different
scales, which improve the perception of underwater objects
with different sizes. Four attention modules located at the
inside of YOLO neck are responsible for recalibrating the
features between two adjacent scales, which achieve effi-
cient multi-scale fusion and reduce underwater background
interference.

Tables 6 and 7 report the ablation experiments on attention
location. We first add attention modules to the front of neck,
the middle of neck, and the back of neck to test the effect of
this individual embedding strategyondetection performance,
where the number of attentions is 3, 4, and 3, respectively.
We then add attention modules to the front-middle of neck,
the front-back of neck, and the middle-back of neck to test
the effect of this combined embedding strategy on detec-
tion performance, where the number of attentions is 7, 6,
and 7, respectively. We finally add attention modules to the
front-middle-back of neck to test the effect of this full embed-
ding strategy on detection performance, where the number
of attentions is 10.

As can be seen from both Tables 6 and 7, embedding
attention modules on the front-middle-back of neck signifi-
cantly improves the underwater detection performance. This
shows that adding our attentionmodule to ten important loca-
tions of YOLO detectors can effectively reduce underwater
background interference and significantly enhance underwa-
ter object perception. After further analysis, we find that the
number of attention modules at key locations is proportional
to the improvement of detection performance. When embed-
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Table 4 Ablation experiments
on grouping and fusion
(YOLOV5)

Number of groups α&β Params FLOPs Memory mAP0.5 (%)

2 21.17M 25.28G 625.65M 88.5

� 21.18M 25.28G 625.65M 88.5

4 21.15M 25.28G 614.83M 88.6

� 21.16M 25.28G 614.83M 88.6

8 21.14M 25.28G 609.76M 88.7

� 21.15M 25.28G 609.76M 88.8

16 21.14M 25.28G 607.31M 89.0

� 21.14M 25.28G 607.31M 89.1

32 21.13M 25.28G 606.11M 88.7

� 21.14M 25.28G 606.11M 88.9

The results with optimal detection accuracy are marked in bold

Table 5 Ablation experiments
on grouping and fusion
(YOLOX)

Number of groups α&β Params FLOPs Memory mAP0.5 (%)

2 25.38M 36.81G 717.36M 89.5

� 25.39M 36.81G 717.36M 89.5

4 25.36M 36.81G 706.54M 89.5

� 25.37M 36.81G 706.54M 89.6

8 25.35M 36.81G 701.47M 89.7

� 25.36M 36.81G 701.47M 89.7

16 25.35M 36.81G 699.02M 89.8

� 25.36M 36.81G 699.02M 89.9

32 25.35M 36.81G 697.82M 89.6

� 25.35M 36.81G 697.82M 89.6

The results with optimal detection accuracy are marked in bold

Table 6 Ablation experiments on attention location (YOLOV5)

Front of neck Middle of neck Back of neck Number of attentions Params FLOPs Memory mAP0.5 (%)

� 3 21.09M 25.24G 571.39M 87.6

� 4 21.09M 25.24G 572.50M 88.1

� 3 21.09M 25.24G 571.39M 87.8

� � 7 21.12M 25.26G 589.91M 88.5

� � 6 21.12M 25.26G 588.80M 88.2

� � 7 21.12M 25.26G 589.91M 88.8

� � � 10 21.14M 25.28G 607.31M 89.1

The results with optimal detection accuracy are marked in bold

Table 7 Ablation Experiments on Attention Location (YOLOX)

Front of neck Middle of neck Back of neck Number of attentions Params FLOPs Memory mAP0.5 (%)

� 3 25.31M 36.77G 663.10M 88.3

� 4 25.31M 36.77G 664.21M 88.9

� 3 25.31M 36.77G 663.10M 88.7

� � 7 25.33M 36.79G 681.61M 89.2

� � 6 25.33M 36.79G 680.51M 89.0

� � 7 25.33M 36.79G 681.61M 89.7

� � � 10 25.36M 36.81G 699.02M 89.9

The results with optimal detection accuracy are marked in bold
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Table 8 Underwater detection
results of different attention
modules on YOLOV5.(URPC
2017–2020)

Settings Params FLOPs mAP0.5 (%) mAP0.75 (%) mAP0.5:0.95

YOLOV5 21.07M 25.22G 87.5 62.7 56.7%

+SEM [6] 21.31M 25.22G 88.8 63.6 57.1% (+0.4)

+SRM [9] 21.08M 25.22G 88.7 64.0 57.4% (+0.7)

+SGEM [10] 21.07M 25.22G 88.8 64.2 57.4% (+0.7)

+ECAM [11] 21.07M 25.22G 88.8 64.0 57.3% (+0.6)

+GCTM [14] 21.08M 25.22G 88.2 64.1 57.3% (+0.6)

+CoAM [52] 21.26M 25.23G 88.4 63.1 56.7% (+0.0)

+ShAM [12] 21.07M 25.22G 88.6 63.7 57.2% (+0.5)

+PSAM [13] 21.84M 26.53G 88.0 63.3 56.9% (+0.2)

+FCAM [15] 21.31M 25.23G 88.2 63.8 57.1% (+0.4)

+MIPAM (Ours) 21.14M 25.28G 89.1 64.6 57.7% (+1.0)

The results with optimal detection accuracy are marked in bold

Table 9 Underwater detection
results of hybrid attention
modules and their variants on
YOLOV5.(URPC 2017–2020)

Settings Params FLOPs mAP0.5 mAP0.75 mAP0.5:0.95

YOLOV5 21.07M 25.22G 87.5% 62.7% 56.7%

+BAM [7] 21.69M 25.63G 88.9% 64.0% 57.5% (+0.8)

+BAM(C) 21.31M 25.22G 88.8% 64.0% 57.5% (+0.8)

+BAM(S) 21.45M 25.63G 88.7% 64.0% 57.4% (+0.7)

+CBAM [8] 21.55M 25.22G 88.5% 63.4% 56.9% (+0.2)

+CBAM(C) 21.55M 25.22G 88.7% 63.8% 57.2% (+0.5)

+CBAM(S) 21.07M 25.22G 88.5% 63.7% 57.1% (+0.4)

+GSoPM [18] 25.67M 33.75G 88.8% 64.4% 57.5% (+0.8)

+GSoPM(C) 21.09M 25.24G 88.7% 63.6% 57.2% (+0.5)

+GSoPM(S) 21.40M 25.24G 88.6% 64.1% 57.3% (+0.6)

+MIPAM (Ours) 21.14M 25.28G 89.1% 64.6% 57.7% (+1.0)

+MIPAM(C) 21.11M 25.26G 88.6% 64.3% 57.4% (+0.7)

+MIPAM(S) 21.13M 25.24G 88.9% 64.3% 57.5% (+0.8)

The results with optimal detection accuracy are marked in bold

Table 10 Underwater detection
results of different attention
modules on YOLOX.(URPC
2017–2020)

Settings Params FLOPs mAP0.5 (%) mAP0.75 (%) mAP0.5:0.95

YOLOX 25.28M 36.75G 88.2 66.3 58.6%

+SEM [6] 25.52M 36.76G 89.3 66.6 58.9% (+0.3)

+SRM [9] 25.30M 36.75G 89.3 67.0 59.1% (+0.5)

+SGEM [10] 25.28M 36.75G 89.1 66.5 58.9% (+0.3)

+ECAM [11] 25.28M 36.75G 89.5 66.5 58.9% (+0.3)

+GCTM [14] 25.29M 36.75G 89.5 66.7 59.1% (+0.5)

+CoAM [52] 25.47M 36.76G 89.4 66.8 59.0% (+0.4)

+ShAM [12] 25.28M 36.75G 89.1 66.6 58.8% (+0.2)

+PSAM [13] 26.06M 38.06G 89.7 66.8 59.0% (+0.4)

+FCAM [15] 25.52M 36.76G 89.1 66.5 58.7% (+0.1)

+MIPAM (Ours) 25.36M 36.81G 89.9 67.0 59.3% (+0.7)

The results with optimal detection accuracy are marked in bold
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Table 11 Underwater detection
results of hybrid attention
modules and their variants on
YOLOX.(URPC 2017–2020)

Settings Params FLOPs mAP0.5 mAP0.75 mAP0.5:0.95

YOLOX 25.28M 36.75G 88.2% 66.3% 58.6%

+BAM [7] 25.91M 37.16G 89.3% 66.3% 58.9% (+0.3)

+BAM(C) 25.53M 36.76G 89.2% 66.4% 58.7% (+0.1)

+BAM(S) 25.66M 37.16G 89.4% 66.6% 58.8% (+0.2)

+CBAM [8] 25.76M 36.76G 89.5% 66.7% 58.9% (+0.3)

+CBAM(C) 25.76M 36.76G 89.6% 66.6% 58.8% (+0.2)

+CBAM(S) 25.28M 36.76G 89.2% 66.8% 58.9% (+0.3)

+GSoPM [18] 29.88M 45.28G 89.0% 66.6% 58.8% (+0.2)

+GSoPM(C) 25.31M 36.77G 88.6% 66.4% 58.6% (+0.0)

+GSoPM(S) 25.62M 36.78G 88.8% 66.5% 58.7% (+0.1)

+MIPAM(Ours) 25.36M 36.81G 89.9% 67.0% 59.3% (+0.7)

+MIPAM(C) 25.33M 36.79G 89.5% 66.6% 59.0% (+0.4)

+MIPAM(S) 25.34M 36.77G 89.7% 66.9% 59.1% (+0.5)

The results with optimal detection accuracy are marked in bold

ding the same amount of attention, recalibrating high-level
semantic information located in deeper layers can lead to
more effective performance gains.

4.4 Comparative experiments

Here, we still focus on the YOLOV5 detector [44] and the
YOLOX detector [47], and uniformly set the network size to
the Mmodel. These two detectors are state-of-the-art YOLO
detectors, which show superior performance in both speed
and accuracy. In order to further explore the optimal atten-
tion mechanism for underwater object detection, we select
popular attention modules in computer vision and compare
them with the proposed attention module MIPAM. These
plug-and-play attentionmodules are combined into detectors
in the same way, where the attention application in YOLO is
provided in Sect. 3.4. There are three points worth noting for
the specific configuration of ourMIPAM. First, channel-level
information collection, spatial-level information collection,
channel-driven information interaction and spatial-driven
information interaction are simultaneously configured in
information collection and information interaction. Second,
the number of groups in information preprocessing is set
to 16, and the learnable parameters are assigned in fusion
stage of information interaction. Third, attention modules
are added to detectors using the full embedding strategy.

Tables 8 and 9 report the test results of various attention
modules on YOLOV5. The different attention modules are
compared with the proposed MIPAM in Table 8. The hybrid
attention modules and their variants in channel and spatial
dimensions are compared with our MIPAM,MIPAM(C) and
MIPAM(S) in Table 9. Similarly, the comparison results
of various attention modules on YOLOX are reported in
Tables 10 and 11. Compared to other attention modules, our

attention module obviously exhibits more excellent potential
for underwater detection tasks. MIPAM brings significant
performance gains on general, strict, and primary chal-
lenge metrics while maintaining network size and model
complexity. This benefits from MIPAM’s full perception
of multi-dimensional global information, multi-dimensional
dependency information, multi-dimensional structure infor-
mation andmulti-dimensional diversity information in infor-
mation collection and information interaction.

In order to more intuitively demonstrate the detection
advantages brought by the proposed attention module in
complex underwater environments, we focus on selecting
the top 3 attention modules that perform best in the under-
water dataset to achieve attention visualization. Figures7
and 8 show the attention visualization results of BAM,
GSoPM, SRM, GCTM and MIPAM on YOLO detectors in
different marine environments, where we use Grad-CAM
[51] and choose YOLO head as the visualization layer.
It is worth noting here that BAM, GSoPM and MIPAM
are the top three attention modules that perform best on
YOLOV5, and SRM, GCTM and MIPAM are the top three
attention modules that perform best on YOLOX. BAM
perceives multi-dimensional global information and multi-
dimensional structure information using channel-wise global
average pooling and spatial-wise 1×1 convolution. GSoPM
perceives multi-dimensional dependency information, chan-
nel global information and spatial structure information
using cross-channel global covariance pooling, cross-spatial
global covariance pooling and spatial-wise 1×1 convolu-
tion. SRM perceives spatial global information and channel
structure information using channel-wise standard deviation
pooling and channel-wise global average pooling. GCTM
perceives spatial global information and channel structure
information using channel-wise L2-norm. These four atten-
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Fig. 7 Attention visualization results in different marine environments.
The attentionmodules are integrated into theYOLOV5 detector, includ-
ing no-attention module, BAM, GSoPM, and MIPAM from left to

right. The experimental results in various marine environments are
represented from top to bottom, including detection results, attention
visualization results, and combined results
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Fig. 8 Attention visualization results in different marine environments.
The attention modules are integrated into the YOLOX detector, includ-
ing no-attention module, SRM, GCTM, and MIPAM from left to

right. The experimental results in various marine environments are
represented from top to bottom, including detection results, attention
visualization results, and combined results
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Table 12 Underwater
performance test of our work on
different YOLO detectors.
(URPC 2021)

Detector Params MAdd Memory FPS mAP0.5 mAP0.5:0.95

YOLOV3 [42] 61.54M 154.86G 1042.66M 29 79.4% 48.3%

+MIPAM 61.60M 154.89G 1091.86M 24 81.3% 49.5%(+1.2)

YOLOV4 [43] 63.95M 141.38G 1434.07M 25 82.3% 56.4%

+MIPAM 64.03M 141.42G 1485.91M 21 84.0% 57.3%(+0.9)

YOLOV5 [44] 46.65M 114.27G 907.12M 30 78.5% 57.6%

+MIPAM 46.74M 114.32G 967.54M 23 80.0% 58.4%(+0.8)

YOLOV6 [45] 59.60M 150.70G 1046.87M 26 82.0% 61.2%

+MIPAM 59.68M 150.74G 1100.69M 20 83.2% 61.7%(+0.5)

YOLOV7 [46] 37.21M 104.79G 688.76M 32 81.4% 60.8%

+MIPAM 37.27M 104.82G 735.97M 25 82.4% 61.3%(+0.5)

YOLOX [47] 54.15M 155.29G 1029.59M 28 78.9% 58.1%

+MIPAM 54.24M 155.34G 1090.01M 23 80.3% 58.7%(+0.6)

tion modules use active channel interaction to perceive
channel diversity information. Although the above atten-
tion modules show some potential in underwater detection
tasks through rich information perception, they are still
slightly insufficient in detection performance compared to
our attention modules. MIPAM uses channel-level informa-
tion collection and spatial-level information collection to
perceive multi-dimensional dependency information, multi-
dimensional structure information and multi-dimensional
global information, which enhance the feature expression
abilities. MIPAM further uses channel-driven information
interaction and spatial-driven information interaction to fur-
ther perceivemulti-dimensional diversity information,which
stimulate the intrinsic information potentials. As can be
seen from the attention visualization, our attention module
achieves more efficient underwater object detection com-
pared with other attention modules. Our MIPAM effectively
reduces underwater background interference and signifi-
cantly improves underwater object perception through richer
information perception andmore comprehensive active inter-
action.

In order to further verify the effectiveness of our attention
module on different baseline methods, we provide the under-
water performance test in YOLOV3, YOLOV4, YOLOV5,
YOLOV6,YOLOV7andYOLOX, as shown inTable12.Dur-
ing the experiment, the input image size is uniformly set to
640× 640 and the network model size is uniformly set to L.
Our attention is integrated into the YOLO detectors accord-
ing to the proposed method. From the experimental results,
we can see that ourwork has good robustness and can achieve
significant performance gains in various YOLO detectors.

In order to further demonstrate the effectiveness of our
work in underwater detection tasks, we provide the results
of comparison between the proposed underwater work and
other underwater work, as shown in Table13. Xu et al. [34]
proposed a scale-aware feature pyramid network(SAFPN)

Table 13 The comparison of our work with other underwater detection
works. (URPC 2021)

Methods FPS mAP0.5

SAFPN [34] 10 77.5%

ASPPN [35] 16 78.2%

YOLOV5+MIPAM 23 80.0%

YOLOX+MIPAM 23 80.3%

for marine object detection, which used a special backbone
subnetwork to provide richer fine-grained features for small
underwater targets, and used a multi-scale feature pyramids
to enhance semantic features. Xu et al. [35] further proposed
an attention-based spatial pyramid pooling network(ASPPN)
for marine object detection, which expanded receptive fields
to enrich the interesting information, and fused bidirec-
tional features to improve the feature robustness. As can be
seen from the experimental results, our work showed the
excellent performance in terms of detection accuracy and
detection speed, which can better meet the requirements of
high-precision and real-time for underwater object detection.
Compared with other works, our high-intensity collabora-
tive attention calibration strategy specifically for underwater
detection tasks has higher flexibility and extensibility in prac-
tical applications.

4.5 Experiments on PASCALVOC dataset

In this subsection, we further conduct experiments on PAS-
CAL VOC dataset. Table 14 reports the test results of
CoAM, ShAM, PSAM, FCAM and MIPAM on YOLOV5
and YOLOX, where the network model is set to M size.
For VOC detection tasks, these original YOLO detectors
achieve 80.8% mAP and 82.2% mAP, respectively. We add
MIPAM to YOLOV5 detector and YOLOX detector, which

123



Multiple information perception-based attention... 1435

Table 14 VOC detection results of different attention modules on
YOLO detectors

Settings Params FLOPs mAP0.5

YOLOV5 21.13M 25.33G 80.8%

+CoAM [52] 21.33M 25.33G 81.4% (+0.6)

+ShAM [12] 21.13M 25.33G 81.4% (+0.6)

+PSAM [13] 21.91M 26.63G 81.2% (+0.4)

+FCAM [15] 21.37M 25.33G 81.1% (+0.3)

+MIPAM(Ours) 21.21M 25.38G 81.5% (+0.7)

YOLOX 25.29M 36.78G 82.2%

+CoAM [52] 25.48M 36.79G 82.6% (+0.4)

+ShAM [12] 25.29M 36.78G 82.8% (+0.6)

+PSAM [13] 26.07M 37.66G 82.9% (+0.7)

+FCAM [15] 25.53M 36.79G 82.7% (+0.5)

+MIPAM(Ours) 25.37M 36.82G 82.9% (+0.7)

The results with optimal detection accuracy are marked in bold

improves the detection accuracy by 0.7% and 0.7%, respec-
tively. Compared to other attention modules, MIPAM brings
the greatest performance gain. Our attention module per-
forms the best in terms of accuracy and is also competitive
in terms of parameters and computations. It is worth noting
that the main reason for detection performance improvement
is not the simple capacity increase. This is due to the rea-
sonable correction of feature information by our attention
module, which activates high-quality attention by perceiving
multiple information. The experimental results in Table14
demonstrate the generalization ability of MIPAM on differ-
ent detection tasks. After further analyses of experimental
results, we find that MIPAM shows more significant perfor-
mance gains in underwater detection environments compared
to VOC detection environments. This means that our atten-
tion module can make a greater contribution to solving the
problems of strong underwater background interference and
weak underwater feature discriminability.

5 Conclusion

In this paper, we proposed amultiple information perception-
based attention module(MIPAM) in YOLO for underwater
object detection. In information preprocessing, we used
spatial downsampling and channel splitting to control param-
eters and computations of attention module. In information
collection, we designed channel-level and spatial-level infor-
mation collections to enhance feature expression capabil-
ities. For channel-level information collection, the cross-
channel GCP perceived channel dependency information.
The channel-wise GAP perceived channel structure informa-
tion and spatial global information. For spatial-level infor-
mation collection, the spatial-wise GAP perceived spatial

structure information and channel global information. The
cross-spatial GCP perceived spatial dependency informa-
tion. In information interaction, we proposed channel-driven
and spatial-driven information interactions to further stim-
ulate intrinsic information potentials. For channel-driven
information interaction, channel diversity information was
perceived by allocating different parameters in channel
dimension and sharing same parameters in spatial dimension.
For spatial-driven information interaction, spatial diversity
information was perceived by allocating different parame-
ters in spatial dimension and sharing same parameters in
channel dimension. In attention activation, we introduced the
multi-branch structure to generate multiple attention, which
facilitated targeted calibration of feature information on dif-
ferent branches. In information postprocessing, we applied
channel concatenation and spatial upsampling to realize the
plug-and-play of attention module.

We embedded MIPAM into ten important positions of
YOLO detector, which met the high-precision and real-time
requirements for underwater object detection. Our work pro-
vided more significant performance gains for underwater
detection tasks, which reduced underwater background inter-
ference and improved underwater object perception. Our
work also brought someperformance improvements for other
detection tasks, which showed a certain generalization abil-
ity.

In future work, we will continue to take reducing under-
water background interference and improving underwater
object perception as the primary goal, and further explore the
application potential of attention mechanism in underwater
object detection. The attention mechanism mainly consists
of three processes: information collection, information inter-
action and attention activation. In this paper, we studied the
problems of information collection in detail and proposed
the reasonable solutions. For underwater detection tasks,
information interaction and attention activation also have
improved directions. For information interaction, dimension-
ality reduction interaction strategywill lead to the destruction
of direct information correspondence, and local interaction
strategy will lead to the lack of global information interac-
tion. For attention activation, single-dimensional attention
will weaken the robustness of attention application, single-
functional attention will reduce the flexibility of attention
calibration, and single-level attention will lack the diversity
of attention perception. In follow-up work, we will start from
these two aspects to further improve the calibration intensity
of underwater attention to detail features, and further explore
the optimal attention design suitable for underwater detection
tasks.
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