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Abstract
Underwater object detection is a fascinating but challengeable subject in computer vision. Features are difficult to extract
due to the color cast and blur of underwater images. Moreover, given the small scale of the underwater object, some details
will be lost after several layers of convolution. Therefore, a multi-scale aggregation feature pyramid network is proposed to
integrate multi-scale features and improve underwater object detection performance. Specifically, a lightweight and efficient
network is used to extract the basic features. A special subnet is designed to improve the feature extraction capability of the
backbone network to enrich the detailed features of small underwater objects. In addition, a multi-scale feature pyramid is
proposed to enrich feature map. Each feature map enhances contextual information through a combination of up-sampling
and down-sampling. The centerness strategy of the fully convolutional one-stage object detection head is improved by adding
corner point regression to enhance the recall rate of small objects. Generalized intersection over union (GIoU) instead of
IoU can better reflect the degree of coincidence between the actual box and the predicted box. Therefore, the regression
loss is changed to GIoU loss. This paper evaluates the network on the underwater image dataset and obtains 78.90% mAP.
Meanwhile, the experiment on the PASCAL VOC datasets is conducted and gets 84.3% mAP.

Keywords Underwater object detection · Feature pyramid network ·Generalized intersection over union ·Centerness strategy

1 Introduction

Underwater object detection is an important and difficult
subject in computer vision. The underwater object detec-
tion task has attracted people’s attention gradually. In recent
years, many popular networks based on deep learning have
achieved good results on common datasets. However, the
image quality captured by the camera is poor [1, 2] because
of theunderwater lighting conditions and environment. These
methods are not ideal when applied to the underwater object
detection task directly. Underwater images have problems
such as low contrast, color bias and uneven illumination
because of the scattering and attenuation of light transport
in the water [3]. As a result, underwater image features are
difficult to extract. Objects in underwater images are usually
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small in size because of the long distance from the camera
and the small actual size of the objects [4]. It is necessary
to design an accurate object detection network for the above
problems.

At present, convolutional neural networks (CNNs) are the
backbone of most models based on deep learning. Different
convolution layers allow one to extract the characteristics
of different scales for CNNs [5, 6]. In general, a high-level
feature map provides rich semantic information and it is
advantageous to the detection of large objects. The low-level
characteristics have rich texture information,more conducive
to small object detection [7]. Detail information is crucial for
small object identification. It is very important to construct
multi-scale features for more complex underwater object
detection tasks, which include not only abundant texture fea-
tures but also strong semantic features [8].

CNN can learn advanced semantic features and use
single-scale input features for recognition. SSD [9] uses the
hierarchical feature of CNN pyramid, the multi-scale feature
map from multiple layers calculated by the forward process.
Feature pyramid network (FPN) [10] aims to use the pyramid
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form of CNN hierarchical features naturally to generate fea-
ture pyramids with strong semantic information at all scales.

A multi-scale feature pyramid architecture based on FPN
is proposed to detect underwater objects. Firstly, improved
VoVNet [11] is taken as the backbone network. The one-shot
aggregation (OSA)module inVoVNet only aggregates all the
layers before the last one-time aggregation, which is highly
efficient on the GPU and has fewer layers than the resid-
ual network layer at the same level. It can keep more details
that are crucial to feature maps extraction. Secondly, a multi-
scale aggregation feature pyramid is built. The basic features
extracted from the backbone network are downsampled to
enhanced features scale. Only top-down and horizontal con-
nections result in the main information still come from the
top. A new bottom-up network structure added to get a new
feature pyramid. Then, the distance between corner point and
bounding box is introduced to improve the recall of small
objects. At the same time, the scale of the feature map is
divided by the corresponding step size to better adapt to the
size of the FPN. Batch normalization (BN) is replaced by
group normalization (GN) after the convolutional layer of
the head. GN divides the characteristic channels into groups,
calculates the mean and variance to normalize within each
group so that its calculation normalization will not depend
on the batch size. Finally, GIoU [12] is added to measure the
distance between the real box and the prediction box without
overlap. GIoU pays attention to overlapping areas as well
as other non-overlapping areas, which can better reflect the
degree of overlap. The GIoU loss is added to the regression
loss to ensure the accuracy of the prediction box. To summa-
rize, the major contributions of this work are three-fold:

1. A convolution block of backbone is designed to enhance
detailed information. The stage 1 of the original VoVNet-
39 is replaced with two-channel convolution block. The
added convolution block is used to extract the rich detail
features of the image which are more conducive to the
detection of small scale objects.

2. The feature scale is extended by downsampling based
on FPN. An aggregation path from low-level features to
high-level features is added to extract details. Therefore,
a multi-scale aggregation feature pyramid is constructed.
This structure can use context information to strengthen
features and enhance the resolution of feature map.

3. The cornerness strategy is designed to add recall points.
The distance between corner points and bounding boxes
is introduced to add regression point and divided by the
corresponding stride to improve the recall rate of small
objects. The cornerness loss is designed based on the
above method. Besides, IoU is replaced by GIoU as a
measure of the actual box and the predicted box without
overlap.

The rest of the paper is organized as follows. Section2
presents related work about the development of technologies
involved in our method. Section3 describes the proposed
methods specifically. Section4 gives the experiments and
analysis with proposed methods. Moreover, the last section
presents conclusions on this work.

2 Related works

2.1 Object detection

Object detection is a heavily researched topic in computer
vision. There has been a large body of researches on object
detection with deep learning. According to whether region
proposal is needed, popular object detection methods based
on CNN mainly include two-stage object detection network
[9, 30] and one-stage object detection network [15, 16].

The two-stage object detection network first extracts the
candidate box from the image, then makes two corrections
based on the candidate area to get the detection result. One-
stage object detection networks remove region proposals
unlike two-stage methods and directly regresses the location
and category of the object. The latter can bring to faster detec-
tion. However, these methods all require presetting dense
anchor which will introduces a lot of hyperparameters and is
time consuming. The detection result is greatly affected by
hyperparameters. Therefore, an anchor-free object detection
model is constructed based on FCOS [22].

The backbone is responsible for extracting basic features
from images in the object detection model, which is very
important for object location and classification. ResNet [28]
is the most commonly used backbone of object detection
model. In fact, DenseNet [29] has stronger feature extraction
ability than ResNet. Although it has a good effect for object
detection with slow speed. The high memory access costs
and power consumption are caused by dense connections in
DenseNet. VoVNet [11] is designed to solve this problem.
The object detection model based on VoVNet outperforms
the model based on DenseNet with faster speed and better
performance.VoVnet is selected as the backbone and extracts
basic features as the input of FPN.

2.2 Multi-scale features

Recently, extracting features from different layers is popular
in image recognition and these features are used together to
detect objects. SPP-Net [13], R-CNN [14], Fast R-CNN [15]
and Faster R-CNN [16] just take the final feature maps to
detect object. Shrivastava et al [17] and SNIP [18] adopted
the feature image pyramid, input images of different scales
as image pyramids to generate features of different scales
for prediction. The high accuracy is achieved at a high cost
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Fig. 1 The whole architecture of proposed network

in terms of time and memory. SSD, DSSD [19], YOLOv3
[20] are detecting objects in the feature pyramid extracted
from inherent layers within the network while merely taking
a single-scale image. This strategy ignores the context infor-
mation of features. FPN utilized lateral connections and a
top-down pathway to produce a feature pyramid and achieve
more powerful representations. FCOS [22] and Xu et al [23]
adjust the feature maps on FPN and take higher level fea-
ture maps to predict object. The top-down path results in
information only coming from the top and information from
the bottom is not well utilized. M2Det [21] uses U-shaped
pyramid to extract feature depth, concat features of different
levels according to the same scale. Nas-FPN [24] uses neu-
ral network search based on RetinaNet [25] to design FPN.
However, these improved FPN models are complicated and
the search cost is high. Therefore, a multi-scale aggregation
feature pyramid is constructed based on FPN.

2.3 FCOS detection head

The detection head detects the location and category of
objects based on the features obtained from above. Detec-
tion heads can be divided into anchor-based and anchor-free
models. Anchor-based model need predefined anchor point
generation candidate boxes such as YOLO and SSD. The
anchor involves many hyperparameters which have a great
influence on the final result. The anchor-free model is based
on corner or center such as CenterNet [31] and FCOS [22].
The FCOS network adopts the regression strategy of anchor-
free. Although the recall rate is improved, it will produce
many prediction bounding boxes with low quality center
point offset. Based on this, a simple and effective strat-
egy centerness is proposed to suppress these low quality
bounding boxes. This strategy does not introduce any hyper-
parameters. The FCOS detection head is selected as the
basic detection head. Because it is a general object detec-
tion network, this paper will improve this detection head for
underwater environment.

The loss function is used to estimate the difference
between the predicted value and the real value of the model.
Intersection-over-union (IoU) loss is used as regression loss
in FCOS. IoU calculates the ratio of the intersection and
union between the predicted box and the actual box. The
IoU loss does not provide any motion gradients and cannot
be trained when the predicted box and the actual box do not
overlap. Chen [27] proposes Pixel-IoU loss to improve the
accuracy of both rotation angle and IoU. Zheng [26] takes
into account the distance, overlap rate and scale to design
distance-IoU (DIoU), making the object box regressionmore
stable. CIoU is further proposed on the basis of DIoU, the
length-width ratio of the three elements of box regression is
considered in the calculation. However, the centers of dense
objects in underwater images are close. Theywill be removed
after non-maximum suppression (NMS) processing. Hamid
put forward the idea of generalized intersection over union,
introducing the smallest bounding rectangle of the predicted
box and the actual box on the basis of the IoU. The predicted
boxes will move towards the object box given the introduc-
tion of penalty terms. It overcomes the above shortcomings
of the IoU.

3 Proposedmethod

This paper proposes path aggregation feature pyramid net-
work to settle the issue on underwater object detection. The
model architecture is represented in Fig. 1. Our network will
be introduced from three aspects: feature extraction, multi-
scale feature fusion and object detection.

3.1 Feature extraction

This paper proposes feature extraction architecture based
on VoVNet to obtain abundant and robust feature maps.
A refined convolutional block is proposed to replace the
backbone of the first convolutional layer. For VoVNet-39,
the first convolutional layer uses multi-layer convolution to
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Table 1 Two constructs of
VoVNets Stage1

Type Output stride VoVNet-39-A VoVNet-39-B

[3×3conv 64 stride=2

Stem 2 3×3conv 64 stride=1

Stage 1 2 3×3conv 128 stride=1] 3×3conv 128 stride=2

2 &

[3×3conv 128 stride=2]

extract the feature, which loses more detail information of
small objects than single-layer convolution. Dual convolu-
tion block is used to extract image details. The two channels
can extract more abundant basic feature, so that they are
more conducive to small object detection.Then, the improved
VoVNet-39 as the backbone is called VoVNet-39-A. Three
OSA modules are used to aggregate all the previous layers
once after a refined convolutional layer. The output of each
OSAmodule is used as the basic feature to generate the basic
feature layer at different scales. A branch is added to VoVNet
stage1 to extract richer details. The added branches are used
alone to compare and verify the effect of feature extraction.
The structure of stage 1 is shown in Table 1.

Finally, a multi-scale feature pyramid is constructed. The
basic features are obtained from the OSA module output of
the backbone network, while the high level features are sam-
pled from the basic feature map. A new feature pyramid is
obtained by adding a new bottom-up network structure. This
pyramid featuremap integrates featuremapsof different sizes
from low level to high level, contains rich texture information
and semantic information which are beneficial to underwater
object detection.

3.2 Multi-scale feature pyramid

This paper builds a multi-scale feature pyramid to acquire
robust feature maps. Inspired by FPN, the third to fifth con-
volutional blocks are taken to extract feature maps and build
our deeper feature pyramid. We conduct upsampling from
higher level feature maps to enhance lower level feature map
with context information.Our feature pyramids are combined
with five featuremaps,where each featuremap has a different
scale. This paper builds a multi-scale feature pyramid based
on feature extraction network. Our multi-scale feature maps
are defined as P3, P4, P5, P6, P7 and N3, N4, N5, N6, N7,
where the strides of them are 8, 16, 32, 64, 128, respectively.
C3, C4, and C5 are the initial feature layers and the scaling
process can be described as:

Pi = f1 ∗ Ci + μ ∗ Pi+1 i = 3, 4
P5 = f1 ∗ C5

P6 = f2 ∗ C5

P7 = f2 ∗ P6

(1)

Pi represents the i-th layer feature of the P level feature
pyramid, f1 is the variable channel number filter with the
convolution kernel of 3×3 and the stride of 1, f2 is the down-
sampling filter with the convolution kernel of 3×3 and the
stride of 2, μ is upsamping,* is the convolution operation.

Each building block takes a higher resolution feature map
Ni and a coarser map Pi+1 through lateral connection and
generates the new feature map Ni+1. Each feature map Ni

first goes through a 3×3 convolutional layer with stride
2 to reduce the spatial size. Then each element of feature
map Pi+1 and the down-sampled map are added through lat-
eral connection. The fused feature map is then processed by
another 3×3 convolutional layer to generate Ni+1 for follow-
ing sub-networks. This is an iterative process and terminates
after approaching P7. The 256-channel feature map is used
in these features to be detected.

The feature fusion process can be formulated as follows,

Ni+1 = f2 ∗ Ni + Pi+1 i = 3...6 (2)

Ni is the ith layer feature of the feature pyramid.

3.3 Detection of head

The FCOS head is selected as the base head and GN is added
after the convolutional layer of the head so that its calcula-
tion during Normalization will not depend on the batch size
value. The error of training andverification is higherwhen the
batch size value is small. The calculation accuracy of the BN
layer depends on the value of the current batch. GN divides
the channels into groups and calculates the mean value and
variance within each group for normalization. So it is not
constrained by batchsize naturally.

Centerness as a unique branch of FCOS, the image is
divided into grids according to scale. The training target is
the distance between the center point of the grid and the truth
value box. (x0, y0) and (x1, y1) are the corner points of the
truth value box and (x, y) is the center points of the grid. The
distances from the center point to the truth value box are,
respectively, l∗, t∗, r∗, b∗ :

l∗ = x − x0 t∗ = y − y0
r∗ = x1 − x b∗ = y1 − y

(3)
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Fig. 2 The cornerness strategy

Centerness can be expressed as:

Centerness∗ =
√

min(l∗, r∗)
max(l∗, r∗)

× min(t∗, b∗)
max(t∗, b∗)

(4)

However, there may be no center point or only one center
point falling into the truth box when the object size is small.
The scale of underwater image object is small, so the method
needs to be improved in underwater object detection. We
add corner points into the regression strategy to solve this
problem. Corner points regression strategy is shown in Fig. 2.

In practical applications, the distance between the corner
point and the actual box is divided by the corresponding stride
to match the actual size of the underwater object. Then the
distance between the corner point and the truth value box is,
respectively, l∗c , t∗c , r∗

c , b∗
c :

l∗c = (x − x0)/s t∗c = (y − y0)/s
r∗
c = (x1 − x)/s b∗

c = (y1 − y)/s
(5)

The Cornerness is:

l∗c = (x − x0)/s t∗c = (y − y0)/s
r∗
c = (x1 − x)/s b∗

c = (y1 − y)/s
(6)

The loss function of FCOS network is

L1 = 1

Npos

∑
x,y

Lcls(cx,y, c
∗
x,y) + λ

Npos

∑
x,y

1cx,y∗>0

×L reg(tx,y, t
∗
x,y) + 1

Npos

∑
x,y

Lcen(ex,y, e
∗
x,y) (7)

where Lcls is focal loss, Lreg is the IoU loss and Lcen is
Centerness loss. Npos denotes the number of positive samples
and λ is 1 in this paper is the balance weight for Lreg . c∗

x,y is
the true values of the target category, t∗x,y is the true values of
the target position, e∗

x,y is the true values of Centerness, the
predicted target category is cx,y, the predicted target position
is tx,y and the predicted Centerness is ex,y. 1cx,y∗>0 is the
activation function, being 1 if c∗

x,y > 0 and 0 otherwise.
The regression process is improved as well as the corre-

sponding loss function. The new loss function is added with
corner regression to form a new loss function:

L2 = 1

Npos

∑
x,y

Lcls(cx,y, c
∗
x,y) + λ

Npos

∑
x,y

1cx,y∗>0

× L reg(tx,y, t
∗
x,y) + 1

Npos

∑
x,y

Lcor(ex,y, e
∗
x,y)

(8)

where Lcor is Cornerness loss. IoU calculates the ratio of the
intersection andunionof the predicted box and the actual box.
However, The IoU has the disadvantage of not measuring
the distance between two boxes and the way of intersection.
GIoU aims to overcome the shortcomings of IoU and takes
full advantage of it. IoU can be propagated back for intersect-
ing boxes, it can be directly used as the objective function of
optimization. But the gradient will be zero and optimization
cannot be performed if they do not intersect. Using GIoU
at this point completely avoids this problem. The regression
loss is replaced by GIoU loss to form an objective function.
The training loss function is defined as the sum of L1 and
L2.

4 Experiments and analysis

In this section, we design several group experiments of pro-
posed method and analysis of results to verify our work.
Our experiments are mainly conducted on 4 categories of an
underwater image dataset. The experiment section includes 4
parts: (1) introducing implementation details about the exper-
iments; (2) experiments on underwater image datasets; (3)
analysis of the loss function; (4) experiments on PASCAL
VOC datasets.

4.1 Implementation details

We implement MA-FPN and other networks based on
PyTorch. The VoVNet-39-A is taken as our backbone net-
works. Specifically, our network is trained with stochastic
gradient descent (SGD) for 100K iterations with the initial
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Fig. 3 Comparison of detection results between baseline and our proposed method

learning rate being 0.01 and a minibatch of 4 images. The
learning rate is reduced by a factor of 10 at iteration 60K and
80K, respectively. Weight decay and momentum are set as
0.0001 and 0.9, respectively. In addition, the input images
are resized to 1024*800. All of the experimental results are
implemented using a Nvidia TiTan Xp GPU and cuDNN
v5.1 and an Intel(R) Xeon(R) W-2135 CPU@3.70GHz. The
dataset is available at https://aistudio.baidu.com/aistudio/
datasetdetail/25886 publicly.

4.2 Experiments on underwater image datasets

The underwater image datasets are built with the same for-
mat of PASCAL VOC datasets, which mainly include 5546
pictures with four categories: starfish, echinus, holothurian
and scallop. The underwater images are blur and color cast.
The scales of underwater objects in underwater images are
small. What is more, some underwater objects have protec-
tive coloration to hide themselves into surroundings, such as
holothurian and scallops.

The captured images usually have a high density of
objects because of the living habits of underwater objects.
These natures aggravate the challenges of underwater object
detection task. A series of experiments are performed on
underwater image dataset in accordance with the proposed
network. The detection results of FCOS and the improved
network are selected to verify the performance of themethod.
It can be seen from the comparison in Fig. 3 that our method
is better than FCOS in underwater object detection. Specif-
ically, the improved network can detect more small objects
and objects with protective colors.

4.2.1 Comparison with popular detectors

Experiments were carried out with different detectors on the
underwater image dataset. Specifically, each popular detector
was reimplemented with default settings on the underwater
image dataset. The comparison results are shown in Table
2. Obviously, the underwater object detection performance
cannot reach the common type of detection performance.

Table 2 Comparison with popular detectors on the underwater image
dataset

Approach Backbone Input size FPS mAP (%)

Faster-RCNN [16] VGGNet 1000×600 7 71.18

ResNet 1000×600 5.8 70.34

SSD512 [9] VGGNet 512×512 9.1 72.51

YOLOv3 [20] DarkNet 416×416 16.8 73.60

YOLOv4 [30] DarkNet 608×608 14.5 76.46

FPN [10] ResNet 800×1024 6.5 74.85

FCOS [22] ResNet 800×1024 4.3 74.53

MA-FPN VoVNet 800×1024 4 78.90

Bold values indicate the best results

In object detection tasks, SSD, YOLO and RCNN series
are popular methods. This article implements these networks
on the same underwater dataset. As shown in Table 2, the
mAPof the two-stage object detection networkFaster-RCNN
on the underwater dataset is 71.18%. It has higher detection
accuracy compared with the single-stage object detection
network SSD and YOLOv3, but the complex network struc-
ture causes the detection speed to be low. The YOLOv3
detector achieves a faster detection speed and can process
16.8 frames per second. YOLOv4 [30] improved the detec-
tion accuracy of underwater dataset to 76.46%. The SSD
detector obtains a detection accuracy of 72.51% through the
feature pyramid. Our proposed method performs best on the
underwater image dataset with a mAP of 78.90%. Below we
will analyze the effectiveness of our network in detail.

4.2.2 Ablation study

Weconduct a series of ablation experiments to show the com-
parative effect of each component for verifying performance
of proposed network. In Table 3, the FCOS on underwater
image dataset is considered as baseline and introduce our
design on it to improve the performance.

The comparison between the second line and the third
line shows that the underwater object detection performance
is improved after the introduction of MA-FPN, which is
attributed to the rich texture information and semantic infor-
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Table 3 Ablation experiments
on underwater image dataset

Network AP (%) mAP

Starfish Echinus Holothurian Scallop (%)

Origin 86.24 86.98 58.99 65.89 74.53

VoVNet-39-A 86.50 89.45 61.64 68.97 76.64

VoVNet-39-A FPN 85.85 89.79 63.10 69.70 77.11

VoVNet-39-A FPN GIoU GN 85.92 89.85 66.52 69.72 78.00

VoVNet-39-A FPN GIoU GN Cornerness 87.02 90.16 67.65 70.71 78.90

Bold values indicate the best results

0 5 10 15 20 25 30 35 40 45 50
epoch

0

0.1

0.2

0.3

0.4
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m
AP

mAP1
mAP2

Fig. 4 Comparison of detection results of two networks. Blue line is
the mAP of FCOS and red line is the mAP of MA-FPN

mation of MA-FPN. What is more, the results of the third
and fourth lines show that the redesign of the loss function
also contributes to the detection performance. This is because
GIoU can better reflect the coincidence degree of the predic-
tion box and ground truth. It can be seen from the last two
lines that the corner point regression strategy designed by us
is effective. It takes into account more regression points and
has a more friend detection effect for small objects exist-
ing underwater. The proposed network has advantage on
underwater object detection by contrast with FCOS. MA-
FPN performance is 4.37% better than FCOS with the same
setting of experiments.

Figure4 shows the FCOS network and the underwater
dataset detection results of the proposed network. First of
all, at the beginning of training, our network has a higher
mAP improvement effect than FCOS in the same epoch and
the fitting speed is fast. On the other hand, the mAP of MA-
FPN is higher than FCOS for each epoch, which proves the
effectiveness of the proposed network.

4.2.3 Research on backbone

The experiments are carried out on different types of back-
bone networks to discuss the influence of different backbone
networks on detection performance. The experimental results
are shown in Table 4. The network using ResNet as the
backbone network only generates 74.53% of mAP on the
underwater image dataset. The overall detection effect of
VoVNet is better thanResNet. VoVNet-39-A ismore suitable
for our network compared with the previous three lines.

4.3 Analysis of the loss function

After several simulation experiments, our network
achieves good performance in underwater object detection.
The comparison of precision-recall curve between FCOS and
ours is shown in Fig. 5.

Neural network training is to reduce the loss function con-
tinuously. The fitting effect of the model can be judged by
comparing the loss function when there is no change in the
dataset. Fig. 6 is proved by experimental data. Loss1 and
loss2 are the training loss reduction curves of the FCOS
and proposed network. It can be found by comparison when
the network training loss value is stable, the loss function

Table 4 Influence of backbone
network structure on detection
performance

Backbone AP (%) mAP

Starfish Echinus Holothurian Scallop (%)

ResNet-50 86.24 86.98 58.99 65.89 74.53

VoVNet-39 86.61 87.83 60.05 69.51 76.00

VoVNet-39-B 87.07 87.79 59.51 68.59 75.74

VoVNet-39-A 86.50 89.45 61.64 68.97 76.64

Bold values indicate the best results
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Fig. 5 The comparison of precision-recall curve between FCOS and Ours

0 5 10 15 20 25 30 35 40 45 50 55 60
epoch

0.5

1

1.5
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2.5

lo
ss

loss1
loss2

Fig. 6 The comparison of training loss

designed by us has smaller value and better data fitting.More-
over, it can be seen the network is more stable since the loss
function of our network fluctuates less during the training
process. Among them, the cornerness strategy plays a crucial
role. As shown in Fig. 7, under the condition of numerous
small-size objects in underwater images, the corner point
regression strategy added can detect more small objects by
setting more recall points.

More detection results of our network are shown in Fig. 8.
It can be seen that our network performs well in scenes with
fuzzy and uneven lighting. Even if there are a large number
of small objects, the objects can be accurately detected.

However, this network still has shortcomings in under-
water object detection. It is extremely difficult to identify
occludedobjects. In addition, the detection of covered objects
also needs to be improved. Some failed detection cases are
shown in Fig. 9. For example, it is difficult to detect a starfish
hidden behind a stone. When a sea urchin is very close to
a mesh with similar characteristics, it will be ignored as a
mesh.

To verify the practicability of the network, we simulated a
real underwater environment in a laboratory pool. As shown
in Fig. 10, the underwater robot collects underwater images
of the object to be detected through a camera, it uses our
network to detect these objects. It can be seen that our net-
work can accurately detect underwater objects under certain
conditions and has certain practicability.

4.4 Experiments on PASCALVOC datasets

We conducted experiments on the PASCAL VOC dataset to
verify the effect of proposed method. Specifically, we train
the network on the VOC 2007 and VOC 2012 training sets,
then test the model on the VOC 2007 test set. We compare
our network with the latest object detection networks on the
PASCAL VOC dataset in Table 5.

As shown in Table 5, YOLOv3 can detect objects in real
time at a speedof 34 frames per second andSSD300 can reach
46 FPS on detection tasks. The upgraded networks of these
detectors, such as SSD512 and DSSD321, achieve higher
detection accuracy at the cost of increasing the computational
burden. DSSD321 even reached 78.6% ofmAP. Our network
obtained the highest mAP value 84.3% on the PASCALVOC
dataset, exceeded the FCOS by 3.8% mAP.

4.5 Robust testing experiments

In this section, we analyze the object detection accuracy of
the proposed network in noisy environments to verify the
robustness [32]. As shown in Fig. 11, we add Gaussian noise
obeying a normal distribution N

(
μ, σ 2

)
to validate the pro-

posed network. The abscissa of Fig. 11 is the noise parameter
σ , and the ordinate is the average detection accuracy mAP.

The values of mAP are 0.769, 0.715, 0.554, 0.340, respec-
tively, when σ is 0.1, 0.3, 0.5, 0.8. It can be seen that the
proposed object detectionmethod is robust to a certain extent.
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Fig. 7 Some detection results of
FCOS and MA-FPN on
underwater image dataset. Blue
bounding boxes are the FCOS
detection results and red ones
represent the MA-FPN detection
results

Fig. 8 Part of the detection results of our method on the underwater image dataset
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Fig. 9 Failure cases on underwater object detection task

Fig. 10 Simulation of underwater environment detection results

Table 5 Detection results on the PASCAL VOC datasets

Approach Backbone Input size FPS mAP (%)

Fast-RCNN [15] VGGNet 1000×600 0.6 70.0

Faster-RCNN [16] VGGNet 1000×600 7 73.2

ResNet 1000×600 5 76.4

FPN [10] ResNet 1280×768 5 77.1

SSD300 [9] VGGNet 300×300 46 74.3

SSD512 [9] VGGNet 512×512 19 76.8

DSSD321 [19] ResNet 321×321 9.5 78.6

YOLOv3 [20] DarkNet 416×416 34 77.2

FCOS [22] ResNet 1024×800 5.2 80.5

MA-FPN VoVNet 1024×800 4.9 84.3

Bold values indicate the best results

Our network is very robust when the added noise is small.
However, the underwater image itself has strong noise, so

when a large amount of noise is added, the detection accu-
racy is affected to a certain extent.

5 Conclusion

This paper proposes a simple and effective multi-scale fea-
ture pyramid network structure, which is used to construct a
feature pyramid to detect multi-scale objects. First, the effi-
cient VovNet-39-A is selected as the backbone network to
extract the basic features. Then, a multi-scale feature pyra-
mid is built to enhance the texture and semantic features. In
addition, the corner point regression strategy is introduced
and divide it by the scale of the feature when calculating the
point regression to adapt to the actual scale of the object.
Finally, this paper uses GIoU instead of IoU to improve the
loss function to measure the distance between the prediction
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Fig. 11 Object detection accuracy under different degrees of Gaussian
noise

box and the real box. Experimental results show that this
method is effective for underwater object detection. After
several experiments, the map of this method in underwater
object detection reaches 78.90%, which is better than FCOS
by 4.37%.
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