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Abstract
Disentanglement tends to automatically learn and separate the interpretable factors of variation hidden in the data. Disen-
tangled representations are more transferable and robust for the chosen model, and they are commonly used in image attack
detection and anti-fraud, as well as classification and recommendation systems in special situations. As a popular method
for learning unsupervised disentanglement, β-VAE re-weights the KL divergence by an adjustable hyperparameter. However,
good disentangled representations always lead to blurry reconstructions and mode collapse on complex datasets. We find that
the variance vector of the variational posterior is related to the nature of the dataset and representation space, limiting its value
to 1 is not reasonable enough. More importantly, constraining mean variable alone can achieve better disentanglement and
reconstruction performance. Therefore, we introduce mean constraint VAE, a simple and effective replacement of the β-VAE
for improving the poor reconstruction and learning a higher degree of disentanglement. In addition, a classifier-free measure
of disentanglement called variance proportion metric is proposed. Experiments show that our framework outperforms β-VAE
on several benchmark datasets.

Keywords Variational autoencoder · Disentanglement · Representation learning

1 Introduction

Disentangled representations can be specified as ones where
single latent units are sensitive to changes in single gener-
ative factors while being relatively invariant to changes in
other factors [1]. This definition is somewhat controversial,
[2] provide a formal definition of disentanglement, and they
argue that disentangled representations should capture the
symmetry transformations of the world state. Learning such
representations for training data are an important precursor
for a variety of standard downstream tasks, which are more
transferable [3] and robust [4] for the chosen model, and it
may help artificial intelligence to understand the world in
the same way that humans do. For example, a disentangled
factor of face objects could control one distinct attribute like
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smile or age, and we can use it to classify facial attributes [5],
video synthesis [6] and detect face presentation attacks [7,
8]. However, learning disentangled representations are still a
difficult problem, and good disentangled effect accompanies
with risks in the degradation of reconstruction quality and
mode collapse for the existing framework such as β-VAE
[9].β-VAE is a framework for learning disentangled repre-
sentations based on the Variational Autoencoder (VAE) [10,
11], it uses amodified version of theVAEby re-weighting the
KL divergence. β-VAE claims that a large weight (β > 1) of
the KL divergence between the variational posterior and the
prior is necessary to achieve good disentanglement perfor-
mance. Analogously, InfoGAN [12] argues that encouraging
the latent variables more interpretable help to learn disentan-
gled representations by rewarding the mutual information
between the observations and a subset of latent variables.

The main drawback of β-VAE is that the reconstruction
quality (compared to VAE) must be sacrificed for good dis-
entangled representations due to the restricted capacity of
the latent information. Our goal is to identify the sources
of disentanglement and reconstruction quality in KL diver-
gence, and find a better constraint term; then, we propose
mean constraint Variational Auto-Encoding(mcVAE), which
learns better disentangled representations and lower recon-
struction losses, simultaneously. Assuming that the prior is
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an isotropic standard normal distribution p(z) � N (0, I),
the KL divergence tries to match the variational posterior
q(z|x) � N (μ, σ 2) (μ and σ 2 denote mean and variance,
respectively) to the prior p(z) that can control the capacity of
the representation space and embody the disentangled fac-
tors. However, the variance vector σ 2 is greatly affected by
the properties of the dataset and representation space, and
it is usually much larger than 1 to guarantee enough infor-
mation in representation space. More importantly, we find
that limiting the mean or variance individually can reduce
the reconstruction loss significantly, limiting the mean alone
can help the representation explore more disentangled fac-
tors. Therefore, we propose mean constraint VAE (mcVAE)
that uses an additional mean constraint term instead of the
re-weightingKLdivergence, and our new framework is a fea-
sible and simple way to improve the poor reconstruction of
β-VAE while exploring a higher degree of disentanglement.
In summary, we make the following contributions:

1. Through analyzing the sources of disentanglement and
reconstruction in β-VAE, we find that increasing the
weight of mean constraint or variance constraint can
reduce reconstruction loss, and the mean constraint helps
to explore more disentangled factors.

2. We introducemcVAE, a simplemethod for disentangling
that gives higher disentanglement scores than β-VAE
with better reconstruction quality.

3. We identify the weaknesses of classifier-based disen-
tanglement metrics and propose a simple and more
comprehensible alternative: Variance Proportion Metric.

4. We give quantitative comparisons ofmcVAE, vcVAEand
β-VAE for disentanglement and reconstruction indexes.

2 Related work

In this paper, we focus on discussing the disentangled rep-
resentations without supervision. Early works have shown
successful disentanglement in limited settings with few fac-
tors, such as penalizing predictability of one latent dimension
given the others in autoencoder [13], disentangling two fac-
tors of variation inBoltzmannMachine [14] and amultilinear
generalization of factor analyzers named Tensor Analyzers
[15].

Many recent works explore frameworks to learn disentan-
glement in the latent variables. The first framework combines
the concepts of variational autoencoder and generative adver-
sarial network by using a discriminator to optimize the
divergence and encourage independence factors. Adversar-
ial autoencoder (AAE) [16] uses the GAN framework to
optimize the reconstruction error and KL divergence, and
it shows that AAE can disentangle the style and content of

images on the semi-supervised classification and unsuper-
vised clustering task. PixelGAN Autoencoders [17] show
the same objective of AAE and different decompositions of
information between the latent coding and the decoder, and
it combines a generative PixelCNN with a GAN inference
network to impose arbitrary priors on the latent coding of
VAE. Adversarial objectives also can be used to penalize
the Jensen-Shannon Divergence between the distribution of
codes and the product of its marginals and learn disentangled
features in the context of nonlinear ICA source separation
only [18]. FactorVAE [19] encourages the distribution of rep-
resentations to be disentangled by a Multi-Layer Perceptron
(MLP) classifier as discriminator that distinguishes whether
the input was drawn from the marginal code distribution or
the product of its marginals. ID-GAN [20] maximizes the
mutual information between the latent variable of VAE and
the output by a generator, the additional generator is effective
for high-fidelity synthesis.

The second framework learns disentangled factors
through mutual information or information bottleneck. Info-
GAN [12] rewards the mutual information between a small
subset of the latent variables and the observation to learn
disentangled representations. However, due to the train-
ing stability issues of GAN, there has been few empirical
comparisons between VAE-based methods. Information bot-
tleneckGAN[21] constrains themutual information between
the input and the generated output of the additional encoder;
the samples generated by IB-GAN have better reconstruc-
tion quality than InfoGAN. InfoVAE [22] is argued that an
additional mutual information loss between latent variables
and the observation can improve the quality of the variational
posterior, which is a conflicting conclusion with InfoGAN.
Achille and Soatto [23] attempt to promote the creation of
optimal disentangled representations simply by using infor-
mation bottleneck; they claim that the information dropout
algorithm can be extended to the VAE setting, but there are
any experiments on disentangling to support the theory. Hu
and Liu [24] prove that penalizing the mutual information
between the capsule, and the observation can help to learn
disentangled representations from information bottleneck of
view. However, the experiment was only limited to the cap-
sule network [25] without further promotion.

The third framework for learning disentanglement
depends on the punishment for KL divergence and its
decomposition term. Mathieu et al. [26] attempt to gener-
alize β-VAE to a general framework by decomposed latent
variable. Based on the β-VAE and evidence lower bound
decomposition [27], β-TCVAE carries out a decomposition
of the variational lower bound [28] and uses the total cor-
relation term to explain the success of β-VAE in learning
disentanglement. In a concurrent work, FactorVAE encour-
ages an equivalent total correlation penalty to the β-TCVAE
with different training methods, and it requires an auxiliary
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discriminator networkwhich can be seemed as a combination
of β-VAE and GAN for learning disentanglement. Gyawali
et al. [29] investigate the effect of the posterior density on the
disentangling ability, utilizing a nonparametric latent factor
model named Indian Buffet Process (IBP) method to balance
poor reconstruction and disentanglement. Joint-VAE learns
disentangled jointly continuous and discrete representations
for disentangling the factors of different categories on super-
vised data [30].

3 A novel metric for disentanglement

Most prior works have resorted to measure disentanglement
by latent traversals: visualizing the change in reconstruc-
tions while traversing one factor of the latent variable and
fixing others at a time, then judging whether the factor is
disentangled according to the changes of the reconstruc-
tions. Although visualizing latent traversals are an essential
and observable indicator, comparing different disentangling
algorithms without proper metrics is difficult, having a
human in the loop to assess disentanglement is also too
time-consuming and subjective [19]. The absence of a proper
quantitative metric is a major obstacle for learning disentan-
gled representations.

When the true underlying generative factors are known, a
classifier-based metric is proposed by [9] to quantify dis-
entanglement. It dates back to [13] learning a predictor
to quantify predictability between the different dimensions
of representations and [31] using a linear map from rep-
resentations to factors in the context of linear ICA. The
classifier-basedmetric score is the accuracy of a linear classi-
fier that can achieve by identifying a fixed ground truth factor
as follows: Assuming that the ground truth factors v ∈ RK

and conditionally dependent factors w ∈ RH are known, the
images x are generated by the factors x � f (v, w). To train
the classifier, choose a factor vk and its label yk , generate two
images {x1, x2} as a pair with vk fixed but all other factors
varying randomly. Then, we can obtain their latent represen-
tations {z1, z2} and take the absolute value of the pairwise
differences of these representations zdiff � |z1 − z2|, if we
generate L pair data, each training data point is an aggre-
gation over L samples

∑L
l�1 zdiff, and the fixed factor label

yk is the corresponding training output; the accuracy of the
classifier is disentanglement metric score.

The score is 100% if the representation is perfectly dis-
entangled. The classifier-based metric is relatively simple in
design and generalizable that has been used many [19, 32,
33]. To ensure that the classifier does not overfit, the right
parameters of the low VC-dimension linear classifier must
be carefully selected, because the classifier is sensitive to
the hyperparameters such as training iterations, initialization
and optimizer. To make the classifier stable, β-VAE uses ten

replicas of the model with the same hyperparameters and
each of the replicas was evaluated three times with differ-
ent random seeds to initialize the linear classifier, and the
top half of the thirty resulting scores remain, but discarding
low scores makes it not objective and reasonable enough.
FactorVAE modifies zdiff by taking the empirical variance
in each dimension of these normalized representations and
taking the dimension with the lowest variance as training
input for the classifier. However, the classifier-based metrics
are loosely interpreted as measuring the reduction in entropy
of z, choosing different classifiers still has an impact on the
score of disentanglement. In addition, when a factor is fixed
and all other factors are varied, the pairwise differences of the
representations |z1 − z2| will bring a lot of randomness; the
uncertainty is difficult to compensate through samplingmore
data, and it is the main factors that causes the inaccuracy of
the classifier measuring.

Based on the shortcomings of the above metrics, we try
to propose a stable and easy-to-understand method. Disen-
tanglement is defined as that the change in one dimension of
the latent variable corresponds a change in a truth factor, and
it means that a set of data with one factor varied and other
factors fixed should generate latent representations with only
one dimension changed. For instance, in 2D shapes dataset,
generating a set of sampleswith scale varied and other factors
fixed, then, this group of images is different in scale only and
others are the same, and its corresponding latent representa-
tions should only have one dimension changed if the latent
variable is disentangled.

According to the above analysis, we propose a new disen-
tanglement metric without classifier as shown in Fig. 1, and
the specific derived process is as follows:

1. Choose a factor vk and generate a group of data{
xlvk , · · · , xlvk

}
containing l samples with only vk vary-

ing.
2. Obtain the corresponding representations

{
zlvk , · · · , zlvk

}

of
{
xlvk , · · · , xlvk

}
and normalize each dimension by

empirical mean and standard deviation over the group
for rescaling the representations.

3. Calculate the variance of each dimension of these nor-
malized representations, the proportion of the highest
variance to the sum of variances is the disentanglement
score of our algorithm.

We can call this metric of measuring disentanglement
Variance Proportion Metric (VP Metric). For a ground truth
factor, the selection of the data in a group is random, sam-
pling multiple groups ensure the adequacy of the data and
reduces randomness. We demonstrate the effect of the num-
ber of groups on the VP scores of each truth factor in Fig. 2:
when the number of the groups is less than 20 groups, there
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Fig. 1 Top: classifier-based
metric in β-VAE. Bottom: our
metric

Fig. 2 As the number of groups grows, the disentanglement score of
our VP metric gradually stabilizes on all truth factors

are obvious errors in the disentanglement score. If the num-
ber of the groups is more than 50, the score is sufficiently
reliable and stable.

Compared to the classifier-based metrics and MIG [19],
our VP metric uses a simpler concept to directly judge the
change of the representations by perturbing the truth factors,
and it can give a more reliable measure score without hyper-
parameter. More importantly, the VP metric can achieve the
scores of each truth factor separately, it is more reasonable
due to each factor with a different degree of disentangle-
ment. For instance, ’shape’ and ’orientation’ are ground
truth factors of dSprites dataset, it is always easier to learn
’orientation’ factor than ’shape’ in most disentanglement
frameworks, and they should have different disentanglement
scores.

We think for future research, developing an unsupervised
metric to measure disentanglement without truth factors is
an important direction, and it could help us deal with more
complexdatasets, rather than2d shapes or 3d face.Webelieve
that a reliable metric has the same value with an effective
disentanglement algorithm.

4 Learning disentangled representations
bymean constraint

We motivate our approach by analyzing the sources of
disentanglement and reconstruction quality in the β-VAE
objective function. First, by analyzing the source of poor
reconstruction and some experimental results, we find that
the variance vector of the latent variable is related to its
dimension and properties of input datasets. Second, we
analyze the source of the disentanglement and design the
learning process of the disentangled representation, and
we propose a novel framework mean constraint Variational
Auto-Encoding. Last, we sum up the relationship between
information bottleneck, mutual information and KL diver-
gence based onVAE framework by generalizing and unifying
these constraint algorithms.

4.1 Source of poor reconstruction in β-VAE

Variational autoencoder (VAE) [10, 11] is a generativemodel
that pairs an inference network as encoder and a generator as
decoder. The purpose of VAE is to learn the distribution of
the input data x, by learning latent representations z where
such that z can reconstruct x as much as possible. Instead
of directly performing the intractable marginal likelihoods
logp(x), VAE optimizes the evidence lower bound:

L � Eq(z|x)[log p(x |z)] − DKL(q(z|x)||p(z)) (1)

where DKL denotes Kullback–Leibler divergence, q(z|x)
denotes an approximation to the intractable true posterior
p(z|x). According to β-VAE, the disentanglement comes
from the KL divergence term, the KL divergence with larger
weight β leads to a higher quality of disentanglement and
poorer reconstruction, and it means that better disentangle-
ment is always at the expense of the reconstruction fidelity
in β-VAE, which may cause mode collapse. For example, in
celebA dataset, the output faces reconstructed from different
input faces have high homogeneity, and most of the detailed
features from input images are lost. Althoughwe can observe
disentangled attributes, the poor reconstruction and the lost
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information of the latent variable will have a negative impact
on downstream tasks.

Therefore, we attempt to explore the sources of the
poor reconstruction and disentanglement; then, we propose
a new framework that learns better disentanglement with
sharper reconstruction. TheKLdivergence constraint DKL of
evidence lower bound is integrated analytically without sam-
pling, and we can assume the prior p(z) � N (0, I) and the
approximate posterior q(z|x) � N (μ, σ 2), where μ and σ 2

denote mean and variance, respectively, and q(z|x) is closer
to N (0, I) by increasing the value of β. In the best setting,
the values of mean variable and variance variable are 0 and
1, and its disentanglement has the highest metric score.

However, the strict constraint of β-VAE makes the repre-
sentation space so small that the model loses most detailed
features during training. To circumvent it, the first thing is to
investigate whether it is reasonable to force q(z|x) to N (0,
I). Several VAE models are trained on 3D chairs and celebA
datasets to validate the value of the variance vector, and we
use different dimensions of the latent variable and observe
the changes of variance variable as shown in Fig. 3.

It can be seen that the variance variable is related to
the nature of data and the dimension: The face samples on
celebA are more complex than chair samples, its representa-
tion needs to containmore features for reconstructing, and the
representation on the celebA requires a larger variance if the
dimensions are the same. Similarly, when the input data are
the same, and the dimension of the latent variable is reduced,
the encoder has to learn larger variance to increase the repre-
sentation space and reduce reconstruction error. Therefore,
we think that the excessive variance constraint in β-VAE is
the main reason of poor reconstruction.

4.2 mcVAE: improve the quality of disentanglement
and reconstruction

In β-VAE, mean constraint and variance constraint com-
press the representation space at the same time, squeezing
the information in the latent variable and losing a lot of
features. Fortunately, we find that moving the parameter
β of the KL term to mean constraint term is a feasible
way to improve β-VAE’s poor reconstruction while learn-
ing a higher degree of disentanglement. We propose mean
constraint Auto-Encoding Variational (mcVAE), and mean
constraint is an additional regularization term constraining
the values of themean alone.According to the above assump-
tions, the KL divergence can be integrated analytically as
follows:

DKL (q(z|x)||p(z)) � −
∫

N (z; μ, σ 2) log N (z; 0, I)dz

+
∫

N (z; μ, σ 2) log N (z; μ, σ 2)dz

� −1

2

∑ (
1 + log(σ 2) − μ2 − σ 2

)

(2)

We can assume that the variance variable is an identity
matrix, the mean constraint term is:

Lmc �
∫

N (z; μ, I) log N (z; 0, I)dz

−
∫

N (z; μ, I) log N (z; μ, I)dz

� 1

2

∑ (
1 + log I − μ2 − I

)
(3)

Then the objective function of our mcVAE is:

L � Lr − DKL + βLmc (4)

where Lr � Eq(z|x)[log p(x |z)] denotes reconstruction error.
Similarly, if the variance constraint is used as a regularization
term,we can assume that themean is 0; the objective function
of variance constraint Variational Auto-Encoding is:

L � Lr − DKL + βLvc (5)

where Lvc � 1
2

∑(
1 + log(σ 2) − σ 2

)
is the variance con-

straint.
We are trying to explain why the mean constraint makes

better disentanglement than variance constraint andKL term.
Assuming the traversal of all dimensions is the space of repre-
sentations, the space learned byVAE is shown in Fig. 4a; now
we use orange circles and yellow circles to denote attribute
variations expressed in different dimensions. A direct mani-
festation of disentangled representation is that the change of
an attribute can be observed when traversing a dimension,
and we guess that the attribute variations of a dimension
are randomly distributed in the representation space without
disentangled constraint; we cannot observe the correspond-
ing feature changes when traversing a dimension. However,
effective disentanglement constraints help to explore seman-
tically attributes and limit their variations into meaningful
alignments during training.

As shown in Fig. 4b, mean constraint forces the varia-
tions of each attribute to appear in the traversal interval of
the corresponding dimension, which has little impact on rep-
resentation space and reconstruction quality. Even though
the KL divergence and variance constraint can rearrange
the attribute variations, over-squeezed representation space
would loss many features which leads to a decrease in gen-
erating quality and disentangling effect. It explains why our
mcVAE can learn more disentangled attributes with higher
reconstruction quality.
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Fig. 3 Variance variable with different dimensions on celebA (left) and 3D chairs (right)

Fig. 4 Learn disentangled representation by different framework

4.3 Analyze disentanglement through information
bottleneck andmutual information

Optimal disentangled representations [23] are created by
enforcing a factorized prior in perspective of information
bottleneck, and it states that there is a correlation between
disentanglement and information bottleneck. InfoGANmax-
imizes the mutual information between a small subset of the
latent variables and the input data, and it achieves a higher

degree of disentanglement than GAN. InfoVAE improves
the quality of the variational posterior by adding mutual
information term between the representation and the input
data. In this subsection, we attempt to explain the relation-
ship between disentanglement, information bottlenecks and
mutual information in the context of VAE.

Given the input data x, we want to compute a represen-
tation z that has some desirable properties given task y.
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Table 1 Disentanglement scores
of five truth factors by VP metric
on dSprites dataset

Model Shape Scale Orientation Position X Position Y

β-VAE (β � 4) 23.45 17.34 15.83 14.32 14.16

vcVAE (β � 6) 18.76 25.18 15.98 17.33 17.36

mcVAE (β � 6) 28.17 23.87 20.84 18.12 17.93

The best values are highlighted in bold

Information bottleneck [34, 35] suggests that the repre-
sentation z should be a sufficient feature, and its relevant
information in the input variable about the target is mini-
mum. Formally, z is sufficient for the task y means that the
mutual information I (z, y) should be maximized, and z is
minimum for the input data x means that I (z, x) should be
minimized. The objective function of information bottleneck
is equivalent to solve the optimization problem:

L IB � I (z, y) − β I (x , z) (6)

whereβ is a positive constantmanaging the trade-off between
sufficiency andminimality. In the context ofVAE, a sufficient
representation is reflected in inference accuracy and recon-
struction fidelity [36]. Therefore, I (z, y) need to be replaced
by a reconstruction error, and I (z, x) is used to constrain the
reconstruction as an additional regularization term. Now the
objective function is:

L � Eq(z|x)[log p(x |z)] − β I (x ; z) (7)

We can find that the constraint from the information bot-
tleneck is a mutual information term. However, I (z, x) is
difficult to compute due to the joint probability distribution
p(z, x). Variational inference is an elegant method to esti-
mate it while constructing a variational bound, and I (z, x)
can be seen as the uncertainty in x given z in information
theory:

I (z, x) � H (z) − H (z|x)
� −

∫

p(z) log p(z)dz

+
∫ ∫

p(x , z) log p(z|x)dzdx (8)

where H (·) denotes the Shannon entropy, and H (x |z) is con-
ditional entropy. Let q(z) be a variational approximation to
p(z):

∫

p(z) log p(z)dz ≈ KL(p(z)||q(z)) ≥ 0

⇒
∫

p(z) log p(z)dz ≥
∫

p(z) log q(z)dz (9)

Then, we can get the variational bound:

∫

p(z) log p(z)dz ≈ KL(p(z)||q(z)) ≥ 0

⇒
∫

p(z) log p(z)dz ≥
∫

p(z) log q(z)dz (10)

Now the objective function of themarginal likelihoodwith
mutual information or information bottleneck constraint is:

L � Eq(z|x)[log p(x |z)] − βDKL(p(z|x)||q(z)) (11)

We can find Eq. (11) is the same as β-VAE, and it proves
that there is an approximate equivalence between the infor-
mation bottleneck (mutual information constraint) and the
KL divergence term. Increasing theweight β ofmutual infor-
mation I (z, x) can improve the degree of disentanglement;
it is an explanation of the objective function of β-VAE and
provides a theoretical source. Stronger mutual information
constraint limits model capacity, it is a restriction on the rep-
resentation that forces the model to infer in a narrow space,
and it is similar to our analysis of poor reconstruction.

5 Experimental results

We perform a series of quantitative and qualitative experi-
ments, showing that mcVAE can achieve higher disentangle-
ment scores compared to some baselines, while leading to
lower reconstruction error and sharper reconstructions.

5.1 Disentanglement scores

We analyze the disentangling performance of β-VAE,
mcVAE and vcVAE on dSprites [37]. The dSprites dataset is
designed for disentanglement testing, and it contains 737,280
binary 64× 64 images of 2D shapes with 5 ground truth fac-
tors: shape [4], scale [11], orientation [40], position X [5]
and position Y [5]. We perform quantitative evaluations with
5 factors as shown in Table 1.

We see that our mcVAE gives much better disentangle-
ment scores than β-VAE on all factors, 4 out of 5 factors
have higher scores than vcVAE. This experiment demon-
strates that our mean constraint creates more disentangled
representations than KL divergence and variance constraint.
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Fig. 5 Disentangled scores of
five truth factors measured by VP
metric

Then, we would like to see how the β affects different mod-
eling algorithms, and we train three models using a range of
values [1, 15]. Each truth factor measured by VP metric is
shown in Fig. 5.

The best disentanglement scores for mcVAE are notice-
ably better than β-VAE and vcVAE on most factors. While
increasing β often leads to the scores of each factor to
increase and then decrease, the trend of the curve is the same
as the classifier-based metric [9] andMIGmetric [28]. When
the value of β in mcVAE is 6, the scores of all truth factors
can achievemaximumvalues, and β-VAE achieves themaxi-
mumwhen theβ is 3 or 4.However, the scores ofmost factors
in vcVAE are low and inconsistent for different truth factors,

confirming that the variance constraint has little effect on
disentanglement learning. For example, when we use vcVAE
framework to learn scale factor, the corresponding disentan-
glement scores vary greatly with increasing β, but the score
remains constant on position Y factor.

In Fig. 6, we compare the above three methods and β-
TCVAE by a classifier-based metric and MIG metric. Due to
the poor stability of the original classifier-based metric [9],
we choose the modified metric proposed by [19]. We can see
that mcVAE and β-TCVAE give much better disentangled
scores than β-VAE and vcVAE on bothmetrics, and the trend
of scores is consistent with our VP metric which illustrates
the consistency of these metrics.
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Fig. 6 Disentangled scores of five truth factors measured by VP metric

However, our disentanglement metric is advantageous
than classifier-basedmetric andMIGmetric. VPmetric com-
putes disentanglement scores for each factor individually,
and we can see that mcVAE is capable of finding shape,
orientation, position X and position Y, but struggle to disen-
tangle scale compared to vcVAE. Each model has different
disentanglement abilities for different truth factors, andmea-
suring the scores of each factor separately are beneficial to
compare disentangling algorithms.

5.2 Disentanglement and reconstruction trade-off

The objective function of mcVAE is a lower bound on the
evidence lower bound, and the hyperparameter β is used
to trade-off the reconstruction and disentanglement, and we
would like to see how the choice of β affects these learning
algorithms. The training results using a range of values on
dSprites dataset are illustrated in Fig. 7.

Fig. 7 Reconstruction losses of four methods

We find that both mcVAE and vcVAE can provide a better
trade-off between reconstruction and disentanglement than
β-VAE and β-TCVAE. With higher values of β, the KL
constraint imposing on the mean and variance variables in
β-VAE is too strong to learn enough usefulness of the repre-
sentation, the reconstruction errors have risen dramatically
which always leads to blurry and homogeneous reconstruc-
tions. In contrast, the reconstruction errors of our methods
have a gentle upward trend with increasing β, constraining
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Fig. 8 Qualitative results
comparing reconstruction and
disentangling performance on
dSprites

the mean vector or variance vector individually can adjust
the other vector automatically during training. For instance,
the values of the mean vector would decrease if the weight
of the mean constraint increases, and our algorithm tends to
increase the variance slightly to ensure representation space;
it guarantees that the representations obtain more sufficient
features to complete the reconstruction task.

Comprehensive comparison of Figs. 5, 6, and 7, we see
that our mcVAE gives much better disentanglement scores
than β-VAE while barely sacrificing reconstruction error,
and it shows that the disentangling and reconstructing effect
of adding the mean constraint term to the VAE objective.
Compared with TCVAE, our method demonstrates compa-
rable disentanglement performance and better reconstruction
capability.

5.3 Qualitative comparisons

We examined qualitatively the representations and dis-
entangling performance learned by our mcVAE, β-VAE
and vcVAE on datasets of dSprites, 3D chairs and
celebA.dSprites: Fig. 8 shows reconstruction results and
traversals in latent variables learned by β-VAE, mcVAE and
vcVAE, the traversal ranges are [− 3, 3], [− 2,2] and [−
5,5], respectively. From Fig. 8a, we see that β-VAE has
blurry reconstructions which are unable to recurrence shapes
other than a circle, it is because that stronger constraint from
KLdivergence severely compresses the representation space,
leading to the loss of the ability to reconstruct other shapes.

In contrast, mcVAE is sensitive to subtle details, such as ori-
entation of the first column and shape of the second column.

In Fig. 8b, β-VAE has shown to be capable of learning
three truth factors: orientation, position X and position Y,
these factors are entangled with each other. (e.g., orientation
is entangled with position Y), vcVAE learns four factors that
are entangled and damaged, mcVAE can learn all the truth
factorswith clear outlines. Furthermore, we find that learning
positionX and positionY seem to bemore difficult than other
factors in the three models, it conforms that position X and
position Y have lower VP scores in Fig. 5.

3DChairs: Fig. 9a shows the reconstruction results of three
models. The reconstructions of β-VAE are blurry, many of
which are wrong, such as the leg style in the second col-
umn. In contrast, the reconstructions of mcVAE recovered
more details than β-VAE and vcVAE. For instance, in the
first column, images from VAE and vcVAE have the wrong
azimuth, but the reconstruction of mcVAE is almost the same
as that of the input samples. Disentangling performance of
three models by manipulating latent variables is shown in
Fig. 9b. β-VAE traversal is over the [− 2, 2] range which can
learn three attributes, but some factors do not seem to be con-
sistent for all inputs such as the leg style. Our mcVAE (the
traversal range is [− 1, 1]) can learn more attributes than β-
VAE and vcVAE (the traversal range is [− 5, 5]) with sharper
images, and it can be proved that mean constraint is capable
of learning sensible factors of variation.
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Fig. 9 Qualitative results comparing reconstruction and disentangling performance on 3D chairs

CelebA: Comparing the reconstruction results of the three
datasets in Fig. 10a, we see that the reconstruction of β-
VAE has stronger homogeneity if the dataset is complex.
The extremely compressed representation space loses most
features, resulting in all reconstructed samples being very

similar. For example, the third input image and its recon-
struction have completely different characteristics, whether
it is angle, gender or expression. Although it learns some dis-
entangled attributes, these attributes do no correlation with
the input sample; we can regard it as invalid disentanglement.
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Fig. 10 Qualitative results comparing reconstruction and disentangling performance on celebA dataset
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Fig. 10 continued

Figure 10b shows that 4 attributes are discovered by three
VAE frameworks without supervision; the same original
faces inFig. 10a are tested for three kinds ofVAEmodels. The
disadvantage ofβ-VAE is that the traversal is ambiguous, and
all factors are entangled with nuances, vcVAE learns only 3
attributes, and the changes of the traversal are exaggerated
andunreal. In contrast, ourmcVAEshowsbetter disentangled
and reconstruction performance thanβ-VAE and vcVAE. For
instance, in azimuth, the right column images generated byβ-
VAE are fuzzy and disturbed by noise seriously; the images
generated by vcVAE are blurry, and most reconstructions
haveminor changes about azimuth; in contrast, all the images
from mcVAE keep a higher degree of disentanglement and
reconstruction quality, the azimuth in the reconstructed sam-
ple is disentangled with other factor.

In β-VAE, the bang is always entangled with skin color
and noise, other features like the outline and size of the face
also change significantly, and the lower degree of disentan-
glement is seen in smile and hair attributes. The changes
of bang generated by vcVAE are inauthentic and entangled
with many factors such as gender and azimuth. However,
the reconstructions of mcVAE are clearer than β-VAE and
vcVAE, and only the shape of bang changes when manipu-
lating latent variables. Among other attributes, mcVAE also
has better disentanglement performance than other methods.

In addition, mcVAE can generate rare samples includ-
ing face width, gender, hue and skin color as depicted in
Fig. 10c, showing the ability to meaningful generalization
and extrapolation. Noting that each attribute has a different
degree of influence on the image. For example, when we

manipulate latent variables of skin color, the overall struc-
ture of the image changes such as the outline of the face and
the shape of the hair, some details such as the mustache when
transforming from female to male. In contrast, skin has little
effect on the image, and other attributes remain fixed.

6 Conclusion and future work

We introduce mcVAE, a novel method for a higher degree
of disentanglement than β-VAE with better reconstruction
quality. By analyzing the source of poor reconstruction in
KL divergence, we find that an additional mean constraint
term can help to achieve better disentanglement scores and
learn more properties than β-VAE. To quantitatively eval-
uate our approach, we identified the weaknesses of the
classifier-based metrics; then, we proposed an alternative
metric, named Variance Proportion Metric that is compre-
hensible and classifier-free without hyperparameters.

Learning disentanglement representations in a completely
unsupervised manner are still a difficult problem; some key
problems need to be solved urgently: The essence of dis-
entanglement is unknown, and all the existing metrics are
not suitable or applicable for the real-world applications due
to uncertain truth factors. We hope that the mean constraint
can bring new insights into the nature of disentanglement.
The low dimensional latent variable is a basic shortcom-
ing of VAE, which is hard to reconstruct clear samples
like GAN-based methods. Although we have improved the
reconstruction ability of the disentanglement representation
as much as possible, it is difficult for our method to learn
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the interpretable factors of complex data due to the limited
capacity of VAE model. Therefore, improving disentangled
performance with real world is also our expectation.

Declarations

Conflict of interest We declare that we have no financial and personal
relationshipswith other people or organizations that can inappropriately
influence ourwork, and there is no professional or other personal interest
of any nature or kind in any product, service and/or company that could
be construed as influencing the position presented in, or the review of,
the manuscript entitled “mcVAE: Disentangling by Mean Constraint”.

Data availability No new data were created during the study.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a
review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 35(8), 1798–1828 (2013)

2. Higgins, I., Amos, D., Pfau, D., et al.: Towards a Definition of
Disentangled Representations. arXiv:1812.02230 (2018)

3. Liu, X., Huang, H., Wang, W., et al.: Multi-view 3D shape style
transformation. Vis. Comput. 38(6), 669–684 (2021)

4. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational
information bottleneck. In: International Conference on Learning
Representations (2017)

5. Park, S., Hwang, S., Kim, D., et al.: Learning disentangled repre-
sentation for fair facial attribute classification via fairness-aware
information alignment. Proc. AAAI Conf. Artif. Intell. 35(3),
2403–2411 (2021)

6. Huang, X., Wang, M., Gong, M.: Fine-grained talking face gener-
ation with video reinterpretation. Vis. Comput. 37, 1–11 (2020)

7. Zhang, K.Y., Yao, T., Zhang, J., et al.: Face anti-spoofing via dis-
entangled representation learning. In: European Conference on
Computer Vision, pp. 641–657. Springer, Cham (2020)

8. Wang, G., Han, H., Shan, S., et al.: Cross-domain face presenta-
tion attack detection via multi-domain disentangled representation
learning. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 6678–6687 (2020)

9. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick,
M., Mohamed, S., Lerchner, A.: Beta-vae: learning basic visual
concepts with a constrained variational framework. In: 5th Inter-
national Conference on Learning Representations (2017)

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In:
International Conference on Learning Representations (2014)

11. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropa-
gation and approximate inference in deep generative models. In:
ICML (2014)

12. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I.,
Abbeel, P.: InfoGAN: interpretable representation learning by
information maximizing generative adversarial nets. In: NIPS
(2016)

13. Schmidhuber, J.: Learning factorial codes by predictability mini-
mization. Neural Comput. 4(6), 863–879 (1992)

14. Desjardins, G., Courville, A., Bengio, Y.: Disentangling factors of
variation via generative entangling. arXiv:1210.5474 (2012)

15. Tang, Y., Salakhutdinov, R., Hinton, G.: Tensor analyzers. In: Inter-
national Conference on Machine Learning. PMLR, pp. 163–171
(2013)

16. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adver-
sarial autoencoders. arXiv:1511.05644 (2015)

17. Makhzani, A., Frey, B.J.: Pixelgan autoencoders. In: Advances in
Neural Information Processing Systems (2017)

18. Brakel, P., Bengio, Y.: Learning independent features with adver-
sarial nets for non-linear ica. arXiv:1710.05050 (2017)

19. Kim, H., Mnih, A.: Disentangling by factorizing. In: International
Conference on Machine Learning. PMLR, pp. 2649–2658 (2018)

20. Lee, W., Kim, D., Hong, S., et al.: High-fidelity synthesis with dis-
entangled representation. In: European Conference on Computer
Vision, pp. 157–174. Springer, Cham (2020)

21. Jeon, I., et al.: Ib-gan: disengangled representation learning with
information bottleneck generative adversarial networks. In: 35th
AAAI Conference on Artificial Intelligence (2021)

22. Zhao, S., Song, J., Ermon, S.: Infovae: information maximizing
variational autoencoders. arXiv:1706.02262 (2017)

23. Achille, A., Soatto, S.: Information dropout: learning optimal rep-
resentations through noisy computation. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2018)

24. Hu, M.F., Liu, J.W.: Optimal representations of CapsNet by infor-
mation bottleneck. In: ICANN (2021)

25. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between
capsules. In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems
2017, December 4–9, 2017, Long Beach, pp. 3856–3866 (2017)

26. Mathieu, E., Rainforth, T., Siddharth, N., et al.: Disentangling
disentanglement in variational autoencoders. In: International Con-
ference on Machine Learning. PMLR, pp. 4402–4412 (2019)

27. Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to
carve up the variational evidence lower bound. In: Workshop in
Advances in Approximate Bayesian Inference, NIPS, vol. 1, No. 2
(2016)

28. Chen, R.T.Q., Li, X., Grosse, R.B., et al.: Isolating sources of dis-
entanglement in variational autoencoders. In: Advances in Neural
Information Processing Systems, vol. 31 (2018)

29. Gyawali, P., Li, Z., Knight, C., et al.: Improving disentangled
representation learning with the beta Bernoulli process. In: IEEE
International Conference on Data Mining, pp. 1078–1083 (2019)

30. Dupont, E.: Learning disentangled joint continuous and discrete
representations. In: Advances in Neural Information Processing
Systems, vol. 31 (2018)

31. Yang, H.H., Amari, S.-i: Adaptive online learning algorithms for
blind separation: maximum entropy and minimum mutual infor-
mation. Neural Comput. 9(7), 1457–1482 (1997)

32. Eastwood, C., Williams, C.K.: A framework for the quantitative
evaluation of disentangled representations. In: International Con-
ference on Learning Representations (2018)

33. Karaletsos, T., Belongie, S., Rätsch, G.: Bayesian representation
learning with oracle constraints. arXiv:1506.05011 (2015)

34. Tishby, N., Pereira, F.C.N., Bialek,W.: The information bottleneck
method. CoRR, vol. physics/0004057 (2000)

35. Tishby,N., Zaslavsky,N.:Deep learning and the information bottle-
neck principle. In: 2015 IEEE Information TheoryWorkshop, ITW
2015, Jerusalem, Israel, April 26–May 1, 2015.1em plus 0.5em
minus 0.4em, pp. 1–5 (2015)

36. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural
networks via information. CoRR, vol. abs/1703.00810 (2017)

37. Matthey, L., Higgins, I., Hassabis, D., Lerchner, A.: dsprites: dis-
entanglement testing sprites dataset. https://github.com/deepmind/
dsprites-dataset/ (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the

123

http://arxiv.org/abs/1812.02230
http://arxiv.org/abs/1210.5474
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1710.05050
http://arxiv.org/abs/1706.02262
http://arxiv.org/abs/1506.05011
https://github.com/deepmind/dsprites-dataset/


mcVAE: disentangling by mean constraint 1243

author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Ming-Fei Hu born in 1993. He
received the B.S. degree in 2015.
He is currently working toward
the Ph.D. degree in control theory
and control engineering with
the department of automation,
College of Information Science
and Engineering, China Univer-
sity of Petroleum, Beijing. His
research interests include deep
learning and pattern recognition
and intelligent Systems.

Ze-yu Liu born in 1993. He
received the B.S. degree from
Jilin University and M.S. degree
from the Institute of Software,
Chinese Academy of Sciences.
He is currently working toward
the Ph.D. degree in control theory
and control engineering with the
department of automation, Col-
lege of Information Science and
Engineering, China University of
Petroleum Beijing. His research
interests include deep learning,
pattern recognition and intelligent
Systems.

Jian-Wei Liu born in 1966. He
received the Ph.D. degree in
control theory and control engi-
neering from DongHua University
in 2006. He is now an associate
professor with the department
of automation, College of Infor-
mation Science and Engineering,
China University of petroleum,
Beijing. His research interests
include pattern recognition and
intelligent Systems, machine
learning, analysis, prediction and
control of complex nonlinear
system. In these areas, he has

published over 210 papers in international journals or conference
proceedings.

123


	mcVAE: disentangling by mean constraint
	Abstract
	1 Introduction
	2 Related work
	3 A novel metric for disentanglement
	4 Learning disentangled representations by mean constraint
	4.1 Source of poor reconstruction in β-VAE
	4.2 mcVAE: improve the quality of disentanglement and reconstruction
	4.3 Analyze disentanglement through information bottleneck and mutual information

	5 Experimental results
	5.1 Disentanglement scores
	5.2 Disentanglement and reconstruction trade-off
	5.3 Qualitative comparisons

	6 Conclusion and future work
	References




