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Abstract
Convolutional neural networks (CNNs) have been widely exploited in single image super-resolution (SISR) due to their
powerful feature representation and the end-to-end training paradigm. Recent CNN-based SISR methods employ attention
mechanism to enrich the feature representation and achieve notable performance. However, most of them use attention
mechanism to model channel-wise dependencies, and the global relations of image features are not fully explored, thus
hindering the discriminative learning capability. To amplify the feature representation, we propose a relation-consistency
graph convolutional network (RGCN) for high-quality image rendering. Specifically, we introduce a spatial graph attention
(SGA) to encode feature correlations in spatial dimension. Within SGA, the parameter-free Gram matrix is adopted to
construct the global dependencies of pixel features, which dynamically measure the pixel-wise spatial relation. Furthermore,
we embed a spatial pyramid pooling scheme into SGA to reduce the high complexity of correlation modeling between two
pixels. Such an operation efficiently constructs the spatial relations through pixel and region-pooled features. Moreover, we
propose a relation-consistency loss to retain the invariant of global relationship across all feature layers. The proposed loss
regularizes the consistency between the low-resolution input and its corresponding high-resolution output in terms of the
spatial relationships, enabling our network to learn a reasonable mapping and reconstruct more realistic images. Qualitative
and quantitative comparison against state-of-the-art SISR methods on benchmark datasets under various degradation models
demonstrate the superior performance of our RGCN.

Keywords Image super-resolution · Graph convolutional · Attention mechanism · Gram matrix

1 Introduction

Single image super-resolution (SISR) is a fundamental low-
level vision task, which aims to generate a high-resolution
(HR) image from its low-resolution (LR) counterparts. SISR
is an ill-posed problem as multiple HR solutions can map
to any LR inputs. Hence, plenty of image SR approaches
have been proposed to tackle this inverse issue, ranging from
early interpolation-based [1,2] to the latest deep learning-
based methods [3–11].
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Benefiting from the powerful feature representation and
end-to-end training paradigm of convolutional neural net-
works (CNNs), a flurry of CNN-based SISR methods have
been presented to learn a mapping from LR input image to
its corresponding HR output, obtaining impressive improve-
ment over the conventional approaches. As a pioneer work,
Dong et al. introduced CNN to the image SR field and pro-
posedSRCNN[3]with three convolutional layers. To explore
more high-level information, SAN [12] and HAN [13]
incorporated attention mechanism into SR methods to cap-
ture long-range features interdependencies, which achieved
noticeable improvement. Later, SwinIR [14] combined the
advantage of CNN and Transformer [15] to process large-
scale image and model the global relationship simultane-
ously, it obtained better performance with less parameters.
More advanced and complex SISRmethods [9,11,16–18] are
proposed to promote the quality of the reconstructed image.

Although remarkable performance has been achieved by
these image SR methods, they still have some limitations.
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Few of them have been able to draw on the spatial corre-
lations of image features to obtain contextual information,
resulting in unpleasant super-resolved outputs. In particu-
lar, the pixels of image features have different relations with
each other, exploration of these contextual relations is help-
ful for better discriminative learning. Tracing back to the
early classical self-example studies [19,20], they captured
self-similar patterns among the whole image to provide the
relations between pixels in a global view, showing the sig-
nificance of spatial relations in image SR field. Thus, how to
model the feature spatial dependencies is presented as a key
issue.

In this paper, we propose a novel relation-consistency
graph convolutional network (RGCN), exploiting spatial
information to enhance feature representation. To be spe-
cific, a spatial graph attention (SGA) is proposed for spatial
feature encoding,which dynamicallymodels the feature rela-
tions with awareness of global information.We first calculate
all-region similarities in the feature space and then update
features based on the global similarities in SGA. In this way,
each pixel feature is learned from the whole image represen-
tation through graph convolutional operations. We employ
the Grammatrix in this paper to construct global correlations
without introducing extra parameters. These correlations for-
mulate the adjacency matrix in SGA to update pixel-wise
features through all-region relationships. As shown in Fig. 1,
due to the similarity and regularity characteristics of the floor
texture, capturing the long-range information provides more
clues to recover finer image details. It is noteworthy that
modeling the spatial relations between two pixels usually
consumes heavily computational resources, especially when
the image size is large. We thereby embed a spatial pyramid
pooling scheme into SGA to account for this issue. The pyra-
mid pooling constructs the spatial relationships via pixels and
grid features, reducing the computational overhead.

In addition, [21] found that the commonly used pixel-wise
loss (e.g., L1 loss) tends to produce over-smoothed results
since it is oblivious to the semantic information of the image.
As the spatial relation is a natural and static characteristic,

BicubicGround Truth SRCNN

RDN RGCN(Ours)SGCN“img028” from Urban100(×3)

Fig. 1 Visual comparisons for scaling factor ×3 on “img_028” from
Urban100. Our proposed RGCN obtains better visual quality with
sharper edges compared with other state-of-the-art SISR methods

that is, the super-resolved SR image should share similar
semantic relations with its corresponding LR input image.
We hence introduce the relation-consistency loss to main-
tain the spatial relationships between low-level features and
high-level features. Specifically, we minimize the discrep-
ancy between adjacent matrices of the first and last feature
layers. It regularizes the model to retain consistent spatial
relations after image super-resolution. Overall, our network
learns a more reasonable mapping with the above designs for
reconstructing images with finer details.

Our main contributions can be summarized as follows:

• We propose a novel relation-consistency graph convolu-
tional network (RGCN) to enhance the learning ability
through contextual information modeling, thus recover-
ing images with finer details.

• We propose a spatial graph attention (SGA) to encode
feature spatial correlations. Within SGA, the adjacency
matrix is calculated by the Gram matrix without learn-
able parameters. Meanwhile, a spatial pyramid pooling
scheme is embedded into SGA to reduce computational
costs.

• We propose a simple yet effective loss term, namely
relation-consistency loss, to maintain the consistency of
spatial information between the LR input image and its
corresponding SR output.

• Extensive experiments on various degradation models
demonstrate the superiority of our RGCN in terms of
quantitative metrics and visual quality.

The rest of this paper is organized as follows. In Sect. 2,
we mainly review the related works about CNN-based SISR
methods and describe some relative approaches about atten-
tionmechanismandgraph convolutional networks. In Sect. 3,
we introduce our proposed SRnetwork in detail. To verify the
effectiveness of our method, the experimental comparisons
and evaluations are presented in Sect. 4. Finally, we conclude
our work in Sect. 5.

2 Related work

2.1 CNN-based SISRmethods

Recently, deep convolutional neural networks (CNNs) have
been extensively studied in various computer vision commu-
nities. The powerful representational ability and end-to-end
training paradigm of CNN make it widely used in the SISR
field. The pioneering work was done by Dong et al. who
proposed a shallow convolutional network (SRCNN) [3] to
predict the non-linear relationship between the interpolated
LR image and HR image, achieving considerable improve-
ment over the traditional methods. Later, Kim et al. designed

123



Relation-consistency graph convolutional network… 621

deeper networks VDSR [5] and DRCN [22] to capture more
high-level information based on residual learning [23] and
recursive learning. To control the number of model param-
eters and maintain persistent memory, Tai et al. introduced
DRRN [24]with a novel recursive block and further designed
MemNet [25] with memory blocks and dense connections.

For the described methods above, the LR images need to
be interpolated to coarse HR images with the desired size,
which inevitably increases the computational costs and pro-
duces side effects (e.g., noise amplification and blurring). To
overcome these drawbacks, post-upsampling architecture is
proposed and has soon become the mainstream framework
in image SR task. Lim et al. introduced a very deep and wide
network EDSR [26] by stacking simplified residual blocks
in which the unnecessary layers are removed. Similarly,
Zhang et al. proposed a residual dense network (RDN) [8]
to facilitate effective feature learning through a continuous
memory mechanism. Li et al. built SRFBN [6] that uti-
lizes recurrent neural network and feedback mechanism to
refine low-level information with high-level image details.
Vassilo et al. [27] incorporated multi-agent reinforcement
learning and proposed an ensemble GAN-based SR network
to increase the quality of reconstructed image. Fang et al. [18]
introduced an accurate and efficient soft-edge assisted net-
work, which employed the image prior knowledge into the
network for better image reconstruction. Furthermore, Niu et
al. [28] proposed CSN with an efficient channel segregation
block that attempts to enlarge the size of receptive fields to
capture informative information, thus promoting the quality
of super-resolved image.

Compared to these CNN-based methods limited to local
relations constraints, in this work, we adopt a spatial graph
attentionmechanism tomodel contextual information in spa-
tial dimension.

2.2 Attentionmechanism

Theattentionmechanismwas initially proposedbySutskever et
al. in machine translation [29] via giving different weights
to the input. Coupled with deep networks, attention mecha-
nism has gained popularity in a variety of high-level vision
tasks [30–32]. Hu et al. proposed a “squeeze-and-extraction”
(SE) [33] block to enhance the learning ability by modeling
the channel-wise inter-dependencies. Woo et al. introduced
a convolutional block attention module (CBAM) [34] which
captures the feature relations along the channel and spatial
dimension, respectively. Recent image SR studies have been
conducted using attentionmechanism and shown remarkable
performance gain. Zhang et al. integrated SEblock into resid-
ual learning and established a deeper network RCAN [35].
The channel-wise attention mechanism utilizes global aver-
age pooling to selectively highlight the channelmap.Hu et al.
presented a CSFM [36] network that combined channel-wise

and spatial attention to construct the feature dependencies to
enhance the quality of output HR images. Besides, Dai et al.
proposed the second-order attention network (SAN) [12] to
exploit more powerful feature expressions by using second-
order feature statistics. A recent SR approach HAN [13]
proposed a layer attention module to model the relation-
ships of features, thus enabling the network to produce the
high-quality image. Later, SwinIR [14] utilized several resid-
ual Swin Transformer blocks to extract deep features, which
obtained impressive performance with less parameters on
various low-level vision tasks. To reduce computation costs
while maintaining the reconstruction performance, Mei et
al. [11] combined sparse feature representation with nonlo-
cal to capture long-range dependencies.

Though the above attention-based SR methods attained
noticeable performance, they pay less attention to feature
spatial relations modeling. In our work, we aim at modeling
the contextual dependencies via graph convolutional opera-
tion.

2.3 Graph convolutional network

The concept of graph neural network (GNN) [37] was first
proposed by Gori et al. which well-processes the graph-
structured non-Euclidean data. The GNN collectively aggre-
gates the node features in a graph and properly embed the
graph in a new discriminative space. However, as for regular
Euclidean data like images and text, it is hard to apply GNNs
straightforwardly [38]. Therefore, defining a convolution-
like operation for regular structure data is a major challenge.
The graph convolutional networks (GCNs) provide a well-
solution to solve this problem. Bruna et al. [39] developed
the operation of “graph convolution” based on spectral prop-
erty, which convolved on the neighborhood of every graph
node and produces a node-level output, but led to expensive
computational costs. After that, a flurry of graph convolu-
tional studies has been presented. Kipf et al. [40] introduced
a fast approximation localized convolution on image classi-
fication, which not only simplified the convolution operation
but also alleviated the problem of overfitting. Li et al. [41]
designed a residual graph convolutional broad network for
emotion recognition, which extracts features and abstract
features via employing the GCN-based residual block. It
not only improves the performance of the network but also
extracts higher-level information. In addition, bease on the
attention mechanism, Wei et al. [42] constructed a cascade
framework between the graph convolutional layers via dense
connections, which further enhancing the graph representa-
tion capability.

With the property of graph convolution, we propose a spa-
tial graph attention mechanism to exploit global relations
of image features. Instead of directly modeling the pairwise
relationships of features,we further embed apyramidpooling
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scheme in graph convolutional operation, which effectively
reduces the computational resources.

3 Proposedmethod

In this section, we first introduce an overview of our pro-
posed network for image SR. We then describe the details of
the designed spatial graph attention and relation-consistency
loss, which are the core of our network.

3.1 Network architecture

The overall architecture of our relation-consistency graph
convolutional network (RGCN) is shown in Fig. 2 given a
low-resolution (LR) image ILR and its corresponding super-
resolved (SR) image ISR as the input and output of our
RGCN. As explored in [12,35], we first use a convolutional
layer to extract shallow feature F0 from the initial LR input

F0 = HSF(ILR), (1)

where HSF(·) represents the convolution operation. F0 is
then served as an input for a series of attention-based fea-
ture refinement modules (AFRMs). Supposing we have N
stacked AFRMs, thus the output Fn of n-th AFRM is formu-
lated as

Fn = HAFRM(Fn−1), (2)

where HAFRM(·) stands for the function of AFRM. After
obtaining informative features with a set of AFRMs, global
feature fusion is further applied to extract global feature Fglo
by fusing features from all AFRMs

Fglo = HGFF (F1, · · · , FN ), (3)

whereHGFF(·) denotes the convolutional layer with the ker-
nel size of 1×1 to aggregate features from all modules. We
utilize global residual learning before conducting upscale
operation by

FDF = F0 + Fglo, (4)

where FDF denotes the obtained deep feature. Finally, the
feature FLR is upscaled via the upsampler to generate SR
image ISR. Inspired by [43], we adopt the sub-pixel layer
with one convolutional layer followed

ISR = H↑(FLR), (5)

where H↑(·) stands for the operation of upsampler.

3.2 Attention-based feature refinement module

As shown in Fig. 2b, the attention-based feature refinement
module (AFRM) contains two parts: an Inception-style fea-
ture extraction, and a two-stream attention.

3.2.1 Inception-style feature extraction

Several studies [44] have demonstrated that multi-scale fea-
tures carry rich information, which are beneficial for accurate
SR image reconstruction. To this end, we employ the well-
known Inceptionmodule [45] into ourAFRMas amulti-scale
feature extractor, and simplify its structure by remaining
two different convolution kernel sizes (i.e., 3×3 and 5×5).
Besides, we leverage dense connections in feature extraction
to reuse the features from preceding layers.

3.2.2 Two-stream attention

As shown in Fig. 2b, the two-stream attention is constructed
by two-paralleled attention, aiming at modeling the feature
dependencies in channel and spatial dimensions, respec-
tively. Within the two-stream attention, we separately learn
the feature relations between channels (i.e., channel-wise
attention) and pixels (i.e., spatial graph attention) and then
aggregate their corresponding outputs to strengthen the fea-
ture representation. Specifically, the channel-wise attention
(CA) explores the inter-dependencies across feature chan-
nels by [33] to adaptively rescale each channel-wise feature,
while the spatial graph attention (SGA) dynamically models
the feature relations with awareness of global information. In
order to take full utilization of the learned information from
channel and spatial dimensions, we place CA and SGA in a
parallel manner. Moreover, we investigate different arrange-
ments (i.e., parallel and sequential) of CAandSGA in Sect. 4,
which experimentally found that parallel arrangement gives
a better result than doing in a sequential way.

3.3 Spatial graph attention

In recent CNN-based SISR studies [4–6,26], most of them
mainly focus on deeper or wider network architectural
design, and the feature dependencies in spatial dimension are
rarely explored, thus limiting the learning ability of the net-
work. Thereby, a spatial graph attention (SGA) is designed
to build the spatial relationships of the local features, which
also can be regarded as a complementary to the channel-
wise attention. The SGA encodes the feature spatial relations
according to the semantic associations, enhancing the dis-
criminative representation for better image generation.

Given an input feature Fe
n ∈ R

C×H×W , which hasC chan-
nels with size of H ×W . As shown in the green rectangle of
Fig. 2b, the proposed SGA is composed by a graph convolu-
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Fig. 2 a Architecture of
relation-consistency graph
convolutional network (RGCN).
b The attention-based feature
refinement module (AFRM)
contains two parts: feature
extraction and two-stream
attention. Within two-stream
attention, the proposed spatial
graph attention (SGA) focuses
on modeling the relationships
between any two pixels, which
is the core of our proposed
network
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(a) Relation-consistency graph convolutional network (RGCN)

(b) Attention-based feature refinement module (AFRM)

Spatial graph attention (SGA)

tional layer and aBatchNorm and aReLU activation function
are followed. A matrix multiplication is further performed to
obtain the output Fs

n

Fs
n = Fe

n [σ(BN (HGC(Fe
n )))], (6)

where σ(·), BN (·) and HGC (·) represent the function of
ReLU, BatchNorm and graph convolutional layer, respec-
tively.

3.3.1 Graph convolutional layer

Among image SR task, the standard convolution operation
extracts features over the local areas via a predefined filter
size (e.g., typically 3×3), while neglecting the global infor-
mation of features. On the other hand, the graph convolution
has been widely employed in recent works [40,42,46], which
has a capability to capture the global similarity between
image pixels at arbitrary areas. We thereby combine these
two types of convolution and propose a graph convolutional
layer (GCLayer) for feature correlations learning, as shown
in Fig. 3a.

Unlike the classical convolution that operates on local
Euclidean structure, graph convolution tries to learn a func-
tionHGC (·, ·) by defining edges E among nodesV in a global
graph G. Given a local feature Fe

n ∈ R
C×H×W and an adja-

cency matrix A ∈ R
HW×HW that is calculated from the

shallow feature F0. We first feed feature Fe
n into a standard

convolutional layer to generate feature Fcon . Thenwe reshape
the feature Fe

n toR
C×HW . The graph convolution operation is

performed on the reshaped feature Fe
n and adjacency matrix
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Fig. 3 Details of a graph convolutional layer and b graph convolu-
tion with an embedded pyramid pooling scheme. Compared to (a),
the pyramid pooling is added before graph convolutional operation
and adjacency matrix generation process, which decreases the com-
putational complexity of matrix multiplication without sacrificing the
overall performance

A, a new feature Fgra is thus acquired by

Fgra = HGC (Fe
n , A) = ÂFe

n W , (7)

with

Â = D̃− 1
2 ÃD̃− 1

2 , (8)

where Ã = A + In is the adjacency matrix A of graph G
with self loops. In is an identity matrix, and D̃ is a diagonal
matrix where the element is the sum of Ã in each row. W is
a layer-specific trainable weight parameter.

3.3.2 Adjacency matrix

The relationship between any two pixels is characterized by
the adjacency matrix A, thus enabling the generated fea-
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ture Fgra containing the information in nonlocal areas. It
is shown in [40] that GCN-based methods propagate infor-
mation based on the adjacency matrix, which describes the
correlations between different nodes. As a result, construct-
ing a proper adjacency matrix is critical for GCN-based
methods. Rather than using complicated nonlocal [47] to
model the global relations of features, we prefer to gener-
ate A via the Gram matrix. The Gram matrix is commonly
used in image neural style transfer fields to capture the sum-
mary statistics of an entire image, which can be treated as
second-order statistics [48]. In our work, we calculate the
Grammatrix from shallow feature F0 as our adjacencymatrix

A =< FT
l , Fl >, (9)

where A is the inner product between the feature F and its
transposed feature FT in the l-th layer. We here set l = 0,
which represents the shallow feature F0.

Several advantages can be brought under the above oper-
ations: 1) The Gram matrix is calculated with free learnable
parameters so that it is easy to calculate and reproduce. 2)
The adjacency matrix can be acquired from the arbitrary size
of an input image. 3) Sharing the adjacency matrix among
the network can decrease the computational burden without
a performance drop, as validated in Sect. 4.

3.3.3 Pyramid pooling scheme

Since the graph convolution models the relationship between
any two pixels, it requires high GPUmemory occupation and
expensive computational costs, especially when the image
size is large. Considering this, we are concerned about
whether there is an efficient way to solve this issue without
sacrificing performance. By observing the computing pro-
cess of graph convolution, we could clearly see that Eq. (7)
has twomatrix multiplications.More importantly, the former
matrix multiplication dominates the computation, in which
the computational complexity is O(CH2W 2). We draw a
conclusion that the key point of reducing the computational
overhead should be on changing H and W . We thus embed
a pyramid pooling scheme into graph convolutional layer.

The detailed process of pyramid pooling in a given exam-
ple feature is depicted in Fig. 4, in which several pooling
layers are parallel-placed to produce the pooled features with
varied sizes of 1×1, 3×3, 6×6 and 8×8. The features with
8×8 are omitted for brevity.

As shown in Fig. 3b, the pyramid pooling is added before
the adjacency matrix A and features Fe

n , respectively. To be
specific, the shallow feature F0 first through the pyramid
pooling and generate the pooled feature F0,p with the size of
C×S, in which S is the total number of the sampled points in
pyramid pooling (i.e., S = 12+32+62+82 = 110). The shal-
low feature F0 is then reshaped and transposed to R

HW×C .

Input X

H

W Pooling1

Pooling3

Pooling6

1×1

3×3

6×6

Flatten

Concat

Fig. 4 Detailed process of pyramid pooling scheme. The “Pooling1,”
“Pooling3” and “Pooling6” represent the size of pooling layer. In our
model,we set pooling size⊆{1, 3, 6, 8}. The pooling size of 8 is omitted
for brevity

The Eq. (9) is performed to calculate the adjacency matrix
Ap ∈ R

HW×S . Similarly, the feature Fe
n is feed to the pyra-

mid pooling, obtaining the pooled result Fe
n,p ∈ R

S×HW .
Thus, the formulation of Eq. (7) is rewritten as

Pgra = HGC (Fe
n,p, Ap) = Â pF

e
n,pW , (10)

where the output Pgra ∈ R
C×H×W is kept the same size as

Fgra in Eq. (7).
By virtue of the spatial pyramid pooling, the compu-

tational complexity of the former matrix multiplication in
Eq. (7) is decreased to O(CHWS), lower than the origi-
nal O(CH2W 2). In addition to reducing the computations,
the spatial pyramid pooling is also parameter-free. Conse-
quently, the pyramid pooling efficiently lowers the com-
putational overhead and maintains the overall performance
simultaneously, as demonstrated in Sect. 4.

3.4 Relation-consistency loss

The pixel-wise loss (e.g., L1 loss) is generally used in
most CNN-based SISR methods, which aims to minimize
the distance between the super-resolved result ISR and the
ground-truth image IH R . Although such loss assists the net-
works to gain higher performance, it only measures the
discrepancy on an entire image at pixel level, and the dif-
ference in semantic level is rarely considered, thus resulting
in poor visual-quality on image details.

Moreover, as the SISR is an image-to-image task, the
semantic relation between input LR image and reconstructed
SR image is similar. Ideally, according to the spatially
invariant of the global relations, the obtained features from
different levels share the similar contextual relations in the
training process. For example, when super-resolving a “face”
image, the features from one “eye” should be highly related
to the other one and be less correlated with the features from
the “nose.” This kind of feature dependency does not easily
change and is independent of distance, since it is an inherent
characteristic of the image, which can be regarded as prior
knowledge of the image. Besides modeling the spatial cor-
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relation by SGA, the feature relation coherence throughout
the entire network also needs to be considered for gener-
ating visual pleasing images. To achieve this, we propose
a relation-consistency loss to enhance the visual quality by
minimizing the discrepancy in semantic level.

As described previously in Sect. 3.3, the Gram matrix
in SGA captures global statistics across the entire image.
We thereby implement the relation-consistency loss by
Gram matrix. The proposed relation-consistency loss tries
to encourage the spatial relations to be consistent among
different layers, the selection of features from a specific
layer thus seems to be a key point. In Table 1, the compar-
ative experiments are conducted that generate Gram matrix
from various layers of the network. It can be seen from the
experimental results that there is no apparent improvement
in frequently calculating Gram matrix from different layers
compared to the Gram matrix only generated from low-level
feature. This phenomenon indicates the property of contex-
tual relation consistency in an image, which also exactly
validates themotivation of our proposed relation-consistency
loss. Based on the experimental findings, we utilize the
relation-consistency loss to give a constraint between low-
level feature and high-level feature, the loss function can be
formally given as

Lrelation =
∥
∥
∥A0

p − AN
p

∥
∥
∥
1
, (11)

where A0
p and AN

p denote the corresponding adjacency
matrix of feature F0 and FN , respectively.

As a consequence, the relation-consistency loss encour-
ages the network to reconstruct a more realistic image by
maintaining the contextual relation consistency between low-
level feature and high-level feature.

3.5 Implementation details

3.5.1 Full objective

Similar to [6,8,35], we employ L1 loss to optimize the pro-
posed network via minimizing the difference between the
reconstructed image ISR and the ground truth image IHR.
Given a training dataset with M image pairs {I LRm , I H R

m }Mi=1,
the reconstruction loss is represented as

Lrec = ∥
∥HRGCN(ImLR; θ) − ImHR

∥
∥
1 , (12)

whereHRGCN(·) is the function of our proposed RGCN. The
total loss function is expressed by

Ltotal = Lrec + λLrelation. (13)

whereλ is the hyperparameter to control theweights of differ-
ent losses. The performance of RGCN with different losses

is compared in Sect. 4, which verifies the importance of each
loss.

3.5.2 Training details

We set the AFRMM number as N = 20 in our proposed SR
network, and each AFRM has 64 filters (i.e., C=64). Within
AFRM, we use 3×3 and 5×5 convolutional layers in feature
extraction. For channel-wise attention in two-stream atten-
tion, we adopt 1×1 convolutional layer with reduction ratio
r = 16, which is as similar as [35]. And the hyperparameter
λ in the loss function is set as 1, this setting brings a more
stable training process and better results.

4 Experiments

4.1 Settings

4.1.1 Datasets andmetrics

Timofte [49] has released a high-quality dataset DIV2K
for image restoration tasks, which contains 800 training
images, 100 validation images and 100 test images. Follow-
ing [6,8,12], we use DIV2K dataset as our training set. For
testing stage, we evaluate our SR model on five benchmark
datasets: Set5 [50], Set14 [51] BSD100 [52], Urban100 [20],
and Manga109 [53]. All the SR results are evaluated with
peak signal to noise ratio (PSNR) and the structural similar-
ity index (SSIM) [54] metrics on Y channel (i.e., luminance)
of transformed YCbCr space.

4.1.2 Degradation models

To fully demonstrate the effectiveness of our proposed
RGCN, three degradation models are used to simulate LR
images. The first one is bicubic downsampling by adopting
theMatlab function imresizewith the option bicubic (denoted
asBI for short). Similar to [8,55], the second one is to blurHR
image by Gaussian kernel size 7×7 with standard deviation
1.6. The blurred image is then downsampled with a scaling
factor ×3 (denoted as BD for short). We finally produce LR
images in a more challenging way. The HR image is first
downscaled by bicubic with scaling factor ×3, and then we
add Gaussian noise with noise level 30 on the downsampled
HR image (denoted as DN for short).

4.1.3 Training details

During training, data augmentation is performed by flipping
horizontally and rotating 90◦, 180◦ and 270◦. In each batch,
16 LR image patches with size of 48×48 are extracted as
inputs for imageSR, and1,000 iterations of back-propagation
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Table 1 The impact of
adjacency matrix A computed
from different locations

Description Inference time(s) #Param(M) PSNR(dB)

A from each lLayer 0.9042 14.5 32.38

A from feature F0 0.7820 14.5 32.41

The results are reported on Set5 with scaling factor ×4

Fig. 5 Convergence analysis of RGCN with different number (N ) of
attention-based feature refinement modules (AFRM). The performance
curves are plotted on DIV2K with scaling factor ×4 in 200 epochs

constitute an epoch. Our model is trained by AdamW opti-
mizer [56] with β1 = 0.9, β2 = 0.999, and ε = 10−8. The
cosine learning rate scheduler [57] is adopted by initializing
the learning rate as 10−4. We use the PyTorch framework to
implement our model with Titan V GPUs.

4.2 Ablation study

In this section, we investigate the effectiveness of different
components in our proposed method, including attention-
based feature refinement module (AFRM), pyramid pooling
scheme and relation-consistency loss. All the comparative
experiments are trained on DIV2K with scaling factor ×4 in
200 epochs and further tested on Set5.

4.2.1 Number of N

We first investigate the basic parameter in our network: the
number of AFRM (denoted as N for short), which is directly
related to the model size and overall performance. For a clar-
ity comparison, the performance of SRCNN [3] is set as a
reference. The convergence curves of AFRM with different
numbers of N are presented in Fig. 5. From the results, we
observe that RGCN with larger N (i.e., N=20 and N=30)
obtain better performance, mainly because the network goes
deeper with more AFRMs stacking. Instead, RGCN with
smaller N (i.e., N=5 and N=10) suffers some performance
drop but still outperforms SRCNN. More importantly, when

Table 2 The impact of different scale of pooling in SGA on Set5 with
scaling factor ×4

Scale FLOPs(G) Memory(MB) PSNR(dB)

Baseline 49.75 8.682 32.43

Pooling (1) 18.50 5.987 32.32

Pooling (3) 18.62 5.987 32.35

Pooling (6) 19.03 5.987 32.36

Pooling (8) 19.44 5.992 32.39

Pooling (24) 26.93 6.034 32.38

Pooling (1368) 32.69 6.047 32.41

increasing the number of N from 20 to 30, the capacity of the
network goes larger (14.5M → 23.4M) without an obvious
performance improvement. To better trade-off performance
and model size, we thus adopt N=20 as our final RGCN
model.

4.2.2 Graph convolutional layer

In order to evaluate the efficiency of graph convolutional
layer in SGA, we conduct some comparative experiments,
including the impact of sharing adjacency matrix and the
embedded pyramid pooling scheme, respectively.

AdjacencyMatrix: In our network, the adjacency matrix
in graph convolution is calculated from the low-level fea-
ture F0 and is shared across the whole network. To verify
the efficacy of these strategies, we perform a comparative
experiment on computing adjacency matrix from different
locations. Two networks are introduced: calculate the adja-
cencymatrix from feature F0 and fromeach output ofAFRM,
respectively. Table 1 shows that computing the adjacency
matrix from each output of AFRM is time-consuming with
no obvious performance gain. We can draw a conclusion that
frequently updating the adjacency matrix does not lead to
higher performance, instead, reusing the adjacency matrix
performs better. This intriguing finding could be due to
the contextual relation of image is consistent and spatially
invariant, which exactly verifies the motivation of our pro-
posed relation-consistency loss in our RGCN. Considering
the balance between efficacy and efficiency, we finally opt
to calculate the adjacency matrix from a shallow feature and
share it across the whole network to ensure the consistency
of feature spatial information.
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Table 3 Comparative results achieved by our RGCN trained with dif-
ferent losses for scaling factor ×4 in 200 epochs

Method Lrec Lrelation PSNR(dB)

RGCN � 32.28

� � 32.41 (+0.13)

Pyramid pooling scheme: As discussed in Sect. 3.3, the
adoption of pyramid pooling aims to reduce the computa-
tional overhead from the vanilla graph convolution. We thus
give a quantitative comparison to validate its contribution via
the following metrics: FLOPs,1GPUmemory usage2 and the
performance in PSNR, which are evaluated on Set5 with a
48×48 input image patch. As shown in Table 2, we compare
several settings of pyramid pooling, including pooling with
one single scale andmultiple scales. The graph convolutional
layer without pooling is set as a baseline.

In detail, when using single scale pooling in SGA (e.g.,
pooling(3)), the FLOPs and GPU memory occupation are
reduced with 31.25G and 2,695MB.When we further utilize
multiple sizes of pooling (e.g., pooling(1368)), we obtain
comparative performance with baseline, and decrease the
computational overhead and GPU memory simultaneously.
Moreover, when adopting a large size of pooling (e.g.,
pooling(24)), although the computational resources are effec-
tively reduced, the performance getsworse. Thus, four-scales
pooling is selected into SGA for decreasing computational
resources.

4.2.3 Relation-consistency loss

Following, we conduct ablation experiments to verify the
effectiveness of the proposed relation-consistency loss for
training our RGCN. It can be observed from Table 3 that
the PSNR values of our RGCN decreases from 32.41dB
to 32.28dB if the network is trained without relation-
consistency loss. This is mainly because, with reconstruction
loss, the network only learns to optimize the difference
between the generated output and the ground truth in pixel
level, while neglecting the relations correspondence of high-
level and low-level features in a global view. When further
employing relation-consistency loss into our network, better
performance is achieved with 0.13dB increased.

1 We evaluate the theoretical amount ofmultiply-add operations, which
referred to the work [58].
2 We evaluate the GPU memory usage on Titan V with PyTorch 1.2.0
and CUDA 10.1.

Table 4 Comparative results of different arrangement of CA and SGA
on Set5 with an upscaling factor ×4

Arrangement Sequential Parallel
CA-SGA SGA-CA SGA+CA

PSNR(dB) 32.37 32.38 32.41

Param(M) 14.3 14.3 14.5

Table 5 Comparisons with other spatial attention on Set5 with scaling
factor ×4

Component PSNR(dB) #Param(M)

CA (Baseline) 32.35 13.8

+ Nonlocal [47] 32.36 14.2

+ CBAM [34] 32.38 14.1

+ SGA 32.41 14.5

4.2.4 Stream of CA and SGA

Since CA and SGA have different functions in our network,
the placement of them affects the overall performance. We
here explore the influence of different arrangements (i.e., par-
allel and sequential) between CA and SGA. As shown in
Table 4, it is clear that the parallel arrangement of CA and
SGA infers better representations (PSNR = 32.41dB) than
doing sequential and brings only 0.2Mparameters increased,
which is brought by the 1×1 convolutional layer for the fea-
ture fusion. Therefore, utilizing both CA and SGA is crucial
while the best-arranging strategy further pushes the overall
performance.

4.2.5 Comparisons with other spatial attention methods

In order to evaluate our spatial graph attention (SGA) effec-
tively, we conduct comparative experiments with two related
attention methods: nonlocal [47] and spatial attention in
CBAM [34]. These two attentionmethods are used to replace
our SGA, and the network only contains the channel-wise
attention set as the baseline. Training and testing settings are
kept the same as our RGCN for a fair comparison. The results
are listed in Table 5. One can clearly see that all methods
with spatial attention achieve higher performance over the
baseline, which indicates their effectiveness for image SR.
Compared with equipping the two well-known spatial atten-
tion methods (+ Nonlocal and + CBAM), the performance
of our network (+ SGA) is increased by 0.05dB and 0.03dB
with 0.3M and 0.4M extra parameters.

4.2.6 Visualization of local attribution maps

Recently, Gu et al. incorporated attribution analysis into
image SRmethods and proposed a novel attribution approach

123



628 Y. Yang et al.

Fig. 6 Visualization results of
the LAM on different SR
approaches with scaling factor
×4. The LAM illustrates the
contribution of each pixel in the
selected image patch (the red
box in HR image). The larger
the red area, the more pixels are
utilized in feature extraction

HR Image CARN EDSR RCAN SANESRGAN RGCN (Ours)

Table 6 Investigation of each
component in RGCN

Case index Baseline 1 2 3 4 5 6

FE � � � � � � �
CA � � �
SGA � � � �
GFF � � �
PSNR(dB) 32.28 32.34 32.36 32.32 32.38 32.39 32.41

We observe the best result (PSNR) on Set5 with scaling factor ×4 in 200 epochs

Table 7 Quantitative results with scaling factor ×2 on BI degradation model

Type Method Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CNN-based Bicubic ×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

SRCNN (2014) ×2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

VDSR (2016) ×2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750

EDSR (2017) ×2 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

RCAN (2018) ×2 38.27/0.9614 34.11/0.9216 32.41/0.9026 33.34/0.9385 39.43/0.9786

NLRN (2018) ×2 38.00/0.9603 33.46/0.9159 32.19/0.8992 31.81/0.9246 –/–

SRFBN(2019) ×2 38.11/0.9609 33.82/0.9196 32.29/0.9010 32.62/0.9328 39.08/0.9779

SAN (2019) ×2 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/0.9792

RDN (2020) ×2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780

USRNet (2020) ×2 37.77/0.9592 33.49/0.9156 32.10/0.8981 31.79/0.9255 38.37/0.9760

HAN (2020) ×2 38.27/0.9614 34.16/0.9217 32.41/0.9027 33.35/0.9385 39.46/0.9785

SRGAT (2021) ×2 38.20/0.9610 33.93/0.9201 32.34/0.9014 32.90/0.9359 39.30/0.9785

RGCN (Ours) ×2 38.30/0.9616 34.10/0.9213 32.44/0.9030 33.15/0.9377 39.38/0.9784

Transformer-based SCET (2022) ×2 38.06/0.9615 33.78/0.9198 32.24/0.9006 32.38/0.9299 39.86/0.9821

SwinIR (2021) ×2 38.35/0.9620 34.14/0.9215 32.44/0.9030 33.40/0.9393 39.60/0.9792

RGCN (Ours) ×2 38.30/0.9616 34.10/0.9213 32.44/0.9030 33.15/0.9377 39.38/0.9784

The best results are highlighted
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Table 8 Quantitative results with scaling factor ×3 on BI degradation model

Type Method Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CNN-based Bicubic ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN (2014) ×3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

VDSR (2016) ×3 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340

EDSR (2017) ×3 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

RCAN (2018) ×3 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 34.44/0.9499

NLRN (2018) ×3 34.27/0.9266 30.16/0.8374 29.06/0.8026 27.93/0.8453 –/–

SRFBN (2019) ×3 34.70/0.9292 30.51/0.8461 29.24/0.8084 28.73/0.8641 34.18/0.9481

SAN (2019) ×3 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671 34.30/0.9494

RDN(2020) ×3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484

USRNet (2020) ×3 34.43/0.9279 30.51/0.8446 29.18/0.8076 28.38/0.8575 34.05/0.9466

HAN (2020) ×3 34.75/0.9299 30.67/0.8483 29.32/0.8110 29.10/0.8705 34.48/0.9500

SRGAT (2021) ×3 34.75/0.9297 30.63/0.8474 29.29/0.8099 28.90/0.8666 34.42/0.9495

RGCN (Ours) ×3 34.77/0.9301 30.67/0.8486 29.33/0.8114 28.99/0.8679 34.47/0.9501

Transformer-based SCET (2022) ×3 34.53/0.9278 30.43/0.8441 29.17/0.8075 28.38/0.8559 34.29/0.9503

ESRT (2022) ×3 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455

LBNet (2022) ×3 34.47/0.9277 30.38/0.8417 29.13/0.8061 28.42/0.8559 33.82/0.9460

SwinIR (2021) ×3 34.89/0.9312 30.77/0.8503 29.37/0.8124 29.29/0.8744 34.74/0.9518

RGCN (Ours) ×3 34.77/0.9301 30.67/0.8486 29.33/0.8114 28.99/0.8679 34.47/0.9501

The best results are highlighted

Table 9 Quantitative results with scaling factor ×4 on BI degradation model

Type Method Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CNN-based Bicubic ×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN (2014) ×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 25.52/0.7221 27.58/0.8555

VDSR (2016) ×4 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 28.83/0.8870

EDSR (2017) ×4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

RCAN (2018) ×4 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173

NLRN (2018) ×4 31.92/0.8916 28.36/0.7745 27.48/0.7346 25.79/0.7729 –/–

SRFBN (2019) ×4 32.47/0.8983 28.81/0.7868 27.72/0.7409 26.60/0.8015 31.15/0.9160

SAN (2019) ×4 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169

RDN (2020) ×4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151

USRNet (2020) ×4 32.42/0.8978 28.83/0.7871 27.69/0.7404 26.44/0.7976 31.11/0.9154

HAN (2020) ×4 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094 31.42/0.9177

SRGAT (2021) ×4 32.57/0.8997 28.86/0.7879 27.77/0.7421 26.76/0.8052 31.41/0.9181

RGCN (Ours) ×4 32.65/0.9005 28.91/0.7892 27.79/0.7440 26.85/0.8089 31.24/0.9176

Transformer-based SCET (2022) ×4 32.27/0.8963 28.72/0.7847 27.67/0.7390 26.33/0.7915 31.10/0.9155

ESRT (2022) ×4 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100

LBNet (2022) ×4 32.29/0.8960 28.68/0.7832 27.62/0.7382 26.27/0.7906 30.76/0.9111

SwinIR (2021) ×4 32.72/0.9021 28.94/0.7914 27.83/0.7459 27.07/0.8164 31.67/0.9226

RGCN (Ours) ×4 32.65/0.9005 28.91/0.7892 27.79/0.7440 26.85/0.8089 31.24/0.9176

The best results are highlighted
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“img_093”
from Urban100

RCAN
18.68/0.7876

USRNet
18.29/0.7639

RGCN(Ours)
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HAN
18.97/0.8104

SAN
18.80/0.7912

Ground Truth
PNSR/SSIM

Bicubic
21.26/0.8884

VDSR
24.67/0.9498

LapSRN
24.78/0.9523

EDSR
24.83/0.9531

RCAN
26.18/0.9520

USRNet
26.17/0.9518

RGCN(Ours)
26.31/0.9534

HAN
26.27/0.9531

SAN
26.26/0.9528

“Arisa”
from Manga109

Ground Truth
PNSR/SSIM

Bicubic
15.51/0.6086

VDSR
16.67/0.6882

LapSRN
16.85/0.6994

EDSR
17.64/0.7319

Fig. 7 Visualization comparison of BI degradation on Urban100 and Manga100 with scaling factor ×4

Ground Truth
PNSR/SSIM

Bicubic
22.29/0.8950

VDSR
25.33/0.9442

LapSRN
25.95/0.9496

EDSR
26.21/0.9524

RCAN
26.59/0.9549

USRNet
26.40/0.9544

RGCN(Ours)
26.68/0.9562

HAN
26.65/0.9558

SAN
26.61/0.9552

“zebra”
from Set14

Ground Truth
PNSR/SSIM

Bicubic
16.84/0.7597

VDSR
18.92/0.8734

LapSRN
19.77/0.8964

EDSR
20.86/0.9193

“145086”
from BSD100

RCAN
21.09/0.9268

USRNet
20.86/0.9191

RGCN(Ours)
21.22/0.9283

HAN
21.18/0.9279

SAN
21.16/0.9275

Fig. 8 Visualization comparison of BI degradation on Set14 and BSD100 with scaling factor ×4

called local attribution map (LAM) [59]. The goal of LAM is
to find the input features that strongly influence the network
outputs, which visualize the results via LAM.

Figure 6 shows the results of LAM in some representative
image SR approaches, including CARN [60], EDSR [26],
ESRGAN [61], RCAN [35] and SAN [12]. As can be seen,
our RGCN involves more pixels with larger receptive fields
while CARN and EDSR only extracts few information under

a limited region. It is implied that our model could capture
long-range feature dependencies for enriching the repre-
sentational ability of the network, which generates better
super-resolved image.
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4.2.7 Other components

As stated in Sect. 3, our RGCN mainly contains channel-
wise attention (CA), spatial graph attention (SGA) and global
feature fusion (GFF). We perform various combinations to
verify the effectiveness of each component. Baseline refers
to the network only containing feature extraction with 3×3
and 5×5 convolutional layers, which has a similar size as
our RGCN to ensure a fair comparison. As shown in Table 6,
the baseline achieves relatively low performance, indicating
that blindly stacking more layers cannot lead to better per-
formance. When adding CA, SGA and GFF individually to
the baseline, resulting in Case1, Case2 and Case3, each of
them improves the overall performance efficiently.

We further equip CA and SGA simultaneously, leading
to Case4, the method obtains consistently improvement with
0.04dB and 0.02dB gain as compared withCase1 andCase2.
Similar phenomena can be found in using GFF to form our
final network Case6, and the overall performance is boosted
from 32.39dB to 32.41dB.

4.3 Results with BI degradation

Simulating LR image with a bicubic degradation (BI) model
is widely used in image SR settings. For BI degradation
model, we compare our RGCNwith 16 state-of-the-art SISR
methods: SRCNN [3], VDSR [5], EDSR [26], NLRN [62],
RCAN [35], RDN [8], SRFBN [6], SAN [12], USRNet [17],
HAN [13], SRGAT [16], SCET [63], ESRT [64], LBNet [65]
SwinIR [14]. All the quantitative results for three scaling fac-
tors over five benchmark are reported in Tables 7, 8 and 9.

Compared with the CNN-based SR methods, our RGCN
achieves the best performance on most benchmark datasets
for all scaling factors. Note that on Set14 for scaling fac-
tor ×3, our RGCN and HAN [13] both obtain the best
PSNR while our SSIM value is higher than HAN, which
indicates our method can reconstruct better result, the same
phenomenon can be found in Urban100 with scaling fac-
tor ×4. However, all these CNN-based methods perform
worse than the Transformer-based image SR approaches,
demonstrating the strong representation ability of the Trans-
former. Although our method obtains superior performance
to most CNN-based methods, we have a large margin with
the Transformer-based approaches. In future work, this will
be considered to improve our method by combining graph
convolutional and Transformer.

Wealso present the visual comparisons ondifferent bench-
mark datasets with scaling factor×4 in Figs. 7 and 8, respec-
tively. As shown in Fig. 7, the “img_09” from Urban100 has
an amount of structured texture. Some CNN-based SRmeth-
ods cannot recover clearer edges and fine details from the LR
images, such as VDSR [5] and LapSRN [66]. And the meth-
ods employed L1 loss ( (e.g., RCAN [35] and SAN [12]) Ta
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Fig. 9 Visual comparisons of a
BD degradation and b DN
degradation with scaling factor
×3

“HealingPlanet” from
Manga109

“img_015”
from Urban100

Bicubic
21.49/0.6871

VDSR
23.58/0.7794

Ground Truth
PNSR/SSIM

RDN
23.95/0.8132

RGCN(Ours)
24.11/0.8147

SRFBN
24.07/0.8144

Bicubic
28.27/0.9265

VDSR
33.95/0.9421

Ground Truth
PNSR/SSIM

RDN
38.32/0.9689

RGCN(Ours)
38.67/0.9757

SRFBN
38.62/0.9751

(a) Visual comparisons of BD degradation

“img024”
from Urban100

“MisutenaideDaisy”
from Manga109

Bicubic
21.42/0.4598

VDSR
23.25/0.6731

Ground Truth
PNSR/SSIM

RDN
24.69/0.7432

RGCN(Ours)
24.84/0.7457

SRFBN
24.76/0.7445

“MisutenaideDaisy”
from Manga109

Bicubic
22.97/0.5422

VDSR
26.34/0.8028

Ground Truth
PNSR/SSIM

RDN
27.91/0.8576

RGCN(Ours)
28.19/0.8630

SRFBN
28.01/0.8619

(b) Visual comparisons of DN degradation

Table 11 Model size, inference times and performance compare results on Set5 with upscaling factor ×4

EDSR [26] RCAN [35] HAN [13] RDN [8] SAN [12] SRGAT [16] SwinIR [14] RGCN(Ours)

Param(M) 43 16 17.4 22.1 15.6 6.6 13.8 14.3

PSNR(dB) 32.46 32.63 32.64 32.47 32.64 32.57 32.72 32.65

Time(s) 1.64 1.15 1.34 1.56 1.49 1.21 1.39 1.42

generate over-smoothed results and less fine image details.
In contrast, our RGCN reconstructs the HR result with clear
structure information and textural details, such as the lines
of floor.

4.4 Results with BD and DN degradations

Following [8,55], we also conduct comparisons on more
challenging degradations: BD and DN. Our RGCN is com-
pared with SRCNN [3], IRCNN_C [67], IRCNN_G [67],
SRMD [55], RDN [8] and SRFBN [6]. All the results on
×3 are listed in Table 10, from which we can observe that
our network achieves better performance on all datasets. For
quantity comparisons, we show the super-resolved results
with BD degradation in Fig. 9a. One can see that, for BD
degradation, most compared methods recover blurring arti-
ficial. Instead, our RGCN suppresses the blurs and recovers
texture information. And for the DN degradation model, it
can be found that our network removes the noise of corrupted
images and recovers more details compared to other meth-
ods, as shown in Fig. 9b. These comparative results of BD
and DN degradation models demonstrate that our network
can be well-adapted to multiple degradation models.

4.5 Model size and inference time

Table 11 shows the comparison results of performance,
inference time and model size. PSNR results and inference

time are evaluated on Set5 with upscaling factor ×4. Our
RGCN outperforms CNN-based image SR networks (e.g.,
SAN [12], RCAN [35] and HAN [13]) in terms of perfor-
mance and model parameters with faster inference times.
Despite SRGAT [16] being much smaller than RGCN, the
performance is still underperformed. Moreover, the PSNR
value of RGCN is slightly lower than that of the Transformer-
based method; however, our model has a comparable model
size and costs less inference time than SwinIR [14]. Thus, the
experimental result provides an implication that our RGCN
has a good balance on model size and performance.

5 Conclusion

In this paper, we propose a relation-consistency graph con-
volutional network (RGCN) for accurate image SR, which
captures contextual information in the spatial dimension.
To be specific, we utilize a spatial graph attention (SGA)
to dynamically model global dependencies via graph con-
volutional. To draw the pairwise relationships of image
features, the Gram matrix is adopted to calculate the adja-
cency matrix in SGA, and then share it across the entire
network. We further embed a pyramid pooling scheme in
SGA to reduce expensive computational costs and mem-
ory occupation without sacrificing the overall performance.
Additionally, a relation-consistency loss is introduced, which
gives a constraint on spatial relationships between low-level
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feature and high-level feature in the semantic level. Exten-
sive experiments demonstrate the superiority of our RGCN
in terms of quantitative and visual quality.
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