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Abstract
Deep convolutional neural networks can effectively improve the performance of single-image super-resolution reconstruction.
Deep networks tend to achieve better performance than others. However, the deep CNNs will lead to a dramatic increase
in the size of parameters, limiting its application on embedding and resource-constrained devices, such as smart phone. To
address the common problems of blurred image edges, inflexible convolution kernel size selection and slow convergence
during training procedure due to redundant network structure in image super-resolution algorithms, this paper proposes a
lightweight single-image super-resolution network that fusesmulti-level features. The components aremainly two-level nested
residual blocks. To better extract features and reduce the number of parameters, each residual block adopts an asymmetric
structure. Firstly, it expands twice and then compresses the number of channels twice. Secondly, in the residual block, the
feature information of different channels is weighted and fused by adding an autocorrelation weight unit. The quality of the
reconstructed image of the proposed method is superior to the existing image super-resolution reconstruction methods in
both subjective perception and objective evaluation indicators, and the reconstruction performance is better when the factor
is large.
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1 Introduction

Image super-resolution methods are the research focus of
computer vision tasks and have received much attention for
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many years. Given a low-resolution image, super-resolution
(SR) techniques aim to recover its corresponding high-
resolution (HR) image [1]. Since one low-resolution (LR)
image may correspond to multiple high-resolution images,
the super-resolution problem is an ill-conditioned inverse
problem [2][3]. Therefore, how to efficiently restore the
lost texture details in the process of super-resolution recon-
struction, maintain the integrity of the image structure, and
effectively suppress the generation of distortion is a chal-
lenging problem [4][5]. Super-resolution imaging is one hot
topic in the field of computer vision, and the technology of
deep learning dominates the current research on single-image
super-resolution (SISR) methods [6].

The deep learning-based SISR method directly learns
the end-to-end mapping relationship between LR images
and HR images. Dong et al. [7] had proposed the SISR
method based on the convolutional neural network [8], called
super-resolution convolutional neural network (SRCNN).
SRCNN used three convolutional layers to directly learn
nonlinear mappings of LR images and HR images in an
end-to-end model. Kim et al. [9] had proposed a deeper
network named very deep convolutional networks (VDSR)
based on residual learning [10], which effectively improved
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the performance. To increase the network depth and limit
the increase in network parameters, Kim et al. [11] adopted
the recursive structure of shared parameters and proposed
the deeply recursive convolutional network (DRCN). Tai
et al. [12] had proposed deep recursive residual network
(DRRN), which simultaneously utilized local residual struc-
ture, global residual structure, and recursive structure. The
residual units are shared and a small number of parameters
are added, which improves the performance of VDSR and
DRCN. The super-resolution feedback network (SRFBN-S)
[13] had used a recurrent neural network structure to share
hidden layer parameters, reducing the number of parameters
and improving the performance of reconstructed images. Hui
et al. [14] had proposed the information multi-distillation
network (IMDN) method to gradually extract feature infor-
mationwithin the residual block and use the channel attention
mechanism for feature selection, which further improves the
quality of the reconstructed image. Ahn et al. [15] had pro-
posed a SISR method based on a cascaded residual network,
called cascading residual network (CARN), which com-
bined cascaded structure and residual learning and achieved
a better balance between the number of parameters and
performance. Zhu et al. [16] had proposed the compact back-
projection network (CBPN) method, which enhanced the
reconstruction ability by extracting feature information inLR
and HR spaces by cascading up/down sampling layers. The
multi-scale residual network (MSRN) [17] had used convo-
lutional layers with different receptive fields in the residual
block to extract feature information of different scales to
further improve the performance. Lai et al. [18] had pro-
posed the Laplacian pyramid network structure of the SISR
method Laplacian pyramid super-resolution network (Lap-
SRN), which gradually upsamples and predicts residuals,
which can simultaneously complete HR image reconstruc-
tion of multiple sizes.

Most of the existing algorithms achieve the goal of
improving network performance by deepening or widening
the network. However, the large size of the network model
will bring two problems: (1) a large-sized model will con-
sume too much storage space, which is not conducive to
deployment in practical applications; (2) a large-sized model
will introduce a heavy computational burden. It is not suitable
for applications with limited computing power or high real-
time requirements. Therefore, the trade-off between model
size and SR reconstruction performance needs to be specially
considered when designing the network.

LapSRN uses a progressive method to increase the image
resolution, which will generate large-sized feature maps in
the middle of the network, resulting in a significant increase
in network computation.MFRN introduces a recursive learn-
ing strategy, although a larger receptive field can be obtained
with a small number of parameters, the computational bur-
den is high. CARN fuses information from multiple levels

by applying a cascade mechanism but also introduces more
parameters and calculations due to the use of dense connec-
tions. In CARN’s mobile version model named CARN-M,
group convolution is used to reduce the number of network
parameters, but the use of group convolution will signifi-
cantly reduce network performance. IDNuses an information
distillation mechanism to transmit some features through
skip connections to reduce the number of network param-
eters, but it cannot effectively screen out important features
that need to be further refined, and there is still room for
further improvement in model performance.

The above methods use a lightweight network, however,
the network depth and the number of parameters is important
factors that affect the performance of SISR. Lim et al. [19]
had proposed a heavyweight EDSRmethod that removed the
normalization module, superimposed residual blocks, and
more than 65 convolutional layers [20]. The MM-RealSR
method [38] combined residual structure and dense structure
and made full use of the hierarchical feature information of
LR images and can recover high-qualityHR images. Liu et al.
[22] had proposed the RFANet method, which uses a spatial
attention module with a larger receptive field and a smaller
number of parameters in the residual block to filter feature
information, and then analyze the features extracted by the
residual branch of each residual block. Fusion improves the
quality of image reconstruction. EDSR, MM-RealSR, and
RFANet methods are currently the most representative meth-
ods that use heavyweight network SISR, which have good
performance and large parameters. In the case of limited
resources, it is difficult for the heavyweight SISR model to
meet the application requirements. This paper considers the
lightweight SISR model to provide an effective solution.

This paper proposes a SISRmethod for lightweight multi-
level feature fusion networks. When the magnification factor
is 4 times, the amount of multi-level features fusion net-
work (MFFN) parameters is only 1.47 M, which is 1/29 of
EDSR, 1/14 of MM-RealSR, and 1/7 of RFANet. Compared
with similar lightweight SISR models, our method achieves
a better balance in performance and model scale. Taking the
MSRN method as an example, the parameters of the pro-
posed method are reduced by 3/4. On the test dataset, × 2,
× 3, and × 4 are enlarged, and the objective performance
is comparable, while × 8 is enlarged, which is consistently
better than the MSRN method. For × 4 and × 8 upscaling,
the subjective performance is also consistently better than the
MSRN method. The experimental results can show that the
ability of the proposed method to reconstruct the fringes is
significantly better than other lightweight methods, and for
the 8 times large-scalemagnification factor, the reconstructed
image results have more obvious advantages.

The contributions of this paper include: (1) We propose
the dual residual block (DRB) with asymmetric structure.
The residual block is first expanded twice, then compressed
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twice, and the two layers of residual connection are used to
effectively extract feature information; (2) An autocorrela-
tion weight unit (ACW) has proposed, which can calculate
the weight according to the feature information, adaptively
weighting different feature channels to effectively transfer
feature information; (3) Designing the shallow feature map-
ping unit (SFMU), SFMU extracts different levels of shallow
features through the convolution layers of different recep-
tive fields on each branch; (4) Designing the multi-path
reconstruction unit (MPRU), MPRU can obtain the feature
information of multiple branches, to fully utilize the feature
information of different levels to reconstruct different aspects
of the image.

2 Proposed algorithm

Currently, most super-resolution models utilize residual net-
works [19, 23]. The residual block structure generally adopts
a Conv-ReLU-Conv layer. The problem is that themodel per-
formance is heavily dependent on the network size, which
is mainly based on the number of trainable network lay-
ers and channels. How to reduce the network size while
improving or not reducing the model performance is a very
challenging problem. In this paper, a lightweight multi-level
feature fusion network is designed. The feature channel is
first expanded and then compressed with two-layer nested
residual blocks, which can significantly reduce the num-
ber of parameters, and the autocorrelation weight unit can
adaptively fuse feature information, which also improves the
feature utilization effect. The network structure of this paper
is shown in Fig. 1a,whichmainly includes four parts: shallow
feature extraction unit (SFEU), shallow feature mapping unit
(SFMU), deep featuremapping unit (DFMU), andmulti-path
reconstruction unit (MPRU).

Let ILR and ISR be the input and output images, the
shallow feature extraction unit only contains a 3 × 3 con-
volution layer, which can realize the transformation function
of extracting shallow feature information and feature dimen-
sion.

F0=HSFEU (ILR) (1)

HSFEU is the shallow feature extraction unit, which gen-
erates the shallow feature information F0 that meets the
dimension requirements of the shallow/deep feature map-
ping unit from the input image ILR . The shallow feature
mapping unit further extracts shallow feature information
from F0 and passes the shallow feature information to the
multi-path reconstruction unit.

(
FS1 , FS2 , FS3

) = HSFMU (F0) (2)

(
FS1 , FS2 , FS3

)
is the shallow feature information

extracted by the shallow feature mapping unit HSFMU . The
deep feature mapping unit also extracts deep feature infor-
mation from F0.

(
FD1 , FD2 , FD3

) = HDFMU (F0) (3)

(
FD1 , FD2 , FD3

)
is the deep layer feature information

generated by the deep feature mapping unit HDFMU , and
then the multi-path reconstruction unit receives the shallow
layer feature information and the deep layer feature informa-
tion to reconstruct the final result ISR .

ISR=HMPRU
(
FS1 , FS2 , FS3 , FD1 , FD2 , FD3

)
(4)

HMPRU is the multi-path reconstruction unit, which
reconstructs the image with all the feature information to
generate the final result ISR .

A. Shallow Features Mapping Unit (SFMU)

The SISR models usually used one 3 × 3 convolution
to extract shallow features. The shallow features mapping
unit (SFMU)module used convolution kernels with different
receptive fields to extract shallow feature information hier-
archically with multi-scale and multi-level shallow feature
information. The rich shallow feature information can help
the reconstruction module to reconstruct higher-quality SR
images.

The SFMU module first transforms the input informa-
tion through one 1 × 1 convolution to reduce the number
of parameters in subsequent operations. Then, three con-
volutional layers with different receptive fields are used to
achieve multi-scale shallow feature information extraction.
The three convolution layers are divided into three branches,
and the shallow feature information is gradually weighted
and superimposed. It realizes the extraction of multi-scale
and multi-level shallow feature information.

The three branches of the shallow feature mapping
unit extract different levels of shallow feature information(
FS1 , FS2 , FS3

)
, respectively.

FS0=HT (F0) (5)

FS1=HC1

(
FS0

)
(6)

FS2=HC2

(
FS0+α1FS1

)
(7)

FS3=HC3

(
FS0+α2FS2

)
(8)

HT is the 1 × 1 convolutional layer used to adjust the
number of feature information channels, HC1 , HC2 , HC3 are
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Fig. 1 a Architecture of multi-level features fusion network. b Structure of the residual group. c Symbol description

the convolutional layers on each branch, and α1, α2 are the
adaptive weights that can be learned.

B. Deep Features Mapping Unit (DFMU)

To obtain deep feature information, this paper designs a
DFMU module, as shown in Fig. 1(a). The deep features
mapping unit (DFMU)module contains three residual groups
(RG), and eachRGcontainsmultipleDRBmodules. Because
the simple stacking residual block method is not conducive
to the transfer of feature information, this paper adds local
skip connections in each RG to promote the effective transfer
of feature information and obtain deep-level feature informa-
tion through RG.

FDi =HRGi

(
FDi−1

)
(9)

The i th residual group HRGi takes the hierarchical feature
information FDi−1 generated by the (i − 1)th residual group
as input and generates hierarchical feature information FDi .

2.1 Dual residual block (DRB)

The usually used residual structure is shown in Fig. 2a, and
each convolutional layer has the same number of channels.
A major problem with this structure is that increasing the
number of feature channels leads to a rapid increase in the
number of parameters. This paper proposes aDRBmodule as
shown in Fig. 2b, which consists of inner unit (IU) and exter-
nal unit (EU), and uses a dilation-then-compression strategy
[24]. This strategy can reduce the number of channels and
thus reduce the number of parameters. The first convolutional
layer of EU extracts feature information and expands the
feature channel to obtain richer image feature information.
The second convolutional layer compresses feature channels,
filters feature information, and promotes effective feature
information transfer. In this paper, an IU containing two 1
× 1 convolutions was added inside the EU to increase the
number of channels without causing a sharp increase in the
number of parameters.
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Fig. 2 Structure of the different
residual blocks

Assume that the input and output feature information of
the i th DRB module is and Fi , respectively.

Fi = FACW
(
WEU2σ

(
HIU

(
WEU1Fi−1

))) + Fi−1 (10)

The kernel size of the two convolutional layers in EU
is 3 × 3, and the weights are WEU1 and WEU2 , respectively
(ignoring the bias term). HIU is the inner unit operation, σ(·)
is the ReLU activation function, FACW is the autocorrelation
weight unit, and the first convolutional layer with weight
WEU1 processes Fi−1 to generate feature information Finput ,
which is input to the inner unit for processing. After the
inner unit is processed, the feature information Foutput is
generated. After processing through the convolution layer,
the autocorrelation weight unit, and the skip connection, the
output result of the EU is the feature information Fi extracted
by the i th DRB module.

IU adopts the structure ofConv-ReLU-Conv and adds skip
connections.

Foutput = FACW
(
WIU2σ

(
WIU1Finput

)) + Finput (11)

Among them, WIU1 and WIU2 are the weights of the two
convolutional layers of the inner unit (ignoring the bias term),
and σ(·) is the ReLU activation function. The input of the
inner unit comes from the output Finput of the first convolu-
tional layer of the outer unit, and after processing through the
convolutional layer, the autocorrelation weight unit and the
skip connection, the extracted feature information bit Foutput .

2.2 Autocorrelation weight unit (ACW)

The SISR model based on the deep residual structure still
has the problem of vanishing or exploding gradient. To sta-
bilize the training, the residual scale parameter is usually
introduced [25]. This hyperparameter is usually set empiri-
cally and is difficult to optimize. The ACW module adopts
the learnable optimal residual scale parameter.

Global Pooling

Sigmoid Function

Fig. 3 Structure of autocorrelation weight unit (ACW)

The structure of ACW module is shown in Fig. 3. The
ACWmodule consists of two parts, the global pooling layer,
and the sigmoid function, with no additional parameters. The
global pooling layer encodes all input feature information as
initializedweights, which are then adjusted to [0, 1] using the
sigmoid function. Due to the difference between the feature
information, differentweights are generated,which enhances
the feature information effective for the reconstructed image.

Let X=[x1, x2, ..., xC ] be the input feature information
and the size are H × W × C . The initialization weight
Z = [z1, z2, ..., zC ] is calculated from the input feature infor-
mation X through the global average pooling layer HGAP .
The initial weights of the cth input feature information are
as follows:

zc = HGAP (xc) = 1

H × W

H∑

i=1

W∑

j=1

xc(i , j) (12)

Use the sigmoid activation function f (·) to adjust the ini-
tialization weight Z to generate the final weight parameter
W .

W = f (Z) (13)
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Weighting the input feature information:

X̂ = X · W (14)

C. Multi-Path Reconstruction Unit (MPRU)

At the end of the current SISR model network, most
of them use transposed convolution or sub-pixel convolu-
tion for upsampling operations. Compared with transposed
convolution, the image quality of sub-pixel convolution
reconstruction is better [26], but it needs to use multiple 3
× 3 convolution layers [17, 19, 21], the magnification fac-
tor increases, and the number of parameters will increase. To
reduce the number of parameters without reducing the image
quality, the multi-path reconstruction unit (MPRU) module
has designed. TheMPRUmodule is shown in Fig. 1a.MPRU
has three reconstruction branches, each ofwhich consists of a
1× 1 convolutional layer and a sub-pixel convolutional layer.
The reconstruction result of each branch is the same size as
the HR image, and the final SR image is the sum of the recon-
struction results of the three branches. The MPRU module
uses a 1 × 1 convolutional layer, which can greatly reduce
the parameters and increase the amplification factor with-
out significantly increasing the number of parameters. At the
same time, theMPRUmodule obtains the feature information
of each branch, which can also improve the reconstruction
effect.

FS=
[
FS1 , FS2 , FS3

]
is the shallow feature informa-

tion extracted by the shallow feature mapping unit,
FD=[

FD1 , FD2 , FD3

]
is the hierarchical feature informa-

tion extracted by the deep feature mapping unit, and the i th

branch in the multi-path reconstruction unit is generated as
follows:

Ii = HUPi

(
HConvi

([
γi FSi , βi FDi

]))
(15)

HUPi and Hconvi represent the sub-pixel convolutional
layer and 1×1 convolutional layer of the i th branch, respec-
tively, and γi and βi are the adaptive weights of FSi and FDi ,
respectively. Ii is the reconstructed image of the i th branch.
[·] is a concatenate operation on FSi and FDi . The MPRU
unit has three branches, so i = [1, 2, 3].

ISR=I1+I2+I3 (16)

The multi-path reconstruction unit adds the images
(I1, I2, I3) generated by all the branches to generate the final
result ISR .

D. Loss Function

In this paper, the L1 loss function is used to optimize the
MFFN. The L1 loss function is mainly used to calculate the

average absolute value of the difference between each pixel
of the input image and the target image, and is a widely used
loss function in the field of image super-resolution.

For a given training dataset
{
I iLR , I

i
H R

}N
i=1 containing N

low- and high-resolution image pairs, the objective of the net-
work in this paper is to train the images and to optimize them
using the L1 loss function, axiomatically shown as follows:

L(θ)= 1

N

N∑

i=1

∥
∥∥HMFFN

(
I iLR

)
− I iH R

∥
∥∥
1
, (17)

wherein HMFFN () denotes the network reconstruction
result, ‖‖1 denotes the L1 parametrization, and θ denotes
the parameters in the network.

3 Experimental analysis and results

E. The Datasets and Metrics

In this paper, we choose DIV2K [20] dataset as the train-
ing dataset of the network, which consists of 800 images
of the training dataset and 100 images of the validation
dataset. To test the effect of the proposed model, we had
used five benchmark datasets, namely Set5 [30], Set14 [30],
BSD100 [31], Urban100 [32] and Manga109 [33]. Among
them, the test dataset BSD100 contains images of various
style types, Urban100 is images of various types of build-
ings, and Manga109 is images of various types of cartoons.

These five test datasets have rich and diverse information,
which can well-verify the effectiveness of super-resolution
methods. To evaluate the super-resolution performance, this
paper uses two commonly used full-reference image quality
assessment criteria to evaluate the differences: peak signal-
to-noise ratio (PSNR) [34] and structural similarity index
(SSIM) [34]. Following the super-resolution convention, the
luminance channel is chosen for full-reference image quality
assessment because the intensity of an image is more sensi-
tive to human vision than chromaticity.

F. The experimental details

In each training round, this paper cuts the low-resolution
RGB images and the corresponding high-resolution RGB
images into blocks of 48× 48. The training data are increased
by randomly rotating 90 degrees, 180 degrees, 270 degrees,
and flipping horizontally. In this paper, the number of dense
blocks in the stacked pooled attentional dense blocks is set
to, in each pooled attentional dense block, there are three
residual dense blocks and three pooled attentional blocks in
this paper. The growth rate of the residual dense blocks is 32,
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Table 1 Average PSNR and number of parameters of different DRB in
residual group on Set5 and DIV2K-10 with scaling factor × 4 in 200
Epochs

Number Parameter size Set5 DIV2K-10

5 1.23 M 32.23 29.51

6 1.47 M 32.26 29.55

7 1.71 M 32.25 29.55

the number of channels not specified in the paper is 64, and
the final output of the network is 3.

The Adam optimizer [27] can adaptively adjust the learn-
ing rate for different parameters, which can effectively
improve the convergence speed of the model and thus reach
the optimal point faster, so the Adam optimizer is used for
the experiments. The initial learning rate of the network is
set to 2 × 10–4, and the learning rate is halved for every 2
× 105 iterations. The proposed method is implemented in
a hardware environment with an Intel i9-9900 K (3.6 GHz),
8GBofRAM, andNVIDIAGeForceRTX2080TiGPU. The
software environment is 64-bit Ubuntu operating system and
PyTorch platform.

G. Experiment results and analysis

1. Residual group analysis

The proposed model contains three residual groups, and
each group contains same number of double-nested resid-
ual blocks. To verify the influence of different numbers of
double-nested residual blocks in residual group on themodel,
we performed four times super-resolution experiments on
the Set5 standard test dataset and the DIV2K-10 dataset,
with the number of groups in each group being 5, 6, 7 of
the residual group for comparative experiments, as shown
in Table 1. When the number of comparison groups is 5,
although the number of parameters is increased by 0.24 M,
the PSNR index is increased by 0.03 dB on the data of Set5
and DIV2K-10, respectively. When the number of groups is
7, the improvement of the PSNR index is not obvious, but
the mount of parameters is increased. 0.24 M.

2. SFMU analysis

To verify the influence of the convolution kernel size on
the different paths of the shallow featuremapping unit and the
non-use of the shallow featuremapping unit on themodel, we
performed a fourfold superimposition on the Set5 standard
test dataset and the DIV2K-10 dataset. Resolution compar-
ison experiment. As shown in Table 2, the shallow feature

Table 2 Average PSNR of different SFMU convolution kernel on Set5
and DIV2K-10 with scaling factor × 4 in 200 epochs

Convolution Kernel Set5 DIV2K-10

- ×—× - 32.22 29.52

1 × 1 × 1 32.18 29.50

3 × 3 × 3 32.24 29.53

5 × 5 × 5 32.25 29.53

1 × 3 × 5 32.26 29.55

Table 3 Influence of residual blocks with different structures on model
performance. We report the average PSNR on Set5 and DIV2K-10 with
scaling factor × 4 in 200 epochs

Model Residual block size Set5 DIV2K-10

I 73.8 K 32.11 29.42

II 53.5 K 32.12 29.47

mapping unit is not used, so the model cannot use the shal-
low feature information, resulting in a poor reconstruction
effect. When each branch uses the same size of the convolu-
tion kernel and the size of the convolution kernel increases
continuously, the reconstruction effect is improved, but the
amount of parameters also increases. When the branch con-
volution kernels are all 1, the PSNR index is lower than the
model that does not use the shallow feature mapping unit,
which is due to the less feature information extracted and
redundant information, resulting in a poorer effect. We find
that the best results are obtained when the three branch con-
volution kernels are set to 1, 3, and 5, respectively. This is
because each branch can extract different levels of shallow
feature information, which can be effectively combined with
deep-level feature information. Therefore, we use shallow
feature mapping units with branch convolution kernel sizes
of 1, 3, and 5, respectively.

3. DRB analysis

Compared with the popular residual block structure, as
shown in Fig. 2(a), the DRBmodule in this paper has advan-
tages in performance and parameter quantity. This paper
conducts a fourfold super-resolution comparison experiment
on the Set5 and DIV2K-10 datasets. We construct two test
models, called Model I and Model II, respectively. Model I
is an EDSR structure, but the number of input and output
channels of the convolutional layer is reduced from 256 to
64, and the number of residual blocks is reduced from 32 to
18. Model II replaces the residual block in the model I with
a DRB module. In the DRB expansion stage, the number of
EU input and output feature channels is set to 32 and 64,
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Table 4 Effects of ACW. We report the average PSNR on Set5 and
DIV2K-10 with scaling factor × 4 in 200 Epochs

ACW Set5 DIV2K-10

× 32.11 29.42√
32.23 29.55

Table 5 Effects of MPRU. We report the average PSNR on Set5 and
DIV2K-10 with scaling factor × 4 in 200 Epochs

Reconstruction model Parameter size Set5 DIV2K-10

EDSR 297.16 K 32.11 29.42

MPRU 99.36 K 32.23 29.57

respectively, and the number of IU input and output feature
channels is set to 64 and 128, respectively; in the compres-
sion stage, the number of EU input and output channels is set
to 64 and 32, respectively, and the number of IU input and
output channels is set to 64 and 32, respectively. The number
of feature channels is set to 128 and 64, respectively. The
other parameters in Model I and Model II are the same: The
residual scale parameter is 0.1, running 200 iterations, the
PSNR of Model II is 0.01 dB and 0.05 dB higher than that
of Model I, respectively, and the parameter amount of the
DRB module is higher than that of the ERSR residual block.
20.3 K down.

4. ACW analysis

To verify the effectiveness of the ACWmodule, two cases
of the model I including and not including the ACW mod-
ule are considered, and the results are shown in Table 4.
After using the ACW module, the PSNR is improved by
0.12 dB and 0.13 dB on Set5 andDIV2K-10 datasets, respec-
tively. The experimental results show that theACWmodule is
effective in automatically learning the optimal residual scale
parameters.

5. MPRU Analysis

To verify the reconstruction performance of MPRU mod-
ule, after replacing theEDSRreconstructionunit of themodel
Iwith theMPRUmodule, it is comparedwith themodel I. The
results of the twomodels correspond to Table 5, respectively.
The parameter quantity of theMPRUmodule is only 99.36K,
which is only about 1/3 of the parameter size of EDSR recon-
struction unit. In the Set5 andDIV2K-10 datasets, theMPRU
module improves PSNR by 0.12 dB and 0.15 dB, respec-
tively.

H. Model analysis

The model in this paper verifies × 2, × 3, × 4 and ×
8 super-resolution factor on Set14, B100, Urban100, and
Manga109 datasets. We had chosen SRCNN [7], FSRCNN
[35], VDSR [9], DRCN [11], LapSRN [18], DRRN [12],
CBPN [16], IMDN [14], BFDN [42], BSRN [41], Swin-IR
[39], MM-RealSR [38], and LDL [36] for performance com-
parison with MFFN.

The objective indicators are shown in Table 6. In the case
of the× 2 factor on the Set14 dataset, the PSNR of the model
in this paper is 0.27 dB higher than that of the BFDN model,
which is similar in the case of other amplification factors, and
the number of parameters of the model in this paper is less
than that of BFDN (about 120 K less). On all test datasets,
when the amplification factor is four times, the PSNR of our
model is 0.06 dBand 0.16 dBhigher than that ofMM-RealSR
model and LDL on average. Although the performance of
BSRN is slightly better on some datasets, the comprehensive
performance of the model in this paper is better, and the four
times the number of parameters of the BSRN model is four
times that of the model in this paper.

In order to compare the reconstruction performance of
different super-resolution methods in terms of visual quality,
Fig. 4 and Fig. 5 show the super-resolution reconstruction
results of “Img048” and “Img092” images in Urban100 at
× 4 factor, respectively. Figure 6 and Fig. 7 show the super-
resolution reconstructions of “223,061” and “253,027” from
dataset B100 at × 4 factor, respectively. The ground truth
represents the original HR image. In order to highlight the
contrast effect, a local area of the image is selected for mag-
nification using the double triple interpolation method. By
observing Fig. 5 and Fig. 7, it can be seen that although the
MM-RealSR [38] can clearly recover the significant texture
information in the image, texture information has obvious
orientation problems, while Swin-IR [39] and BSRN [41]
can recover correct texture information to some extent, but it
is difficult to suppress the wrong texture, and the textures of
these two methods are more blurred.

In contrast, the method in this paper is able to produce
correctly oriented textures and sharper edges on locally
zoomed-in regions of the graph, and is more consistent with
human vision. This is due to the strong feature alignment
capability of the deformable convolution in SFMU module,
which enables the network model to recover more correctly
the complex texture structures in different images. It can be
clearly observed in most of local zooms that the details of the
images reconstructed by other methods are blurred, and even
the edge information of the images cannot be reconstructed,
while the details reconstructed by the method in this paper
aremuch clearer and have better recognition. These results in
Fig. 6 also indicate that the proposed method achieves better
results in terms of subjective performance.
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Table 6 Average PSNR/SSIM of
various SISR methods Scale Model Parameter

size
Set14 B100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

× 2 SRCNN
[7]

57 K 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661

FSRCNN
[35]

12 K 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694

VDSR [9] 665 K 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729

DRCN
[11]

1774 K 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.63/0.9723

LapSRN
[18]

813 K 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740

DRRN
[12]

297 K 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.92/0.9760

CBPN
[16]

677 K 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740

IMDN
[14]

694 K 33.32/0.9150 32.05/0.8980 31.33/0.9200 38.07/0.9761

BFDN
[42]

1021 K 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

BSRN
[41]

326 K 33.70/0.9186 32.23/0.9002 32.29/0.9303 38.69/0.9772

Swin-IR
[39]

878 K 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757

LDL [36] 694 K 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

Proposed 447 K 33.79/0.9196 32.20/0.8998 32.40/0.9301 38.88/0.9774

× 3 SRCNN
[7]

57 K 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107

FSRCNN
[35]

12 K 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212

VDSR [9] 665 K 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310

DRCN
[11]

1774 K 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328

DRRN
[12]

297 K 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390

CBPN
[16]

677 K 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369

IMDN
[14]

703 K 30.04/0.8370 28.97/0.8030 27.57/0.8400 33.00/0.9403

BFDN
[42]

1102 K 30.29/0.8407 29.06/0.8034 27.38/0.8404 33.50/0.9440

BSRN
[41]

340 K 30.41/0.8437 29.15/0.8064 28.33/0.8561 33.67/0.9456

Swin-IR
[39]

886 K 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404

Proposed 456 K 30.40/0.8428 29.13/0.8056 28.35/0.8557 33.85/0.9460

× 4 SRCNN
[7]

57 K 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505

FSRCNN
[35]

12 K 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517

VDSR [9] 665 K 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
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Table 6 (continued)
Scale Model Parameter

size
Set14 B100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DRCN
[11]

1774 K 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816

LapSRN
[18]

813 K 28.19/0.7720 27.38/0.7280 25.21/0.7560 29.09/0.8845

DRRN
[12]

297 K 28.21/0.7720 27.40/0.7284 25.44/0.7638 29.46/0.8960

CBPN
[16]

677 K 28.26/0.7723 27.49/0.7281 25.50/0.7630 29.42/0.8942

IMDN
[14]

715 K 28.35/0.7770 27.58/0.7340 25.68/0.7730 30.09/0.9024

BFDN
[42]

1180 K 28.60/0.7806 27.59/0.7349 26.07/0.7837 30.47/0.9084

BSRN
[41]

352 K 28.63/0.7836 27.61/0.7380 26.22/0.7911 30.57/0.9103

Swin-IR
[39]

897 K 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008

LDL [36] 710 K 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

Proposed 470 K 28.66/0.7830 27.61/0.7371 26.27/0.7909 30.74/0.9114

× 8 SRCNN
[7]

57 K 23.86/0.5443 24.14/0.5043 21.29/0.5133 22.46/0.6606

FSRCNN
[35]

12 K 23.94/0.5482 24.21/0.5112 21.32/0.5090 22.39/0.6357

VDSR [9] 655 K 23.20/0.5110 24.34/0.5169 21.47/0.5289 22.73/0.6688

DRCN
[11]

1774 K 24.25/0.5510 24.49/0.5168 21.71/0.5289 23.20/0.6686

LapSRN
[18]

813 K 24.45/0.5792 24.54/0.5293 21.81/0.5555 23.39/0.7068

BSRN
[41]

360 K 24.88/0.5961 24.70/0.5410 22.37/0.5977 24.28/0.7517

Proposed 520 K 25.02/0.6426 24.80/0.5968 22.46/0.6170 24.60/0.7811

I. Ablation experiments

In order to verify the effectiveness of SFMU and DFMU,
ablation experiments are conducted in this paper to verify the
superiority of our model in the test dataset Set5 for the case
of image magnification times.

The convergence process of these five networks is given
in Fig. 8. In this paper, 18 RRDB blocks are chosen as the
baseline, and these five networks have the same number of
RRDBs. When the SFMU module and DFMU module are
added to the baseline respectively in this paper, two curves,
Baseline + SFMU and Baseline + DFMU, are obtained.
Thus, it is verified that both modules can effectively improve
the performance of the baseline. When the DRB is removed
from the DFMU module in this paper, the curve Base-
line + DFMU_no_DRB is obtained. Comparing the curve
Baseline+ SFMU, we can see that after losing the DRB con-
straint, although the network converges faster, the final PSNR
decreases by 0.03 dB, but it is still 0.04 dB higher than the

baseline network, thus verifying that the effectiveness of the
SFMUandDFMUmodules.When twomodules are added to
the baseline network simultaneously in this paper, the curve
Baseline + SFMU + DFMU is obtained. It can be seen that
the combined performance of the two modules is better than
that of only one module. These quantitative and visual anal-
yses demonstrate the effectiveness of SFMU and DFMU.

Table 7 gives the experimental results for the case when
the network contains one or both of the SFMU module and
the DFMU module. From the table, it can be seen that when
the network of this paper contains both SFMU and DFMU
modules, the values improve by 0.07 dB and 0.05 dB, respec-
tively, compared to the cases when only SFMU and DFMU
modules are included, and the maximum value is obtained at
SSIM.

To better demonstrate the effect of the MPRU module
in the network, the feature maps containing only the shal-
low feature extraction and the feature maps with the MPRU
module added are visualized in this paper, where Fig. 9(a)
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Fig. 4 Super-resolution results of “Img048” in Urban100 dataset for × 4 factor

Fig. 5 Super-resolution results of “Img092” in Urban100 dataset for × 4 factor
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Fig. 6 Super-resolution results of “223,061” in BSD100 dataset for × 4 factor

Fig. 7 Super-resolution results of “253,027” in BSD100 dataset for × 4 factor

Fig. 8 Convergence analysis on
SFMU and DFMU. The curves
for each combination are based
on the PSNR on Set5 with × 4
factor in 800 epochs
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Table 7 Results of SFMU and
DFMU module with × 4 scale on
Set5

Baseline
√ √ √ √

SFMU × √ × √
DFMU × × √ √
PSNR/dB 32.28 32.35 32.37 32.42

SSIM 0.8962 0.8971 0.8972 0.8982

Fig. 9 Results of each module in
the network

represents the results of the network output at the first convo-
lution layer, and Fig. 9(b) and Fig. 9(c) represent the results
of the DFMU module output and the MRPU module out-
put, respectively. From Fig. 9(b) and Fig. 9(c), it can be seen
that the DFMU module learns a large number of self-similar
features of the image, for example, the circular spots on the
butterfly arewell-recovered. TheMRPUmodule, on the other
hand, learns more details of the image texture. The experi-
mental results show that the two modules in the network of
this paper play a good role in feature enhancement.

J. Parameter and time analysis

In order to further verify the effectiveness of the proposed
model, MFFN is analyzed and compared with some current
deep learning super-resolution methods that are recognized
to achieve better results, including IMDN [14], LDL [36],
Swin-IR [39], and BSRN [41], in terms of the number of
parameters and the computational volume, and the results of
parameters and computational volume are shown in Table 8.
The table shows thatMFFN achieves better objective metrics
while significantly scaling down the number of parameters
and the computational effort of the network. The number
of MFFN model parameters is approximately equal to 53%
of the number of IMDN and Swin-IR parameters and 53%

of their computational effort when scaled up by a factor of
× 2 on the Set14 dataset, but the PSNR and SSIM results
obtained are very similar.Although the number of parameters
and computational effort of MFFN are slightly higher than
those of the BSRN method, the obtained PSNR and SSIM
values are improved by 0.07 dB and 0.0022 compared to the
BSRN method.

This demonstrates that MFFN achieves a better balance
between image reconstruction quality and model compres-
sion as well as computational efficiency, i.e., MFFN can
obtain better PSNR and SSIM results evenwith fewer param-
eters. MFFN achieves similar reconstruction quality when
compared with the LDL method, which is currently superior
in objective metrics, but MFFN parameters are much less.

4 Conclusion

This paper proposes a lightweight multi-level feature fusion
network for reconstructing high-quality super-resolution
images. In this paper, a double-layer nested residual block
(DRB) is designed to extract image feature information. The
number of feature channels is first expanded and then com-
pressed, and convolution layerswith different receptive fields
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Table 8 Comparison of
parameter size and
computational cost on Set5

Methods Parameter Running time (s) PSNR/dB SSIM

LDL 710 K 1.3203 33.71 0.9212

Swin-IR 886 K 1.1025 33.94 0.9206

BSRN 156 K 0.3645 33.87 0.9192

IMDN 893 K 0.2532 33.63 0.9177

Proposed 470 K 0.3285 33.94 0.9214

are used to reduce the number of parameters. To effectively
transmit feature information in the double-nested residual
block, this paper designs the autocorrelation weight unit
(ACW), which generates weight information by calculating
the feature information, and then uses theweight information
to weigh the feature information to ensure that the high-
weight feature information is processed. effective delivery. In
this paper, two-layer nested residual blocks are formed into
residual groups to extract deep hierarchical feature models,
and shallow feature mapping unit (SFMU) is constructed to
extract multi-scale and multi-level shallow feature informa-
tion. The multi-path reconstruction unit (MPRU) fuses the
deep layer feature information with the shallow layer feature
information to reconstruct a high-quality super-resolution
image. The experimental results show that the above mod-
ule design helps reconstruct high-quality images, and the
proposed model can effectively enhance image stripes and
reconstruct high-quality super-resolution images. Compared
with other lightweight models, our model achieves a better
balance between performance and model scale.
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