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Abstract
The image stitching process often produces many undesirable effects. Solving problems such as discontinuity and dislocation
of pictures has always been the focus of people’s research. From the perspective of human vision, this dislocation situation
can be easily perceived and found. In this paper, we propose a stitching strategy based on the human visual system (HVS) and
scale-invariant feature transform (SIFT) algorithm.Wepreprocess the brightness difference and contrast of the stitched images,
combiningSIFTalgorithmandHVS to divide the overlapping areas of the stitched images and establish an attribute relationship
model. We use dynamic programming to find the optimal seamline according to the attribute relationship model, and the final
result makes the optimal seamline almost invisible under the discriminative vision of human eyes. The experimental results
show that our method has more advantages in the HVS.

Keywords Image stitching · Human visual system · Image fusion · Optimal seamline detection

1 Introduction

Image stitching technology is widely used. When using the
ordinary camera to capture images, due to the limited shoot-
ing angle, it is impossible to take all elements in the scene,
and the use of a panoramic camera has to face the objective
phenomenon of expensive cost. To broaden the perspective of
ordinary cameras, people have conducted in-depth research
on image stitching technology and achieved some results and
applied in various fields, including autonomous driving [1,
2], geoscience [3–5], electrical engineering [6], virtual real-
ity, and other fields [7].

Since it is difficult to achieve consistent exposure of the
original images for image stitching, there will be a discon-
tinuous boundary, misalignment, ghosting, and many other
factors that affect the stitching effect. The image fusion pro-
cess is the key to solving these problems. Image fusion
algorithms can split into two directions: the method based
on smooth transition [8–10] and to find the optimal seamline.
The formerway eliminates artifacts by aligning the images as

B Jindong Zhang
zhangjindong_100@163.com

1 College of Computer Science and Technology, Jilin
University, Changchun 130012, China

2 Key Laboratory of Symbol Computation and Knowledge
Engineering of the Ministry of Education, Jilin University,
Changchun 130012, China

much as possible, and this class of methods generally divides
the image into areas and calculates the corresponding homog-
raphymatrix. Spatial variations are distorted over these areas
to align the overlapping regions, resulting in a significantly
reduced in artifacts. The lattermethod achieves thefinal result
by optimizing the costs associatedwith the seams and sewing
the areas on either side of the seamline together. Finding the
optimal seamline method can avoid complex algorithms and
optimize blurring, image misalignment, and other problems
[11, 12], but the stitching performance decreases sharply
when the number of feature matches is very little [13].

Many scholars have studied the optimal seamline method.
Kerschner proposed the “twin snakes technique”method [14]
and defined the energy as the sum of the mismatched pix-
els on the line. Li et al. fused information about the color,
gradient magnitude, and texture complexity of the images
into the data. They used a new multi-frame joint optimiza-
tion strategy to find the seamline in multiple overlapping
images at once [15]. An optimal seamline detection method
based on a CNN-based semantic image segmentation and
graph cut energy minimization framework was proposed
by Li et al. [16]. Hejazifar et al. proposed FARSE, a fast
and robust seam estimation method, to avoid visible seams
and ghosting by defining grayscale weighted distances and
gradient-domain difference regions [17]. Lin et al. introduced
a new structure-preserving warping method to improve the
effectiveness of stitching images with large parallax [18]. Li
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et al. generated large-scale orthophotos by mosaicking mul-
tiple orthophotos, enabling the generation of a high-quality
seamline networkwith fewer artifacts [19]. Zhang et al. found
the optimal seamline for unmanned aerial vehicle (UAV)
images based on the improved energy function by introduc-
ing optical flow into the energy function [20]. These methods
have achieved good results in different fields. While opti-
mizing and improving the quality of stitching images, the
human visual system (HVS) is of great significance in evalu-
ating the effect of image stitching. As early as 2017, HVS has
proven to assess the quality of image stitching [21]. Li et al.
proposed a new human perception-based stitching method
[22], which considered the nonlinearity and inhomogeneity
of human perception as energy minimization, finding seams
that are more compatible with the HVS.

We propose an image stitching method based on the HVS
and scale-invariant feature transform (SIFT) algorithm [23].
Find the optimal seamline to complete the stitching task. In
the experiment, we evaluate the performance of image stitch-
ing. The experimental results show that ourmethod conforms
to the characteristics of the HVS, and the quality of the image
stitching is greatly improved. The main contributions of our
work are summarized as follows.

We propose an image stitching method based on optimal
seamline, which is based on the SIFT algorithm and the HVS
that quantifies the preprocessed image to find the optimal
seamline, and finally uses a multi-scale fusion algorithm to
make the seamline almost invisible.
We build an attribute relationship model based on the HVS
to connect the properties of the HVS to make it more suitable
for our method.

The remaining structure of this paper is organized as fol-
lows: Sect. 2 describes the related work, Sect. 3 introduces
themethods used in this paper, Sect. 4 discusses and analyzes
the experimental results, and Sect. 5 summarizes the whole
paper.

2 Related work

2.1 Image stitching

The core goal of image stitching is to align the overlapping
areas of images [10]. Image stitching consists of three parts:
image preprocessing, image registration, and image fusion
[24]. Many scholars have optimized the stitching process
[25–29]. Recently, Jia et al. used the consistency of lines
and points to preserve the linear structure in the stitching
process to improve the image stitching quality [30]. Liao
and Li proposed two types of single-perspective warping for
natural-image stitching to reduce projection distortion [31].

The quality of image stitching is also closely related to
the quality of the images [32]. External disturbances such
as lens distortion, photorefractive effect, exposure, and dif-
ferences in brightness are bound to be present when taking
pictures [33].Under these factors, there aremanymismatches
when feature point detection and feature matching are per-
formed on images, and it further leads to low accuracy of
the homography matrix used for stitching and shows a lot of
image discontinuity problems [34]. These discontinuities are
exactly the visual attention points of people, and how to avoid
the seam problem to improve the image stitching quality is
the key to the research.

2.2 Human visual system

The nervous system regulates human eye activity. Human
perception of images is influenced by both physiological and
psychological factors. The HVS, as an image processing sys-
tem, perceives images non-uniformly and nonlinearly. For
images, the main characteristics of the HVS are generally
expressed in three aspects: brightness, frequency domain,
and image type characteristics. The brightness characteristic
is one of the most fundamental characteristics of the HVS,
mainly about the sensitivity of the human eyes to changes
in brightness. The human eyes are less sensitive to the noise
attached to the region of high luminance. When the bright-
ness of the area in the image is relatively high, the human eye
is not sensitive to the change in gray value [35], so people can
easily ignore the detail part in the background [36]. If the dis-
continuous edges of the stitched image are in high-attention
areas of the human eyes, it will harm image quality.When the
discontinuous edges are in the masked background, it will be
difficult for the human eye to observe the undesirable areas,
and image quality will improve.

3 Method

The process of image stitching is shown in Fig. 1. First,
we compensate for image brightness, contrast, and satu-
ration, aiming to remove significant brightness differences
that may affect image registration and image fusion. Then,
the processed image is extracted and registered features by
SIFT algorithm and random sample consensus (RANSAC)
algorithm to obtain the corresponding homography matrix
[37]. The overlapping images are visually quantized, and
the quantized characteristics include the following four
types: brightness characteristic, brightness difference, mask-
ing characteristic, and visual attention. Based on the above,
we establish the attribute relationship model and reference
the edge detection result to find the candidate area of the
optimal seamline. Adjust the parameters of the attribute
relationship model to select the optimal seamline, at the
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Fig. 1 Proposed image stitching method workflow

end fusion to get a seamless stitched image. These will be
described in detail in later chapters.

3.1 Image preprocessing

In order to make the stitched image without a large color
difference, we analyze the brightness, saturation, and con-
trast and compensate for the image with poor visual effect
in the two images during data preprocessing. To make the
brightness saturation contrast of the two images basically
consistent under the visual effect of the human eye. And it
does not affect the focus information of the image.

Set the original pixel grayscale as f (i , j) and the trans-
formed pixel grayscale as g(i , j), and apply the linear
transformationEq. (1) to adjust the brightness contrast,where
the coefficient con affects the image contrast and the coeffi-
cient lumin affects the brightness of the image.

g(i , j) � con ∗ f (i , j) + lumin (1)

Adjust the parameters of another image according to one
of the images, until the two images have an overlapping part
of the brightness, the contrast is basically the same. The
higher the saturation, the fuller the color. We fine-tune the
saturation of the two images by adjusting them as follows.

First set a parameter p, which takes values from −100
to 100 and normalizes it to take values between −1 and 1.
Calculate the maximum value LMax and the minimum value
LMin for theRGB three-channel to obtain the values of Para1
and Para2, as shown in Eq. (2–3).

Para1 � (LMax − LMin)/255 (2)

Para2 � (LMax + LMin)/255 (3)

If LMax and LMin are the same, it indicates a gray point
and processes the next pixel. The L and S in hue, saturation,
lightness (HSL) colormode are calculated byPara2, as shown
in Eq. (4–5).

L � (LMax − LMin/510) (4)

S �

⎧
⎪⎪⎨

⎪⎪⎩

Para1
Para2 , L < 0.5

Para1
2−Para2 , L ≥ 0.5

(5)

At this pointwill be divided into two cases according to the
p value, when p ≥ 0, which means an increase in the color
saturation, then the Para3 value is obtained from Eq. (6). Set
the value of L*255 as K . The adjusted image RGB three-
channel value M can be calculated from Eq. (7).

Para3 �
{
S, p + S ≥ 0
1 − p, p + S < 0

(6)

M � M + (M − K ) ∗ Para3 (7)

If p < 0, reduce the color saturation, Para3 � p, adjusted
the image RGB value M as shown in Eq. (8).

M � K + (M − K ) ∗ (1 − Para3) (8)
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Fig. 2 Results of SIFT and RANSAC feature extraction: a key point
detection, b SIFT key point matching, c RANSAC removing mis-
matched key points

The compensation results of brightness contrast and satu-
ration can be seen in Fig. 1.

3.2 SIFT and RANSAC feature extraction
and registration

To determine the homography matrix, we choose the SIFT
and RANSAC algorithms to find and match feature points
on images. The RANSAC algorithm is widely used in com-
puter vision and mathematics fields, such as straight-line
fitting, plane fitting, and computing transformation matri-
ces between images or point clouds. Feature extraction and
registration include the following steps. Build scale space
and detect key points, determine the cardinal direction of
key points and describe them, match key points and elimi-
nate mismatching key points. Figure 2 shows the results of
feature extraction and matching.

3.3 Human visual system characteristic

In 3.3 we will introduce the relevance of the four concepts
of brightness characteristic, brightness difference, masking

characteristic, and visual attention in HVS to image stitching
quality.

3.3.1 Brightness characteristic

The visual perception of brightness in humans is usually poor
in the absolute brightness perceptionof objects and extremely
sensitive to the relative difference in brightness, which is
called high contrast sensitivity in academia. There are gen-
erally two definitions of the luminance contrast between an
object and its surrounding background: Weber contrast [38]
and Michelson contrast. The definition of Weber contrast
Cweb is shown in Eq. (9). Lb and L , respectively, the bright-
ness value and background brightness value of the object.

Cweb � L − Lb

L
(9)

Human eye brightness characteristics is a kind of study of
the relationship between the brightness of the object and the
brightness of human subjective perception. Existing research
has proved that human perception of image brightness and
object brightness is presented in the form of a logarith-
mic function. According to Weber’s law it can be obtained:
Human subjective perception of brightness is related to the
brightness L of the image, as shown in Eq. (10), where T is
constant, which is related to the average value of the bright-
ness of the entire image, t ′ � T ln 10, T0 is a constant, L
represents the objective brightness value. The discontinu-
ous discrimination rate of the human eye in the dark is much
higher than the resolution in a bright place, so positioning the
image stitching in the bright area can significantly improve
the stitching effect of the image. We define the brightness
characteristic as BC.

BC � T ln L + T0 � t ′ lg L + T0 (10)

3.3.2 Brightness difference

Differential Eq. (10) yields Eq. (11), and it can be seen that
the difference in brightness conforms to the linear law with
the change of actual brightness. Among them, d(BC) and
dL represent subjective brightness and objective brightness,
respectively. At the same time, we define the brightness dif-
ference as BD, as shown in Eq. (12).

d(BC) � T
dL

L
(11)

BD � 255 − |(averange(L1) − averange(L2)| (12)

where L1 and L2 represent the brightness of pixels with
the same coordinates in the overlapping areas of the two
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images to be stitched, respectively. The averange function is
used to calculate the average brightness of pixels adjacent
to the current pixel. Through the previous analysis, it can be
obtained that compared with the high brightness difference
area, the stitching in the low brightness difference area can
obtain better stitching quality.

3.3.3 Masking characteristics

Masking characteristics is an important feature of the HVS,
and masking characteristics play an important role in image
processing. When there are multiple stimuli, the interaction
between the stimuli will cause some of them to be unper-
ceivable, especially when the characteristics of the stimuli
are similar to the environmental characteristics [39], which
is the masking characteristic. Visual masking characteristics
are generally related to the spatial frequency, direction, and
position of the stimuli.

The image regions can be divided into textured, smooth,
and other regions. Mismatches in the smooth region have
little effect on the results. The more cluttered the edge infor-
mation in the textured region, the more it helps to improve
the quality of the stitched image. The masking characteris-
tics quantization formula is shown in Eq. (13). MC is the
masking value for each pixel, where xmax − xmin represents
the difference between the maximum and minimum values
of the grayscale value of the neighborhood window. α and
β are constants, we set them to 0.8 and 1 according to the
experience of Cao et al. Except for these two cases, the MC
of the pixels in other regions is 0.

MC �
{

α ∗ (255 − xmax + xmin), pixelsinsmoothregions
β ∗ H , pixelsintextureregions

(13)

The textured region can mask the discontinuous edges
during image stitching, and the complexity in each region is
determined by Eq. (14), where H is the local entropy. l,w are
the length and width of the window around the pixel being
calculated. ni j represents a grayscale pixel, and l ∗ w is the
neighborhood window of the pixel.

H � −
l−1∑

i�0

w−1∑

j�0

ni j
l ∗ w

∗ (
log ni j − log(l ∗ w)

)
(14)

3.3.4 Visual attention

When people observe images, they divide the images into
different areas due to psychological factors, treat these areas
separately, and sometimes focus on only a part of them.When
the image is distorted in the areas the human eye focuses on,

distortion is more noticeable than in other areas. Every pixel
of an image has a unique salience value, and pixels with
higher significance have a greater impact on image quality.
If the seamline is in an area with high visual attention, it will
affect the quality of stitched images.

We choose the SDSPmodel proposed by Zhang et al. [40]
to calculate the visual attention value VA of pixels, and the
definition is shown in Eq. (15–18).

VA(x) � VF (x) ∗ VD(x) ∗ VC (x) (15)

VF (x) is a saliency plot modeled by band-pass filter-
ing, defining the image as p(x), converting it to CIEL∗a∗b∗
opponent color space, and the resulting three channels are
represented by pL(x), pa(x), and pb(x). f (x) is the transfer
function of the logarithmic filter Gabor.

VF (x) � 2
√

(pL∗ f )2 + (pa∗ f )2 + (pb∗ f )2 (16)

Vc(x) is color significant, θc is a parameter, pan(x) is a
linear mapping of pa(x), and pbn(x) is a linear mapping of
pb(x).

Vc(x) � 1 − e

(
p2bn (x)−p2an (x)

θC

)

(17)

VD(x) is location significant, and studies have shown that
objects near the center of the image are more attractive to
people, center is the center of the image p(x). θD is a param-
eter.

VD(x) � e

(

− ||x−center||22
θD

)

(18)

Selecting nonsignificant areas according to the VA model
to find the optimal seamline can lead to better results.

3.4 Establish attribute relationshipmodel

By image preprocessing we can get two images with similar
brightness: image1 and transformed image2. Find the feature
points through the SIFT algorithm and the RANSAC algo-
rithm to extract and optimize the feature point pairs, filter
out the mismatching results, and set the output homography
matrix to H .

According to the analysis of Sect. 3.3, brightness char-
acteristics, brightness difference, masking characteristics,
and visual attention all affect the quality of image stitch-
ing. According to the magnitude of influence, by building an
attribute relationship model to quantify the impact of these
four attributes on image stitching, the attribute relationship
model is shown in Eq. (19), where μ1, μ2, μ3 are constants
and μ1 + μ2 + μ3 � 0.9.
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(19)ARM � μ1 ∗ BC + 0.1 ∗ BD + μ2 ∗ MC + μ3 ∗ (255 − VA)

We mainly focus on the comprehensive feature of the
SDSP model, the value setting of μ3 will be higher than μ1,
μ2, according to the image preprocessing results, the two
images now have similar brightness, the brightness differ-
ence is not obvious, so the influence degree of the brightness
difference is set to 0.1, the value of μ1 is controlled between
0.1 and 0.2, and the splicing is positioned by adjusting the
values of μ2 and μ3. The main steps are shown in Algorithm
1. We define P as the area where image1 and transformed
image2 overlap.

Algorithm 1 Establish attribute relationship model 
Input: P 
Output: attribute relational graph _ . 
 
1.BC: +  
2.BD: − |( ( ) − ( )| 
3.MC: ∗ ( − + ),// pixels in smooth regions 

∗    , // pixels in texture regions 
, // pixels in other regions 

4.VA: ( ) ∗ ( ) ∗ ( ) 
5.ARM: ∗ + . ∗ + ∗ + ∗ ( − ) 
6.Process the P region according to ARM. 
Return _  

3.5 Optimal seamline selection and image fusion

According to the previous analysis, seamline has the lowest
impact on image quality when smooth and texture regions.
We use the edge detection algorithm to perform edge detec-
tion on the image, according to the obtained edge map, to
determine whether the edge pixels are splice line candidates.
If the optimal seamline produces a small number of discontin-
uous strong edges, and the discontinuous weak edges appear
in areas with low attention, the optimal seamline is almost
invisible.

The main process of the optimal seamline selection algo-
rithm is represented by Algorithm 2. When the two images
are aligned, there will be an intersection point on the top edge
of the image and the bottom edge of the image, which are
the two endpoints of the optimal seamline, and the intersec-
tion points of the upper and lower edges are start and end,
Find_edistance function is used to find the reciprocal of the
Euclidean distance between the two parameters, point is the
pixel currently being processed, next_point is the next can-
didate point, and the optimal seamline is a point set called
optimal_seamline.

Algorithm 2 Choose the optimal seamline 

Input: attribute relationship model ARM, , . 
Output: _ . 
1.Candidate pixels are selected based on the ARM. 
2.  ← ,  ← _  (candidate pixels  around , ) ; 

_  ← max(ARM + ) in candidate pixels 
Add  to the set _ . 

3.While ( _  != ) { 

Add _  to the set _ . 
 ← _ ,  ← _  (candidate pixels  around , ) 

    _  ← max(ARM + ) in candidate pixels 
} 

4.Add the pixel  to the set _  
Return _  
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Fig. 3 HVS attribute graph a two images directly stitched b brightness characteristic, c masking characteristics, d brightness difference, e visual
attention, f attribute relationship graph

After finding the optimal seamline for image fusion, divide
the overlapping area of the two images into twoparts based on
the optimal seamline, these two parts are filled by two images
separately. Fusing the images according to the Laplace pyra-
mid fusion method. The main steps are as follows. Calculate
the Gaussian pyramid and the Laplace pyramid of the input
image.Merge the pyramids ofLaplace,which are on the same
level. Expand the upper pyramid of Laplace until it has the
same resolution as the original image, then overlay the image
one after the other. Finally, we obtain the output image.

4 Experimental results and analysis

The platform used for this method is Windows 10 on a PC
with 3.33 GHz and 16 GB RAM. The program was written
in MATLAB. The description of the algorithm proposed in
this paper is an image stitching method based on HVS and
SIFT algorithm. To verify the effectiveness of the proposed
method, we evaluate the quality of image stitching through a
series of experiments, the experimental results show that the
proposed method can improve the quality of image stitching.
We experimented with visually representative images, all of
which were taken of natural scenes. We first compare the
results under different parameters during the stitching pro-
cess to find the influence of the parameters on the position of
the optimal seamline. Second, we compared the experimen-
tal results with the experimental method of Li et al. and the
experimental method of Cao et al., the results showed that
our experiments were more effective. We also added a sub-
jective evaluation of image quality. Finally, we performed a

limitation analysis of our experiment. To ensure the fairness
of the comparison, all test methods use the same matching
data and are performed on the same host.

4.1 Self-comparison experiments

Before conducting a comparative experiment, the images of
the four HVS properties that appear during the experiment
are first introduced.

In Fig. 3, we introduce the attribute relationship graphs of
HVS, all of which are processed on the overlap of image1
and transformed image2. As the brightness difference graph
shown in Fig. 3d, thewhite pixels indicate that there is a small
brightness difference in the current image position, and the
image is preprocessed according to the brightness difference
graph, and a small brightness difference is expected in the
area near the seamline to achieve the better stitching effect.
In Fig. 3e the brightest part of the image is the visual attention
point, and people will pay attention to these places first when
looking at the image. Figure 3f shows the attribute relation-
ship graph obtained by establishing the attribute relationship
model based on the four graphs before this graph.

Next, according to the established attribute relational
graph to find the optimal seamline, Fig. 4 shows the dif-
ference in seamline position when the three parameters are
assigned differently.

In Fig. 4, the most eye-catching thing is the tall building
in the middle and the sign on the building, and it can be
seen that the position of the seamline is different when the
attribute relationship model is different. When only MC or
BC is concerned, the seamline will pass through the central
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Fig. 4 The influence of parameters on the seamline position. a μ3, μ2 and μ1 are 0.55 0.25 0.1, b μ3, μ2 and μ1 are 0.5 0.2 0.2, c μ3, μ2 and μ1
are 0.5 0.3 0.1, d μ2 � 0.9, e μ3 � 0.9, f μ1 � 0.9

building and the sign on the building, which will lead to
poor stitching. When only focusing on the VA, the seamline
is close to the central building. Observing the three graphs
Figs. 4a, 4b, and 4c, it is found that Fig. 4b passes through
the central building, Fig. 4a can avoid the central building,
and Fig. 4c approaches the central building. The results of
fusing according to different seamline show that the stitching
effect of Fig. 4a is the best. The results of stitching according
to Fig. 4a can be seen in Fig. 7.

The blind/referenceless image spatial quality evaluator
(BRISQUE) algorithm is a reference-free spatial domain
image quality assessment algorithm. The larger the score,
the worse the quality of the image. We used the BRISQUE
algorithm to evaluate the quality of the images under three
different attribute relationship graphs, and the results showed
that (a) had a result of 25.52, which was 1.15 lower than (b)
result and 0.75 lower than (c) result.

In summary, the attribute relationship model influences
the final stitching effect, finding the optimal seamline is the
key to getting good experimental results.

4.2 Comparative experiment

We used multi-scale fusion to perform the final fusion
processing of the image. To more clearly show the influ-
ence of image preprocessing and image fusion on the final
result, we used the BRISQURE algorithm to compare the
stitching results without preprocessing and the preprocessed
results. Compare the direct fusion based on seamlinewith the
multi-scale fusion results. It can be seen from Table 1 that
preprocessing andmulti-scale fusion have a certain improve-
ment in experimental results.

In Figs. 5, 6, 7, 8, and 9, we list the direct fusion of SIFT
algorithm, the method of Cao et al., the algorithm of Li et al.,

Table 1 Image quality module research

Dataset Without
preprocessing

Seam-based direct
fusion

Ours

Stone 30.6890 30.1828 14.4051

Bike 19.2275 18.3640 11.8176

Building 26.2881 26.4091 25.5269

Stage 36.8865 35.4873 32.2650

Sunset 37.5081 37.8843 29.8874

and the stitching effect of our method under five datasets.
From the highlighted content in the figure, it can be seen
that SIFT splicing and direct fusion will produce an obvious
dividing line. Themethod of Cao et al. will result in the prob-
lem of misalignment and ghosting, and the algorithm of Li
et al. may cause a difference in brightness, and produce the
problem of dislocation, affecting the visual effect. And our
method can effectively avoid the problems of seams, ghost-
ing, and misalignment. In summary, our stitching effect is
better.

We give the results of scoring the five groups of images
in Figs. 5, 6, 7, 8, and 9 using the BRISQUE algorithm, and
the results are shown in Table 2.

In Fig. 10, tomore visualize the results of our experiments,
we provide the results of nine additional sets of experiments.

As can be seen in Table 2, our algorithm has the best-
quality of stitching results. Figure 11 shows that our method
scores line is under the other two methods with the best
results. We use the BRISQUE algorithm to score the images
in the dataset, excluding the failures, the average score of our
method is lower than themethod of Li et al. and themethod of
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Fig. 5 Stitching effect of datasets bike

Fig. 6 Stitching effect of datasets stone

Fig. 7 Stitching effect of datasets building
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Fig. 8 Stitching effect of datasets stage

Fig. 9 Stitching effect of datasets sunset

Table 2 BRISQUE algorithm scoring results

Dataset Li’s method Cao’s method Ours

Stone 27.2629 20.1724 14.4051

Bike 26.3873 19.6064 11.8176

Building 33.0743 35.5858 25.5269

Stage 42.0465 39.7439 32.2650

Sunset 29.6381 36.8405 29.8874

Cao et al., which shows that the quality of our image stitch-
ing is high, and the algorithm is better than the other two
algorithms.

In this paper, we focus on image stitching under HVS,
and subjective evaluation is also an essential part of image
quality evaluation. Accordingly, we introduce subjective
evaluation. We conducted two user studies to compare the
image stitching results of three different methods.We invited
20 participants to evaluate the unlabeled stitching results,

including 10 researchers with computer vision backgrounds.
We sequentially dropped two input images, our results, and
the others’ results on a large screen, each timewith our results
in a random order of placement with the others. The avail-
able results to the user are (1) A is better (2) B is better (3)
both good (4) both bad. The evaluation results are shown in
Fig. 12. It can be seen that our results are more favored by
users.

4.3 Limitations

When using the suture-based image stitching method, the
image must have a coincident area where the optimal seam-
line can be found. If the two images of the input have
particularly large parallax or the significant structure of the
image is very complex, when looking for the optimal seam-
line in the established attribute relationship graph, there will
be no optimal seamline. We provide a failure case in Fig. 13,
where the image has a large parallax and high-performance
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Fig. 10 More results of ours

Fig. 11 BRISQUE algorithm scoring line

alignment is not possible during the image alignment phase,
which directly affects the final result.

5 Conclusion

The method of stitching images combined with SIFT algo-
rithm and HVS proposed in this paper is a good solution
to improve the image quality under the human vision. This
method quantifies the visual characteristics of the human
vision to locate the seamline of two images to be stitched,
avoiding high perception area as much as possible. Before
using the SIFT algorithm to obtain the homography matrix,
preprocessing is used to minimize the brightness difference
between the two images, and the saturation and contrast are
fine-tuned to make them more suitable for subsequent pro-
cessing. The next step is to build the attribute relationship
model, determine the optimal seamline and perform multi-
scale fusion to obtain the final results. Based on a series
of comparative experimental results analysis, our method is
evaluated and has a superior visual effect and good stitching
effect under the human visual effect. In the following work,
we will also develop more flexible adaptive brightness pre-
processing methods to eliminate the disadvantage of manual

Fig. 12 user study on visual
quality. The number are shown in
percentage and averaged on 20
participants

123



438 J. Zhang, Y. Xiu

Fig. 13 A failure example. The red rectangle indicates the unsatisfying stitched areas

parameter adjustment for image preprocessing. By introduc-
ingmachine learningmethods, work efficiency can be further
improved, which is also the research direction of futurework.

Acknowledgements This study was supported by the National Key
Research and Development Program of China (2017YFB0102500), the
National Natural Science Foundation of China (61872158, 62172186),
the Science and Technology Development Plan Project of Jilin
Province (20190701019GH, 20200401132GX), the Korea Foundation
for Advanced Studies’ International Scholar Exchange Fellowship for
the academic year of 2017–2018, the Fundamental Research Funds for
the Chongqing Research Institute Jilin University (2021DQ0009), and
the Fundamental Research Funds for the Central Universities.

Data availability All data, materials generated or used during the study
appear in the submitted article.

Declarations

Conflict of interest The authors have no conflicts of interest to declare
that are relevant to the content of this article.

References

1. Wang, L., Yu, W., Li, B.: Multi-scenes image stitching based
on autonomous driving. IEEE 4th information technology, Net-
working,Electronic andAutomationControlConference (ITNEC),
pp. 694–698 (2020)

2. Hu, F., Bai, L., Li, Y., Tian, Z.: Environmental reconstruction for
autonomous vehicle based on image feature matching constraint
and score. Pacific Rim International Conference on Artificial Intel-
ligence, pp. 140–148 (2018)

3. Wang, B., Li, H., Hu, W.: Research on key techniques of multi-
resolution coastline image fusionbasedonoptimal seam-line. Earth
Sci. Inform. 13, 333–344 (2020)

4. Niu, C., Zhong, F., Xu, S., Yang, C., Qin, X.: Cylindrical panoramic
mosaicing from a pipeline video throughMRF based optimization.
Vis. Comput. 29, 253–263 (2013)

5. Chen, J., Fu, Z., Huang, J., Hu, X., Peng, T.: Boosting vision
transformer for low-resolution borehole image stitching through
algebraic multigrid. Vis. Comput. 38, 3191–3203 (2022)

6. Zhu, C., Ding,W., Zhou, H., Yu, F.: Real-Time imagemosaic based
on optimal seam andmultiband blend. IEEE 8th Joint International
Information Technology and Artificial Intelligence Conference
(ITAIC), pp. 722–725 (2019)

7. Kim, H.G., Lim, H.-T., Ro, Y.M.: Deep virtual reality image qual-
ity assessment with human perception guider for omnidirectional

image. IEEE Trans. Circuits Syst. Video Technol. 30(4), 917–928
(2020)

8. Lee, K.-Y., Sim J.-Y. (2020): Warping residual based image stitch-
ing for large parallax. IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 8195–8203

9. Li, J.,Wang, z., Lai, s., Zhai, y., Zhang,m.: Parallax-Tolerant Image
Stitching Based on Robust ElasticWarping. IEEE Trans. Multime-
dia, vol. 20, no. 7, pp. 1672–1687 (2018)

10. Li, J., Deng, B., Tang, R., Wang, Z., Yan, Y.: Local-adaptive image
alignment based on triangular facet approximation. IEEE Trans.
Image Process. 29, 2356–2369 (2020)

11. Liu, T., Zhang, J.: An improved path planning algorithm based on
fuel consumption. J. Supercomput. 78, 12973–13003 (2022)

12. Zhang, J., Gao, Y., Xu, Y. Huang, Y., Yu, Y., Shu, X.: A simple
yet effective image stitching with computational suture zone. Vis.
Comput. (2022)

13. Nie, L., Lin, C., Liao, K., Liu, S., Zhao, Y.: Unsupervised deep
image stitching: reconstructing stitched features to images. IEEE
Trans. Image Process. 30, 6184–6197 (2021)

14. Kerschner, M.: Seamline detection in colour orthoimage mosaick-
ing by use of twin snakes. ISPRS J. Photogramm. Remote. Sens.
56, 53–64 (2001)

15. Li, L., Yao, J., Lu, X., Tu, J., Shan, J.: Optimal seamline detection
for multiple image mosaicking via graph cuts. ISPRS J. Pho-
togramm. Remote. Sens. 113, 1–16 (2016)

16. Li, L., Yao, J., Liu, Y., Yuan,W., Shi, S., Yuan, S.: Optimal seamline
detection for orthoimage mosaicking by combining deep convolu-
tional neural network and graph cuts. Remote Sens. 9, 701 (2017)

17. Hejazifar, H., Khotanlou, H.: Fast and robust seam estimation
to seamless image stitching. Signal Image Video Process 12(5),
885–893 (2018)

18. Lin, K., Jiang, N., Cheong, LF., Do, M., Lu, J.: SEAGULL:
seam-guided local alignment for parallax-tolerant image stitching.
Comput. Vis. ECCV, pp. 370–385 (2016)

19. Li, L., Tu, J., Gong, Y., Yao, J., Li, J.: Seamline network genera-
tion based on foreground segmentation for orthoimagemosaicking.
ISPRS J. Photogramm. Remote Sens. 148, 41–53 (2019)

20. Zhang, W., Guo, B., Li, M., Liao, X., Li, W.: Improved seam-
line searching algorithm for UAV image mosaic with optical flow.
Sensors 18(4), 1214 (2018)

21. Shi, Z., Chen, K., Pang, K., Zhang, J., Cao, Q.: A perceptual image
quality index based on global and double-random window similar-
ity. Digit. Signal Process. 60, 277–286 (2017)

22. Li, N., Liao, T.,Wang, C.: Perception-based seam cutting for image
stitching, pp. 967–974. Signal, Image and Video Processing (2018)

23. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60, 91–110 (2004)

24. Zhang, J., Liu, T., Yin, X., Wang, X., Zhang, K., Xu, J., Wang,
D.: An improved parking space recognition algorithm based on
panoramic vision. Multimed. Tools Appl. 80, 18181–18209 (2021)

123



Image stitching based on human visual system and SIFT algorithm 439

25. Wang, Z., Yang, Z.: Review on image-stitching techniques. Mul-
timed. Syst. 26, 413–430 (2020)

26. Lee, H., Lee, S., Choi, O.: Improved method on image stitch-
ing based on optical flow algorithm. Int. J. Eng. Bus. Manag. 12,
1847979020980928 (2020)

27. Sheng, M., Tang, S., Cui, Z., Wu, W., Wan, L.: A joint framework
for underwater sequence images stitching based on deep neural
network convolutional neural network. Int. J. Adv. Robot. Syst.
17(2), 1729881420915062 (2020)

28. Pham, N.T., Park, S., Park, C.-S.: Fast and efficient method for
large-scale aerial image stitching. IEEE Access 9, 127852–127865
(2021)

29. Krishnakumar, K., Indira Gandhi, S.: Video stitching based on
multi-view spatiotemporal feature points and grid-based matching.
Vis. Comput. 36, 1837–1846 (2020)

30. Jia, Q., Li, Z., Fan, X., Zhao, H., Teng, S., Ye, X., Latecki, L.:
Leveraging line-point consistence to preserve structures for wide
parallax image stitching. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12181–12190 (2021)

31. Liao, T., Li,N.: Single-perspectivewarps in natural image stitching.
IEEE Trans. Image Process. 29, 724–735 (2020)

32. Hossein-Nejad, Z., Nasri, M.: Clustered redundant keypoint elimi-
nationmethod for imagemosaicingusing a newGaussian-weighted
blending algorithm. Vis Comput 38, 1991–2007 (2022)

33. Cao, Q., Shi, Z., Wang, P., Gao, Y.: A seamless image-stitching
method based on human visual discrimination and attention. Appl.
Sci. 10, 1462 (2020)

34. Anzid, H., le Goic, G., Bekkari, A. Mansouri, A., Mammass, D.: A
new SURF-based algorithm for robust registration of multimodal
images data. Vis. Comput. (2022)

35. Sun, J., Wang, G., Goyal, V., Varshney, L.: A framework for
Bayesian optimality of psychophysical laws. J. Math. Psychol. 56,
495–501 (2012)

36. Goodhew, S., Dux, P., Lipp, O., Visser, T.: Understanding recovery
from object substitution masking. Cognition 122, 405–415 (2012)

37. Fischler, M.A., Bolles, R.C.: Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM. 24(6), 381–395 (1987)

38. Dehaene, S.: The neural basis of the Weber-Fechner law: a loga-
rithmic mental number line. Trends Cogn. Sci. 7, 145–147 (2003)

39. Agaoglu, S., Agaoglu, M., Breitmeyer, B., Ogmen, H.: A statistical
perspective to visual masking. Vision. Res. 115, 23–39 (2015)

40. Zhang, L., Gu, Z., Li, H.: SDSP: A novel saliency detectionmethod
by combining simple priors. IEEE International Conference on
Image Processing, pp. 171–175 (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Jindong Zhang received the
MSc and PhD degree in computer
science and technology from Jilin
University, in 2009. He is on
faculty of Jilin University as an
associate professor and doctoral
supervisor of Computer Science
and Technology, Key Laboratory
of Symbol Computation and
Knowledge Engineering of the
Ministry of Education, and State
Key Laboratory of Automobile
Simulation and Control. He began
a one-year visit to the Division
of Computer Science, College of

Computing, Hanyang University, Ansan, Republic of Korea, from
2017 to 2018. He has co-authored more than 60 research publications
in peer reviewed journals and international conference proceedings

Ying Xiu received her Bachelor’s
degree in Software engineering
from Jilin University, China, in
2021. She is currently a Master’s
student in the School of Computer
Science and Technology at Jilin
University, China. Her research
interests include computer vision,
artificial intelligence, image pro-
cessing, image feature extraction,
and image feature extraction

123


	Image stitching based on human visual system and SIFT algorithm
	Abstract
	1 Introduction
	2 Related work
	2.1 Image stitching
	2.2 Human visual system

	3 Method
	3.1 Image preprocessing
	3.2 SIFT and RANSAC feature extraction and registration
	3.3 Human visual system characteristic
	3.3.1 Brightness characteristic
	3.3.2 Brightness difference
	3.3.3 Masking characteristics
	3.3.4 Visual attention

	3.4 Establish attribute relationship model
	3.5 Optimal seamline selection and image fusion

	4 Experimental results and analysis
	4.1 Self-comparison experiments
	4.2 Comparative experiment
	4.3 Limitations

	5 Conclusion
	Acknowledgements
	References




