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Abstract
Infrared and visible image fusion aim to obtain a fused image with salient targets and preserve abundant texture detail
information as much as possible, which can potentially improve the reliability of some target detection and tracking tasks.
However, some visible images taken from low-illumination conditions are subjected to losing many details and cannot obtain
a good fusion result. To address this issue, we proposed a novel adaptive visual enhancement and high-significant targets
detection-based fusion scheme in this paper. First, a bright-pass bilateral filter and adaptive-gamma correction-based algorithm
are proposed to enhance the visible image adaptively. Second, an iterative guided and infrared patch-tensor-based algorithm
are proposed to extract the infrared target. Third, an efficient hybrid �1 − �0 model decomposes the infrared and visible image
into base and detail layers and then fuses them by weight map strategy. The final fused image is obtained by merging the fused
base layers, detail layers, and infrared targets. Qualitative and quantitative experimental results demonstrate that the proposed
method is superior to 9 state-of-the-art image fusion methods as more valuable texture details and significant infrared targets
are preserved. Supplemental material and codes of this work are publicly available at: https://github.com/VCMHE/BI-Fusion.

Keywords Image fusion · Adaptive low light visual enhancement · High-significant target detection · Hybrid decomposition

1 Introduction

As an information-enhanced technique, image fusion plays a
vital role in computer vision [1, 2]. Specifically, image fusion
aims to extract and integrate feature information from differ-
ent source images to generate a single fused image, providing
more comprehensive information for the human visual sys-
tem and applications [3, 4]. Based on different types of source
images, image fusion can be mainly divided into five cate-
gories [5]: multi-focus image fusion [6], infrared and visible
image fusion [7], multi-exposure image fusion [8], multi-
modal medical image fusion [9], and remote sensing image
fusion [10]. Among these, infrared and visible image fusion
is one of the essential branches since the high complemen-
tarity between source images [11].
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Generally speaking, visible images contain high resolu-
tion and abundant texture details, but they are susceptible
to the environment, such as low illumination environment
and foggy atmosphere, resulting in the ability of depicts tar-
get drops significantly [12] (Fig. 1a). Compared with visible
images, infrared images are advantageous in representing
salient targets because of the thermal radiation [13]. How-
ever, infrared images have shortcomings such as poor texture
and low resolution (Fig. 1b). Therefore, the fusion of infrared
and visible images can obtain more comprehensive scene
information, as shown in Fig. 1c. The fused image con-
tains both significant infrared targets and preserves abundant
visible detail information, potentially improving the recog-
nizability of targets under various environments [14].

Infrared and visible image fusion methods can be
divided into pixel-level, feature-level, and decision-level-
based methods [15]. Some traditional pixel-level-based
methods can fuse infrared and visible images, but minimum
artifacts still exist [16]. Currently, with the development of
multiscale theory, many corresponding algorithms have been
proposed, such as TE-MST [17], discrete wavelet transform
(DWT) [18], MGFF [19], and ADF [20]. Meanwhile, some
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Fig. 1 a Visible image; b infrared image; c fusion result of our method

sub-space-based methods have also been proposed, such as
FPDE [21], PCA [22], and ICA [23].

Some feature-based methods are also applied in infrared
and visible fusion tasks. Li et al. proposed a novel fusion
strategy (IVFusion) [24], which obtained the feature weight
map by calculating the structural similarity between the pre-
fusion image and the source images. In our previous work,
we extracted salient features in infrared images through a
significant target analysis method to highlight the saliency
of fused targets [25]. Other feature exact filters such as CBF
[26] and GFF [27], are also applied in infrared and visible
image fusion tasks.

The decision-level-basedmethod can facilitate the process
of designing fusion rules. Zhao et al. proposed an infrared and
visible image fusion method based on the Bayesian model
[28], which can automatically obtain the adaptive fusion
weight. Panigrahy et al. [29]. proposed a parameter adap-
tive unit-link dual-channel PCNN model to automatically
measure the activity level and demonstrated the proposed
model is more effective than the corresponding manual set-
tings. Meanwhile, with the development of deep learning
theory, many fusion methods based on neural networks have
been proposed in recent years. Li et al. [30] proposed a novel
end-to-end residual fusion network (named RFN-Nest) in
which the detail-preserving and feature-enhancing loss func-
tions are carefully designed to preserve the detail of the
fused image. Ma et al. [31] proposed FusionGAN, which
first applied GAN to infrared and visible image fusion tasks,
avoiding the difficulty of manually designing fusion rules.
Li et al. [32]. proposed a novel coupled GAN structure to
conduct the fusion task and they use the pre-fused image
as the label to guide the training process. Tan et al. [33].
designed a flexible spatiotemporal fusion model based on
conditional GAN, which can alleviate the time dependence
between references and prediction images. Based on GAN
and dense blocks, Fu et al. [34] proposed a perceptual Fusion-
GAN network. By concatenating visible images at each layer
and designing structural similarity and gradient loss func-
tions, the fused image is consistent with perception. These
deep learning-based methods can also automatically extract
deep features. However, challenges still exist, such as lacking
training data and ground truth.

Infrared and visible image fusion aim to obtain a fused
image with salient targets and preserve rich texture detail

information. However, the quality of infrared and visible
images collected by sensors is usually different, especially
those visible images taken from low-illumination conditions
are subjected to losingmany details and cannot obtain a good
fusion result. Moreover, some current infrared and visible
image fusion algorithms mainly focus on the decomposition
mode and fusion rules, such as MGFF [19], IVFusion [24],
and our previous work [25], so the robustness of the low-
illumination visible images needs to be improved.

Based on the above analysis, a novel adaptive visual
enhancement and high-significant target detection-based
infrared and visible image fusion scheme is proposed. First,
the illumination component is estimated by the fast bright-
pass bilateral filtering, and then enhance the visible image
by an adaptive gamma enhancement method. Second, the
infrared patch-tensor model (IPT) is constructed to extract
the coarse infrared targets. Then the accurate salient regions
map is generated by the iterative optimization method based
on the guided filter. Third, decomposing the infrared and
visible images into base and detail layers by the efficient
hybrid �1 − �0 model, the base layers are fused by the visual
saliency map strategy, and the detail layers are fused by the
visual difference feature map strategy. The final fused image
is obtained bymerging the fused base layer, detail layers, and
infrared targets.

The main contributions of our work can be summarized
as follows:

(1) A visible image enhancement algorithm (named BFAC)
is proposed. BFAC is based on bright-pass bilateral filter
and adaptive-gamma correction. Unlike some previous
fusion algorithms that directly fuse infrared and visible
images, BFAC is applied to preprocess the visible image
before fusion. Qualitative and quantitative experimental
results demonstrate that BFAC can effectively enhance
the hidden details in visible images while avoiding the
overexposure problem, leading to the final fusion results
containing rich scene information and consistent with
the human visual system.

(2) An infrared targets extraction algorithm (named IGPT)
is proposed. The algorithm first obtains coarse saliency
regions by calculating the tensor rank through the IPT
model and then generates the accurate saliency region
map through iterative guided filtering and convergence
conditions. Compared with previous saliency detection
networks, this algorithm can extract infrared targets
accurately, thereby enhancing the saliency of infrared
targets in the final fused image.

(3) Based on BFAC and IGPT, we propose a novel infrared
and visible image fusion scheme based on the hybrid
�1−�0 decomposition model. The qualitative and quan-
titative analysis demonstrates that the final fusion results
are superior to some state-of-the-artmethodswith richer
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texture details and salient infrared targets, which can
potentially improve the recognizability of the target
under complex environments.

The rest of this paper is organized as follows. In Sect. 2,
corresponding preliminaries and methods are discussed.
Section 3 presents the proposed method in detail. The exper-
imental results and discussions are provided in Sect. 4.
Section 5 draws a conclusion of this work.

2 Preliminaries

This section briefly introduces the preliminary theories and
methods, including the Retinx model and Infrared-Patch-
Tensor model (IPT).

2.1 Retinxmodel

The Retinex model is widely applied in image enhance-
ment tasks [35, 36], as it is consistent with the human
visual system. The idea of Retinex-based methods can be
generally summarized as three steps. First, decomposing
the observed image into the illumination component and
reflectance component. Second, enhancing the illumination
component. Then, the final enhanced image can be obtained
by combing the enhanced illumination and reflectance com-
ponent.

Bright-pass bilateral filtering (BPBF) [37] belongs to the
Retinex theory and can be used to estimate the illumination
component Ls of a source image V Is . Which can be mathe-
matically expressed as:

Ls(i) � 1

ηi

∑

j∈�

ω( j)�(V Is(i − j) − V Is(i))V Is(i − j),

(1)

where

ηi �
∑

j∈�

ω( j)�(V Is(i − j) − V Is(i)). (2)

� is the neighborhood of the performed aggregation.
The spatial kernel ω is:

ω(i) � exp

(
−||i ||2

2θ2

)
, (3)

The range kernel � in (1) is:

�(t) �
{
exp

(
− t2

2σ 2

)
if t ≥ 0,

0 otherwise,
(4)

where θ and σ are standard deviations.

Based on BPBF, a Fourier approximation algorithm called
FBPBF is proposed in [38], which replaces the range kernel
� with a K -term Fourier approximation. As a result, the
FBPBF can effectively estimate the illumination component
with a low computing cost.

2.2 Infrared-patch-tensor model

The infrared patch-tensor (IPT) model converted the detec-
tion of infrared targets as a matrix decomposition and
optimization problem, which assumed the background is
low-rank and the salient regions are sparse. Accurately
approximating the background tensor rank is a key in the
IPT model.

In [39], kong et al. proposed a novel IPT model base on
nonconvex tensor fibered rank approximation to detect the
salient regions of infrared images. The proposed model can
be mathematically defined as:

min
B,T

||B||LogT FNN+λ||T � W||1+β||B||HTV ,

s.t.||I − B − T ||F≤ δ
(5)

where I is the infrared patch tensor, B is the background
patch tensor, and T is the target patch tensor. In (5), the
infrared patch images are converted to tensors to improve the
data processing efficiency. Then, the tensor fibered nuclear
norm based on Log operation (LogT FNN ) is used to
approximate the tensor fibered rank. In order to suppress
the sparse interference of corners and edges, the prior infor-
mation is added by the local structure tensor W , � is the
Hadamard product. Factor λ is used to balance the sparse and
low-rank components. Besides, a novel hypertotal variation
regularization term (HTV) [40] is also applied to constrain
background noise and β is the corresponding regularization
factor. The model in (5) can be further expanded as:

min
B,T

3∑

k�1

αkHk(Xk) + λ||T � W||1+β||Z||HTV

+
1

2μ
||I − B − T ||2F ,

s.t.

{
B � Xk , k � 1, 2, 3
Z � B (6)

where mode—mode-kt-SVD[41] is used to calculate the ten-
sor rank, the variable k ranges from 1 to 3, αk is a weighting
factor and satisfies the condition

∑3
k�1 αk � 1,Hk(Xk) �

||B||log−mode−k−TFNN, Z is the auxiliary variable, and μ is
the penalty factor.

In order to solve this optimization problem, the alternat-
ingdirectionmethodofmultipliers (ADMM) [42] framework
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Fig. 2 The framework of the proposed method

is applied, which converts problem (6) to solving five sub-
problems iteratively, then the coarse background and salient
targets can be obtained by reconstructing B and T .

3 Methodology

The framework of the proposed method is shown in Fig. 2
which consists of three sub-modules: visible image adap-
tive enhancement module, infrared target extraction module,
decomposition, and fusion module.

First, the illumination component is estimated by the fast
bright-pass bilateral filtering, and then we correct the bright-
ness of the visible image by calculating the adaptive gamma
value so as to obtain the enhanced visible image with an
excellent visual effect. Second, the infrared patch-tensor
model is constructed to extract the coarse infrared targets;
then, the accurate target map is generated through iterative
guided filtering and convergence conditions. Third, decom-
posing the infrared and visible images into base and detail
layers by the efficient hybrid �1−�0 model, the base layers
are fused by the visual saliency map, and the detail layers are
fused by the visual difference feature map. The final fused
image is obtained by merging the fused base layer, detail
layers, and infrared targets.

3.1 Bright-pass bilateral filter and adaptive-gamma
correction-based image enhancement (BFAC)

Asmentioned in the preliminaries section, given an observed
image V Is , the FBPBF algorithm [38] can estimate the
illumination component Ls by a Fourier approximation of

bright-pass bilateral filtering. Then multiply the gamma
correction with the illumination component to obtain the
enhanced image V I . This process can be presented in (7).

VI � V Is
Ls

× 255

(
Ls

255

)T

, (7)

where T � 1
/

γ , in the above-mentioned FBPBF algorithm,
the γ is set to 2.2, enhancing the image uniformly. However,
for the infrared and visible image fusion task, the charac-
teristics of the collected visible images are diverse. It is
impractical to enhance all the visible images with a con-
stant coefficient, as shown in (b2), (b3), (b4), (b5), and (b6)
in Fig. 3.

Overexposure problems arise in FBPBF. Therefore, we
proposed an efficient algorithm to achieve adaptive enhance-
ment of visible images.

In (7), the illumination component Ls is enhanced by the
gamma correction function:

Fγ (x) � (x)
1
γ , (8)

where x is the normalized pixel value in Ls which ranges
from 0 to 1, and the range of Fγ is (0, 1) too. Figure 4 (p1)
shows the plot of the gamma correction function Fγ (x) with
the different values of γ , when γ is increased, the value of
Fγ gradually increases, and the enhancement effect gradually
strengthens. So, we can control the degree of luminance by
adaptively adjusting γ .

Specifically, we define IMean as the normalized mean
value of pixels. Given a low-illumination image with small
IMean , γ should be larger to make a higher level of enhance-
ment. Given a normal-illumination image with large value of
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IMean , γ should be smaller to avoid overexposure problems.
On the other hand, according toWeber-Fechner law [43], the
brightness perception of the human visual system is loga-
rithmically related to illuminance. Therefore, we define an
optimization function in (9) to obtain the adaptive γad , Then
obtain the adaptive enhanced image according to (7).

γad � ln

(
1 +

1

IMean

)
. (9)

In this paper, we select 21 pairs of visible images captured
in different scenes to verify the effectiveness of the proposed
algorithm. The relationship between IMean and γad is illus-
trated in Fig. 4 (p2), when IMean increased, γad gradually
decreased, the enhancement effect gradually weakens, which
means our algorithm can adaptively enhance visible images
according to the actual situation.

Figure 3 shows the enhanced results by different methods.
Figure 3 (a1)–(a6) are the visible images (IMean from low
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to high), Fig. 3 (b1)–(b6), (c1)–(c6) illustrate the enhanced
results of the FBPBF algorithm and the proposed method.
We can observe that the FBPBF cannot enhance the vis-
ible images adaptively, resulting in overexposure (such as
Fg.3 (b2)–(b6)). On the contrary, our method has two dis-
tinct advantages. First, for the low-illumination images (Fg.3
(a1)–(a3)), our method can enhance the detailed informa-
tion and maintain the naturalness of the images. Second, for
the normal-illumination visible image (Fig. 3 (a4)–(a6)), our
results maintain consistent properties with the original vis-
ible images, avoiding the distortion of detail and contrast
compared to the FBPBF algorithm (Fig. 4).

Figure 5 shows the quantitative comparison results on 21
pairs of visible images. Lightness order error (LOE) canmea-
sure the lightness distortion of enhanced results [44]. The
smaller the value of LOE, the more natural the enhanced
result is. VIFP is consistent with the human visual system
and is used to measure the distortion of visual information
[45]. The larger the value, the better visual information con-
tains.

From the statistical results, our method can achieve the
best average value on LOE and VIFP, which demonstrates
our results can enhance the detailed information from low-
illumination images while maintaining the naturalness of
enhanced images, achieving the adaptive enhancement of vis-
ible images. The total calculation process can be expressed
by Algorithm 1.

3.2 Iterative guided and infrared patch-tensor based
target extraction (IGPT)

As highlighted by the rectangles in Fig. 6, infrared images
can efficiently represent salient targets comparedwith visible
images. Therefore, the preservation of infrared targets gener-
ally needs to be considered during the fusion process. Based
on this motivation, an iterative guided and infrared patch-
tensor based target extraction algorithm (IGPT) is proposed.

As discussed in the section of preliminaries, we first
applied the infrared patch-tensor model (IPT) to coarsely
extract infrared targets as shown in the fourth row of Fig. 6.
It can be seen that, problems such as isolated pixels and dis-
continuous edges exist in the results of IPT model.

In order to address the above problems, a threshold strat-
egy [46] is devised to remove those small and insignificant
pixels. Specifically, when the area of the pixel region is
smaller than the threshold, these pixels are reversed. The
threshold is a user-defined value that can be determined
according to different tasks, and we analyzed it in Sect. 4.6.
In this paper, we set the threshold to 0.0002×H ×W , where
H and W are the height and weight of the infrared image,
respectively. In addition, considering the excellent structure
transferring property of the guided filter [47], we further pro-
posed an iterative guided scheme to preserve as much edge
details as possible of infrared targets. The total calculation
process of IGPT can be summarized in Algorithm 2.

In the iterative guided scheme, the dynamic optimization
model between the guidance I R and the infrared target map
T n
I Ri in n-th iteration is defined as follows:

T n
I Ri � ank I Ri + bnk ∀i ∈ ωk , (10)
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where i is the index of pixels, n is the number of iterations,ωk

is a square windowwith radius r ,ank and b
n
k are coefficients in

n-th iteration which can be obtained by solving the following
cost function:

E(ank , b
n
k ) �

∑

i∈ωk

((ank I Ri + bnk − T n−1
I Ri )

2 + εank ) (11)

where T n−1
I Ri is the filtering input, ε is a regularization param-

eter, and the solutions of (ank , b
n
k ) is presented as (12) and

(13) which is based on the previous output T n−1
I R .

ank �
1

|ω|
∑

i∈ωk
I Ri T

n−1
I Ri − μkT

n−1
I Ri

σ 2
k + ε

, (12)

bnk � T n−1
I Ri − ankμk , (13)

where |ω| is the number of pixels in ωk ,T
n−1
I Ri is the mean of

T n−1
I Ri in ωk ,μk and σ 2

k are the mean and variance of I R in
ωk .

By analyzing the above definition, it can be concluded
that if a pixel is in a “High variance” area, it means this
pixel belongs to the edge area, then we have σ 2

k >> ε, so ank
will become far from 0. And the edge structure of the infrared
target in I R will gradually transfer to the T n

I R with increasing
n. If a pixel is in the “Flat patch” area, it means pixels in this
area are almost constant, then we have σ 2

k << ε, so ank is
approximate to 0 (more details can be referred to [47]), then
based on (10) and (13) the infrared target map T n

I R can be
obtained by:

T n
I Ri ≈ T n−1

I Ri , ifank ≈ 0. (14)

According to (14), it can be further deduced that:

T n
I R ≈ T n−1

I R

T n−1
I R ≈ T n−2

I R

}
⇒ T n

I R ≈ T n−1
I R , if nis large enough.

(15)

which means the edge details of the target in I R image have
been transferred to the infrared target map T n

I R as much
as possible, and the final infrared target map TI R can be
obtained.

As shown in Fig. 7 (a2)–(b4). As the number of iterations
increases, Targets become more and more salient, and the
edges also become sharper. In order to find the convergence
condition, we define an evaluation function as (16).

SSIMx , y �
∑

x , y

2μxμy + c1
μ2
x + μ2

y + c1
· 2σxσy + c2
σ 2
x + σ 2

y + c2
· σxy + c3
σxσy + c3

,

(16)

where SSIM (structural similarity indexmeasure)[48] is used
tomeasure the structural similarity between images x and y,μ
is the mean value, σx and σy are the standard deviations of x
and y, σxy is the covariance, c1,c2 and c3 are stable factors. A
lager SSI M indicates the more similar the two images are in
terms of brightness, structure, and contrast information. The
curve of SSI M with different iterations is shown in Fig. 7. It
can be seen that as iter increases, SSI M increases too, and
then begins to converge.We conduct lots of experiments with
different infrared images and found that the curve tends to
converge with 50 iterations.

Figure 6 shows the infrared target map obtained by dif-
ferent methods. Compare with IPT [39] and BASNet [49],
our method has two distinct advantages. First, the proposed
method can accurately obtain the infrared target. Such as in
Kaptein_1123 (The third column in Fig. 6) the result obtained
by our method contains both the chimney and the man. Sec-
ond, as the iterative guided scheme is adopted, our method is
superior in edge retention. As highlighted by the red rectan-
gles, the results obtained by our method have a better visual
effect as continuous and fine boundaries are preserved, which
can increase the target saliency of the fused images effec-
tively.

3.3 Decomposition and fusion

In this section, we will discuss how the infrared and visible
images are decomposed and the process of obtaining the final
fused image. For convenience, the adaptive enhanced visible
image is denoted by V I , the infrared image is denoted by I R,
the decomposed base layers of visible and infrared image are
denoted by BV I and BI R , respectively, the detail layers of
the visible and infrared images are denoted by Di

V I and Di
I R ,

respectively, where i is the scales ranges from 1 to 2 in this
paper. The whole process of decomposition and fusion can
be summarized as the following four steps:

Step1: Decompose the V I and I R into base layers and
detail layers (BV I , BI R , D1

V I , D2
V I , D1

I R , D2
I R) by the

hybrid �1−�0 decomposition model.
The hybrid �1−�0 decomposition model can be defined

as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1 � model�1−�0 (s)
d1 � s − b1

b2 � model�1 (b
1)

d2 � b1 − b2

, (17)

This model can decompose the image into one base layer
b2 and two detail layers d 1 and d 2, s represents the source
image, model�1−�0 (·) represents the optimization in (18).

min
b

N∑

i�1

{(si − bi )
2 + λ1

∑

j�{x , y}
|∂ j bi |+λ2

∑

j�{x , y}
F(|∂ j di |)}, (18)
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highlighted dots represent the target map T iter on the left side; as iter
increases, SSI M increases too and then begins to converge

where i is the pixel index and N is the number of pixels in the
image, ∂ j is the partial derivative in x and y directions. The
first term (si −bi )2 controls the base layer close to the source
image, the second term indicates the �1 gradient prior term
imposed on the base layer, and the third term means the �0
gradient prior term imposed on the detail layer by a function
F(x).

F(x) �
{
1, x 
� 0
0, else

. (19)

model�1 ( · ) is the simplification of model�1−�0 (·) which can
be represented by (20).

min
b2

N∑

i�1

{(b1i − b2i )
2 + λ3

∑

j�{x , y}
|∂ j b

2
i |}, (20)

In the hybrid decomposedmodel, twomain parameters (λ1
and λ2) would affect the decomposed result, and we set λ1
to 0.3 and λ2 to 0.003, according to the previously published
study [50].

Step 2: Fusion of base layers.
To obtain the fused image with a natural visual effect con-

sistent with the human visual system. The base layer of the
fused image should keep a proper contrast. However, in the
traditional multi-scale-based fusion algorithms, most adopt
the “average” fusion rule [17, 51], which will cause energy
loss and result in a poor fusion result. In this paper, we adopt
a fusion strategy based on the visual saliency map [52] to
solve the above-mentioned problems.

The visual saliency map can be defined as follows:

V � |Iq − I1|+|Iq − I2|+ · · · + |Iq − In|, (21)

where Iq is the intensity of a pixel q in the image I , the num-
ber of pixels ranges from 1 to n. Then, V is normalized in [0,
1]. The visual saliency map can retain the mainly interesting
regions of images.

The fusion weight is obtained based on the visual saliency
map V , and the base layer of the fused image is obtained by:

BF � (1 + VI R − VV I )BI R + (1 + VV I − VI R)BV I

2
. (22)

Step 3: Fusion of detail layers.
In Sect. 3.2, an infrared target extraction algorithm (IGPT)

is proposed, which can maintain the salient infrared targets
in the final fused image. Therefore, the key to designing the
detail layer fusion rules should be to preserve more valuable
visible detail information while preserving the basic saliency
of infrared features. Based on the above analysis, we pro-
posed a fusion strategy based on the visual different feature
map [53], which is defined as follows:

Ri �
{

|Di
I R |−|Di

V I |, |Di
I R |−|Di

V I |> 0
0, otherwise,

(23)

where Di
I R , D

i
V I is the detail layers obtained by (17), i is

the scale ranges from 1 to 2, then Ri is normalized in [0, 1].
And the fusion weight of detail layers is obtained by (24),
Gaus(·) is the Gaussian filter used to reduce noise pixels.
The fused detail layers can be obtained by (25).

Ci � Gaus(Ri ), (24)

Di
F � Ci Di

I R + (1 − Ci )Di
V I i � 1, 2. (25)

Step 4: Obtain the Final fused image.
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After obtaining the fused base layer and detail layer, the
pre-fused image can be reconstructed by

Fpre � BF + D1
F + D2

F (26)

And the final fused image F is obtained by

F � (1 − TI R) × Fpre + TI R × I R (27)

where TI R is the infrared targetmap obtained by the proposed
IGPT method described in Algorithm 2.

4 Experiments and analysis

4.1 Experimental configuration

The experimental images consist of 21 pairs of infrared
and visible images taken from the classical TNO Image
Fusion Dataset (TNO). The proposed method is compared
with nine related state-of-the-art fusion methods, including
IVFusion [24], RFN-NEST [30], Bayesian [28], percep-
tual FusionGAN (abbreviated as PerGAN) [34], FusionGAN
[31], MGFF [19], FPDE [21], ADF [20] and CBF [26]. The
relevant parameters of the algorithms above are set accord-
ing to the original papers. All experiments are implemented
in MATLAB R2019b on a 3.40 GHz Intel(R) Core (TM)
i7–6700 CPU with 8.00 GB RAM.

In the quantitative comparisons section, five evaluation
metrics are adopted: Mean value (ME), pixel-based visual
information fidelity (VIFP) [45], Gradient-based fusion met-
ric (QAB/F ) [54], Chen-Blum metric (QCB) [55], and
Chen-Varshneymetric (QCV ) [56]. Thesemetrics are used to
evaluate the performance of the fusion algorithm objectively.
This paper first enhances the visible image and then fuses it
with the infrared image. So we use the adaptively enhanced
visible image, infrared image, and fused image to calculate
these evaluation indicators.

Among these indicators, ME calculates the arithmetic
mean of all pixels, representing the average brightness that
human eyes can perceive. VIFP measures the visual fidelity
between the fused image and the source image. QAB/F is
used to estimate the edge information in the fused image.
The greater the value, the more edge information from the
source image remains. QCB is designed based on the human
visual system and can closely match human perceptual eval-
uations. For the above indicators, a greater value means a
better quality of the fused image. As for QCV , a human per-
ception inspired indicators that measure the visual difference
between the source image and fused image, the smaller the
QCV value, the better the fusion performance.

4.2 Visual comparison and analysis

We first exhibit some intuitive experimental results on
three pairs of classic images (‘Road’, ‘Kaptein_1654’, and
‘Nato_camp’) as shown in Figs. 8, 9, and 10, respectively.
The results of the other six groups are shown in Fig. 11. From
these results, it can be seen that all the algorithms have their
peculiarities, and our method has three distinct advantages.
First, the proposed method can depict scene information as
much as possible, especially for those images captured in low
illumination conditions; our method can effectively enhance
the hidden details. Second, the proposed can also maintain
the saliency of the infrared targets, which are beneficial to
some object tracking tasks. Third, our method can obtain
natural fusion images suitable for the human visual system.

Specifically, Fig. 8 shows the experimental results of
‘Road’, where the visible image is taken in a low illumi-
nation condition. The infrared targets in the fusion results of
RFN-Nest, Bayesian, FusionGAN, MGFF, FPDE, and ADF
are not significant enough. At the same time, although the
fusion results of IVFusion, PerGAN, and CBF maintain the
high contrast of the infrared targets, some valuable visible
details are lost (such as the billboard and traffic signs). Com-
pared with these algorithms, our method can highlight the
targets and contain more visible details, providing compre-
hensive scene information.

Moreover, for some video images, our method also per-
forms well. Figure 10 is one frame of the ‘Nato_camp’ video
sequence. The infrared image conveys the message that a
man is coming near to something, and the visible image
depicts rich scene information (such as the trees and fence).
Our method is advantageous as more natural details are con-
tained, which can improve the reliability of some tracking
tasks. Fusion results of other groups are exhibited in Fig. 11,
where the same phenomena are shown (As magnified by the
rectangles).

4.3 Quantitative comparisons

As mentioned in the experimental configuration
section, five well-known evaluation metrics (ME,
VIFP,QAB/F ,QCV QCB) are adopted to check the fusion
performance objectively. Among these metrics, the larger
values of ME, VIFP, QAB/F and QCB , the better quality of
the fused image. As for QCV which measure the difference
between the source image and the fused image, the smaller
the value, the better performance of the fused result.

The detailed scores for each metric on ‘Road’,
‘Kaptein_1654’, and ‘Nato_camp’ are tabulated in Tables 1,
2, and 3, respectively. The best value of each metric is shown
in bold, and the second best is underlined and in italic. In
most cases, our results rank in a leading position.
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IVFusion RFN-Nest Bayesian PerGAN FusionGAN

MGFF FPDE ADF CBF Proposed

Infrared image Visible image Adaptively Enhanced image

Fig. 8 Fusion results of the “Road” by different methods

IVFusion RFN-Nest Bayesian PerGAN FusionGan

MGFF FPDE ADF CBF Proposed

Infrared image Visible image Adaptively Enhanced image

Fig. 9 Fusion results of the “Kaptein_1654” by different methods
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IVFusion RFN-Nest Bayesian PerGAN FusionGan

MGFF FPDE ADF CBF Proposed

Infrared image Visible image Adaptively Enhanced image

Fig. 10 Fusion results of the “Nato_camp” by different methods

The results of quantitative comparisons on 21 pairs of
infrared and visible images are summarized in Fig. 12, and
the average values are given in Table 4. From the statistical
results. Our method achieves the best average score on ME,
VIFP, QAB/F ,QCV and QCB . These results demonstrate that
our method can reduce image distortion as much as possi-
ble while enhancing visible details and highlighting infrared
targets, making the fusion results consistent with the human
visual system.

4.4 Ablation study

Infrared and visible fusion aims to generate a fused image
with prominent infrared targets and abundant scene texture
information, so the BFAC and IGPT algorithms are pro-
posed. The BFAC is used to enhance details in the visible
images adaptively, and IGPT is used to highlight the salient
infrared targets. An ablation study is conducted to verify
the effectiveness of the proposed methods shown in Fig. 13
and Table 5, where ‘a’ is the fusion method of removing
the proposed adaptive visible image enhancement module
(BFAC) and infrared target extraction (IGPT) module. ‘b’
is the fusion method of removing the BFAC module.’c’ is
the fusion method of removing the IGPT module. ‘d’ is the
proposed method.

As seen in Fig. 13, when removing the BFACmodule, the
detailed information in the grass is reduced compared with
the proposed method (as highlighted by the yellow arrows).

When removing the IGPTmodule, the saliencyof the infrared
target is reduced compared with the proposed method (as
highlighted by the red rectangles). The objective indicators of
the fused images are shown in Table 5. The proposed method
achieves the best value on ME, VIFP, QAB/F and QCB . The
results of the total test images are summarized in Fig. 14,
and the average values are shown in Table 6. From the statis-
tical results, our method achieves the best score in metrics:
ME, VIFP, QAB/F ,QCV and QCB , which demonstrated the
analysis objectively.

4.5 Parameter analysis

In Sect. 3.2.1,we applied a threshold strategy to remove some
isolated pixels in the coarse result. Specifically, when the area
of the pixel region is smaller than the threshold, these pixels
are reversed. The threshold th can be presented by

th � t × H × W (28)

where H and W are the height and weight of the infrared
image, respectively. t is a user-defined value. In this paper,we
conduct a series of experiments to obtain the proper t value
and find the range of t is from 0 to 0.01 in our experimental
dataset. Due to the space constraint, only two sets of infrared
images are exhibited for the analysis. In Fig. 15, when t is
equal to 0, all pixels are retained, as the t value continues
to increase, it can be seen that the isolated pixels gradually
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Fig. 11 Fusion results of six pairs of infrared and visible images by different methods
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Table 1 Quantitative comparison
results on ‘Road.’ Method ME VIFP QAB/F QCV QCB

Proposed 86.91 0.3746 0.6042 478.32 0.5999

IVFusion 93.34 0.4345 0.2752 2319.48 0.4180

RFNNest 42.41 0.2862 0.2129 837.71 0.4538

Bayesian 47.33 0.3179 0.3408 513.07 0.3947

PerGAN 80.49 0.3802 0.2537 2522.86 0.3915

FusionGan 55.28 0.2588 0.2411 1467.66 0.3923

MGFF 45.17 0.3418 0.4060 1038.32 0.5118

FPDE 52.40 0.2149 0.2673 844.36 0.4345

ADF 51.78 0.3020 0.4206 1013.37 0.4849

CBF 65.16 0.2077 0.4638 836.87 0.4473

Table 2 Quantitative comparison
results on ‘Kaptein_1654’ Method ME VIFP QAB/F QCV QCB

Proposed 111.91 0.4123 0.5688 216.51 0.5168

IVFusion 108.68 0.3346 0.3110 392.92 0.4612

RFNNest 72.58 0.2613 0.2959 364.03 0.4159

Bayesian 89.25 0.3357 0.4902 420.83 0.4796

PerGAN 93.12 0.2905 0.2259 353.10 0.4854

FusionGan 73.15 0.1765 0.1467 439.18 0.3148

MGFF 86.49 0.2933 0.4502 271.91 0.4540

FPDE 93.27 0.2700 0.4286 334.50 0.4024

ADF 92.86 0.2793 0.4534 320.33 0.4454

CBF 94.36 0.1902 0.4323 319.05 0.4601

Table 3 Quantitative comparison
results on ‘Nato_camp’ Method ME VIFP QAB/F QCV QCB

Proposed 105.40 0.3802 0.5433 434.25 0.6216

IVFusion 126.60 0.2469 0.2804 795.25 0.5304

RFNNest 66.65 0.2470 0.3968 431.12 0.5769

Bayesian 88.90 0.2939 0.4567 430.18 0.6174

PerGAN 95.28 0.2221 0.1918 1115.18 0.4304

FusionGan 83.98 0.1766 0.2420 760.20 0.4256

MGFF 82.50 0.2367 0.4173 453.13 0.5589

FPDE 91.59 0.2266 0.4160 399.95 0.5603

ADF 91.14 0.2539 0.4503 382.91 0.5755

CBF 89.89 0.1605 0.3925 510.61 0.5191

decreased. Particularly,when t is set to 0.0002, all the isolated
pixels are revised, and the extracted infrared targets tend to
stabilize until t is enlarged to 0.01. Therefore, we set the
threshold th to 0.0002 × H × W . It is worth noting that, th
is mainly used to delete some isolated pixels in images, and
it is a user-defined value that can be determined according to
different tasks.

5 Conclusion

In this paper, a novel adaptive visual enhancement and salient
targets analysis-based fusion scheme is proposed. First, in
order to address the problem that visible images are easily
affected by illumination, a visual adaptive enhancement algo-
rithm for visible images (named BFAC) is proposed. Based
on the bright-pass bilateral filter, the algorithm corrects the
brightness of the visible image by calculating the adaptive
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Fig. 12 Comparison of our method with nine state-of-the-art methods on 21 infrared and visible image pairs
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Table 4 Average quantitative
comparison results on 21 testing
image pairs

Method ME VIFP QAB/F QCV QCB

Proposed 122.27 0.4082 0.5433 374.09 0.5537

IVFusion 121.58 0.3485 0.3068 1148.0 0.4966

RFNNest 93.34 0.2809 0.3598 534.25 0.5078

Bayesian 111.27 0.3176 0.4840 453.58 0.5252

PerGan 105.50 0.3075 0.2092 919.91 0.4160

FusionGan 76.37 0.2064 0.2189 1061.6 0.4283

MGFF 100.82 0.3103 0.4633 563.57 0.5233

FPDE 111.62 0.2707 0.4879 489.42 0.4923

ADF 111.11 0.2928 0.5209 518.58 0.5073

CBF 112.84 0.2160 0.4540 947.61 0.4933

a: without BFAC and IGPT b: without BFAC c: without IGPT d: Proposed

Pseudo-color image of  ‘a’ Pseudo-color image of  ‘b’ Pseudo-color image of  ‘c’ Pseudo-color image of  ‘d’

Fig. 13 Effectiveness illustration of BFAC and IGPT

Table 5 Quantitative comparison
results of the different ablation
experiments on ‘Kaptein_1654’

Method ME VIFP QAB/F QCV QCB

a: Without two modules 98.45 0.4005 0.5337 209.35 0.4918

b: Without BFAC 98.82 0.4057 0.5403 198.91 0.4920

c: Without IGPT 111.6 0.4069 0.5617 230.48 0.5163

d: Proposed 111.9 0.4123 0.5688 216.51 0.5168

gamma value to obtain the enhanced visible image with an
excellent visual effect. Secondly, an infrared target extraction
algorithm (named IGPT) is proposed. The algorithm obtains
the infrared target by calculating the tensor rank, iteratively
guided filtering and solving the convergence condition. Com-
pared with the previous IPT model and BASNet, our IGPT
has more accurate results as significant infrared targets and
continuous edges are contained. Third, an efficient hybrid

�1−�0 model decomposes the infrared and visible image into
base and detail layers, then fuses them by weight strategy.
The final fused image is obtained by merging the fused base
layers, detail layers, and infrared targets.

Qualitative and quantitative experimental results demon-
strate that the proposed method is superior to 9 state-of-the-
art image fusion methods as more valuable texture details
and significant infrared targets are preserved. However, in
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Fig. 14 Quantitative comparison of the different ablation experiments on 21 pairs of infrared and visible images
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Table 6 Average quantitative
comparison results of the
different ablation experiments on
21 pairs of infrared and visible
images

Method ME VIFP QAB/F QCV QCB

a: without two modules 114.9 0.4008 0.5211 385.85 0.5392

b: without BFAC 115.2 0.4071 0.5276 382.37 0.5395

c: without IGPT 121.9 0.4020 0.5368 382.82 0.5532

d: Proposed 122.2 0.4082 0.5433 374.09 0.5537

Fig. 15 The changes of isolated pixel points when t gradually increases

the stage of the infrared target extraction, an ADMM frame-
work is applied to iterative solve the optimization model,
resulting in more computing resources and the average run-
ning time of our method is about 7 s. In our future studies,
we will focus on some light-weight networks and efficient
optimization algorithms to make the proposed method more
suitable for some real-time industrial applications.
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